
REPRESENTATION TREES AND
STRING-TREE CORRESPONDENCES

presented for COLING-88
Budapest, 22-27 August 1988

by
Ch.BOITET & Y.ZAHARIN

GETA, BP 68
Université de Grenoble et CNRS

38402 Saint-Martin-d'Hères, FRANCE

PTMK, Universiti Sains Malaysia
11800 Penang, MALAYSIA

ABSTRACT

The correspondence between a string of a language and
its abstract representation, usually a (decorated) tree,
is not straightforward. However, it is desirable to
maintain it, for example to build structured editors for
texts written in natural language. As such
correspondences must be compositional, we call them
"Structured String-Tree Correspondences" (SSTC).

We argue that a SSTC is in fact composed of two
interrelated correspondences, one between nodes and
substrings, and the other between subtrees and
substrings, the substrings being possibly discontinuous
in both cases. We then proceed to show how to define a
SSTC with a Structural Correspondence Static Grammar
(SCSG), and which constraints to put on the rules of the
SCSG to get a "natural" SSTC.

Keywords: linguistic descriptors, discontinuous
constituents, discontinuous phrase structure grammars,
structured string-tree correspondences, structural
correspondence static grammars

Abbreviations: DPSG, MT, NL, SSTC, STCG.

INTRODUCTION

Ordered trees, annotated with simple labels or complex
"decorations" (property lists), are widely used for
representing natural language (NL) utterances. This
corresponds to a hierarchical view: the utterance is
decomposed into groups and subgroups. When the depth of
linguistic analysis is such that a representation in
terms of graphs, networks or sets of formulas would be
more direct, one often still prefers to use tree
structures, at the price of encoding the desired
information in the decorations (e.g., by "coindexing" two
or more nodes). This is because trees are conceptually
and algorithmically easier to manipulate, and also
because all usual interpretations based on the linguistic
structure are more or less "compositional" in nature.

If a language is described by a classical Phrase
Structure Grammar, or by a (projective) Dependency
Grammar, the tree structure "contains" the associated
string in some easily defined sense. In particular, the
surface order of the string is derived from some ordered
traversal of the tree (left-to-right order of the leaves
of a constituent tree, or infix order for a dependency
tree).

However, if one wants to associate "natural"
structures to strings, for example abstract trees for
programs or predicate-argument structures for NL
utterances, this is no longer true. Elements of the
string may have been erased, or duplicated, some
"discontinuous" groups may have been put together, and
the surface order may not be reflected In the tree (e.g.,
for a normalized representation). Such correspondences
must be compositional: the complete tree corresponds to
the complete string, then subtrees correspond to
substrings, etc. Hence, we call them "Structured
String-Tree Correspondences" (SSTC).

For some applications, like classical (batch) Machine
Translation (MT), it is not necessary to keep the
correspondence explicit: for revising a translation, it
is enough to show the correspondence between two
sentences or two paragraphs. However, if one wants to
build structured editors for texts written 1n natural

language, thereby using at the same time a string (the
text) and a tree (its representation), it seems necessary
to represent explicitly the associated SSTC.

In the first part, we briefly review the types of
string-tree correspondences which are implied by the most
usual types of tree representations of NL utterances. We
argue that a SSTC should in fact be composed of two
interrelated correspondences, one between nodes and
substrings, and the other between subtrees and
substrings, the substrings being possibly discontinuous in
both cases. This is presented in more detail in the
second part. In the last part, we show how to define a
SSTC with a Structural Correspondence Static Grammar
(SCSG), and which constraints to put on the rules of the
SCSG to get a "natural" SSTC.

I. WHAT IS A CORRESPONDENCE BETWEEN A STRING
AND A TREE?

I. PHRASE STRUCTURE TREES (C-STRUCTURES)

Classical Phrase Structure trees give rise to a very
simple kind of SSTC. To each string w = al...an, let us
associate the set of intervals i_j, 0<i<j<n. w(i_j)
denotes the substring ai...aj of w if i<j, 6 otherwise.

The root, or equivalently the whole tree, corresponds
to w = w(0_n). Each leaf corresponds to some substring
w(i_j), of length 0 or 1 (we may extend this to any
length if terminals are allowed to be themselves strings
Then, the correspondence is such that any internal node
of the tree, or equivalently each tree "complete" in
breadth and depth, corresponds to w(i_j), iff its m
daughters (or its m immediate subtrees), in order,
correspond to a sequence w(i1_j1),...,w(im_jm),
such that il = i, jm=j, and jk = ik+l for 0<k<m.

This type of correspondence is "projective". It has
however been argued that classical phrase structure trees
are inadequate for characterising syntactic
representations in general, especially in the case of
so-called "discontinuous"constituents. Here are some
examples.
- (1) John talked, of course, about politics.
- (2) He picked the ball up.
- (3) Je ne le lui ai pas donné.

(I did not give it to him)

According to (McCawley 82), sentence (1) contains a
verb phrase "talked about politics", which is divided by
the adverbial phrase "of course", which modifies the
whole sentence, and not only the verbal kernel (or the
verbal phrase, in Chomsky's terminology). Sentence (2)
contains the particle "up", which is separated from its
verb "picked" by "the ball". In sentence (3), the
discontinuous negation "ne...pas" overlaps with the
composed form of the verb "ai...donné". Moreover, if a
sentence in active voice is to be represented in a
standard order (subject verb object complement), this
sentence contains two displaced elements, namely the
object "le" and the complement "lui".

(McCawley 82) and later (Bunt & al 87) have argued
that "meaningful" representations of sentences (2) and
(3) should be the following phrase structure trees, (4)
and (5), respectively.

59

Figure l: Examples of discontinuous phrase structure
trees

Along the same line, and taking into consideration the
displaced elements, a "meaningful" representation for

sentence (3) would be tree (6).

Figure 2: Example of discontinuity and displacement

Here, the correspondence is established between a node
(or equivalently the complete subtree rooted at a node)
and a sequence of intervals. If a displacement arises, as
in (3), the left-to-right order of nodes in the tree may
be incompatible with the order of the corresponding
sequences of intervals in the string (the considered
ordering is the natural lexicographic extension).

Rather than to introduce the awkward notion of
"discontinuous" tree, as above, with intersