
FUNCTIONAL STRUCTURES FOR PARSING DEPENDENCY CONSTRAINT5

J~ippinen, H., Lehtola, A., and Valkonen K.

SITRA Foundation*
P.O. Box 329, 00121Hetsinki, Finland

and
HeIsinki University of Technology

Helsinki, Finland

This paper outlines a high-level language FUNDPL for
expressing functional structures for parsing dependency
constraints. The goal of the language is to allow a
grammar writer to pinn down his or her grammar with
minimal commitment to control. FUNDPL interpreter has
been implemented on top of a lower-level language DPL
which we have earl ier implemented,
.

* Current address of the authors

I.Jj]troduction

In the theory of computation a new viewpoint is digging
in: to compute is to pin down the constraints that hold in
a given problem domain, and a goal for computation. It is
up to an interpreter to perform search for the goal in the
problem domain. The result of computation follows then
indirectly from the search process.

Strongly pronounced and in wide use this vantage
point becomes in Prolog. Recently fresh views of parsing
as constraint systems have also surfaced, such as FUG
(Kay, 1985; Karttunen and Kay, 1985), LFG (Bresnan,
1978), and PATR-II (Schieber, 1985). In these languages,
a user writes only grammatical constraints and need not
import control instructions. The interpreter searches for
a grammatical configuration that "explains" a given input
sentence without violating the constraints.

These new grammars advocate yet another, more
abstract departure from procedural description.
Grammars for parsing have predominantly used
generative rewrite rules. The ideological underpinning of
parsing has been in the past that of the emulation of
generative tllstories of configurations. The new
formalisms express grammars as functional structures.

We have defined a language DPL (Dependency Parsing
Language) to meet the needs of parsing a highly
inflectional, agglutinating language (Nelimarkka et al.,
1984). The language enforces dependency approach which
accords better than phrase structure rules with the
needs of non-configurational languages. DPL language and

its compiler constitutes .just one component of a
language-based environment we have implemented for
the development of parsers (Lehtota et al., 1985).

In DPL, a grammar is comprised of functions,
relations, and automata. The automata, which control the
parsing process, have compelled a person who writes
grammar to heed control unwanted extent. This paper
describes a high-level language FUNDPL (FUNctional DPL)
we have designed on top of DPL. In FUNDPL, a grammar is
built out of functions, relations, and functional
structures. FUNDPL is a constraint system which
liberates a grammar writer from control anxieties.

2. Z_yp~

Type definitions in DPL as well as in FUNDPL l ist and
classify linguistic properties used in a grammar
description. A user has flexible tools in hand.
CONSTITUENT statement defines the constituent
structure, that is, what attributes terminal symbols

have. The domains of names are spelled out with VALUE,
FEATURE, or CATEGORY statements. VALUE is used for
unary properties, FEATURE'. for binary features. CATEGORY
assigns names In llierachies. Properties are
automatically inherited in hierarchies.

Names can be associated together in SUBTREE
statements. LEXICON-ENTRY statement is reserved for
the definition of the lexical entry form. It accepts an
arbitrary tree structure expressed in l ist notation.

DPL (and FUNDPL) opts for reference by value. This
practice results in compact and convenient notation but
requires discipline from the user, e.g., all properties
must have unique names. For further details about types
and reference, see Nelimar'kka et al., 1984.

3. Binary Constraints

FUNDPL uses syntactic functions (and semantic
relations) as binary con,~;tralnts in a grammar in the
following sense. In analysis two abstract levels exist
(Fig. I). On the regent level (R-level) are those
constituents which lack dependants to f i l l some required

461

functional roles. On the dependant level (D- leve l) are
those constituents which have become full phrases
(marked by feature +Phrase) and are therefore
candidates for functional roles. Syntactic functions (and
semantic relations)mediate between these two levels.

The underlying abstract process view is this. A word
enters the parsing process via R-level. When all
dependants of the constituent (the word) have been bound
(from D-level), i t descends to D-level. There i t remains
until i t i tself becomes bound as a dependant. Then it
vanishes from sight.

To visualize, Fig. I exhibits a snapshot of parsing the
sentence "Nuori polka lauloi virren ellen kylQn kirkossa."
(A/the young boy sang a hymn yeslerday in the village
church.)

I
--l~uloi~eilen---- R-level

llPTrAct AdvP

-p O i k.a ~ vi rre rr ~-1 evel

p~dni

Fig. I. A snaphot of parsing dependency constraints

Functions

FUNCTION statements define syntactic functions which
are binary constraints of a grammar. Each statement
declares for the function the property combinations that
must simultaneously hold in a regent and a dependant (cf.
Nelimarkka et al., 1984 or Lehtola et al., 1985 for
details).

Function calls and function projections

Functions are called by name.s In numerous occasions
verbs in particular take arguments in idiosyncratic
manner. For example, the Finnish verb "rakastaa" (to
love) is an ordinary transitive verb which has the
one-who-is-loved in object position. But semantically
closely related verb "p i t~" (to like) takes the
one-who-is-liked in adverbial position with elative
surface case.

It is, therefore, necessary to be able to restr ict the
domain of a general function. Function projection is a
device for that. Restrictions are wri t ten after names, a
slash between. For example, to restr ict the adverbial
function call to elative surface cases only, one writes:

462

Adverbial/[Elat]. Full projections need not be explici t ly
shown. Instead of writing, say: Sobject/ l] , one is
allowed to wri te simply: Subject.

Relations

Relations give semantic interpretations to syntactically
recognized functions. They are expressed in RELATION
statements. Relation calls are implicit in a grammar,

4. Structural Constraints

FUNDPL uses functional schemas to express
interdependent binary constraints. All syntactic
functions are called via such schemas. When a word
enters R-level it is associated with a schema which
makes the constraints explicit for the interpreter.

Functional schemas

A schema has four parts - pattern, structural part,
control part, and assignment part - and it reads as
follows (required slots are underlined):

(F_SCHEIdA: name
hU~.~=[properties] ;pattern

Obligatory=(funct ions)
Optional=(functions) ;structure
Order =<conc.descMption>

TryLeft = < f unc t ions>
fryAight =<functions> ;control
Down
Up

A s s.~_u~.Q=[p rop e r t i e s] ;assignment
Lift=function(attributes))

Schemas are triggered via their patterns. Pattern has
a single slot When which indicates the required
properties of a matching constituent.

Structural part may have up to three slots. One
optional slot lists the obligatory functions if there are
any, and another is for the optional ones. One opNonal
slot describes what concatenation relations the
expressed functions must fulfil on surface, if any.

In a concatenation description "R" stands for the
regent itself. Two consequtive clots (..) signal positions
of possible irrelevant intervening functions. Traillng
dots may be omitted. For example, Order=<fl f2 R>

~equires that f l is the first function to the left on the
surface level (in a subtree dominated by R) and it is
immediately followed by f2 and R in that order.
O~ller=<,.fl..R.f2> demands that f l is somewhere to the
left of R and f2 somewhere to the right of it.

Control part has up to four slots. Two of them are
reserved for heuristic hints for the interpreter about the
order it should test functions (when Order is not
present). Control part can also raise or descend parsing
between sentence levels. Down drops control to parse
subordinate clauses, Up raises control to the next level.
Operation lip is vacuous and harmless on the topmost
level.

R$Iume slot in assignment part transfers new
properties to the regent after the schema has been fully
matched and bound. The other slot, Lift, is an optional
one for the percolation of properties from a dependant
via a named function link. For example,
[ift=Subject(Case) has the effect of percolating the
value of surface case to the regent from the dependant
which has been bound through Subject function.

A functional schema for ordinary Finnist) transitive
verbs which may I~ave unlimited number of adverbials on
either side reads as follows. Notice l)ow this single
schema allows all permutations of arguments (resulting
from topicalization), but it prefers SVO-ordering.

(E.SCHEMA : VPTrAct
IIllhen:[Vet"b Act Ind ,Transitive]
Ilbligatory=(Subject Object)
Optionol=(Adverbial *)
TIr[ILeft=<Subject Object Adverbial>
lrrgRight=<Object Adverbial Subject>
Up
Ililulne=[+Phrase +Sentence])

A simple schema suffices for relative pronouns. The
following schema just marks the constituent complete
and pushes control one level down to parse a subordinate
relative clause. Incidently, the schema VPTrAct above
parses main clauses and subordinate relative clauses as
well. For the latter i t raises control back to the main
level.

(F_SCHEMA : RelPron
Illhen:[Relpron]
Down
8nume=[+Phrase +Nominal])

Up and Down commands are the only explicit pieces
of control information a user has to write in FUNDPL.
Implicitly he or she controls the parsing process by way
of assigning properties to constituents in I issume slots.
Heuristics is used in schemas only to speed up search.

When a schema has been fully matched and bound to its
dependants through function links, it becomes a
functional structure. A functional structure is an
annotated tree wl)ose branches are marked by functions.

Any number of functional structures may exist during
parsing process on D-level. Process ends succesfully
when all words have entered the process, R-level is
empty, a single functional structure appears on D-level,
and its root has properties +3entente, -~Ph/YL~e. Fig. 2
shows how the process in Fig. 1 terminates.

. R-ieuel

. lauloi IF-level

-" . . . ~ z v) '-., ~ r l ~ . | : ' ,

f ; o i k 8 'd I t-r i lu-i e i l en k h-k o '.~'.~:; a

:4 l : [. ' j :YlJ:.t,i'..'" ' "6&' r ' t t ' .~ | t ' f
" . " i ,
p~ em kyl~n

Fig 2. A final functional structure

We I~ave outlined a high level language for' parsing
dependency constraints. The language has been
implemented on top of a lower-level language DPI. which
we have implemented earlier. In FUNDPL parsing process
is driven by an interpreter wI~ich utiIize~ blackboard
control strategy.

Bresnan, J., A realistic transformational grammar.
In Halle, Bresnan, and Miller (Eds.),
ZAegL-y~y_£,bgJgg~a]_J?ea3JJiy, MIT Press, 1978.

J~ppinen, H., and Ylilammi, M., Associative model of
morphological analysis: an empirical inquiry.

~ t i o n a l Linguistic& (to appear).
Karttunen, L., and Kay, M., Parsing in a free word order

language. In Dowry, Karttunen, and Zwicky (Eds.),
Natural l.anguage Parsing. Cambridge University Press,
1985.

Kay. M., Parsing in functional unification grammar.
In Dowty, Karttunen, and Zwicky (Eds.), N a t ~
~ _ s J £ g , Cambridge University Press, 1985.

Lehtola, A., Jappinen, H., and Nelimarkka, E.,
Language-based environment for natural language
parsing. 2nd European Conf. of ACL, Geneve, 1985.

Nelimarkka, E., J~ppinen, H., and Lehtola, A., Parsing an
inflectional free word order language with two-way
finite automata. 6th European Conf. of AI, Plsa, 1984.

Schieber, S., Using restriction to extent parsing
algorithms for complex feature-based formalisms.
In Proc. of the 22nd Annual Meeting of ACt, Chicago,
1985.

463

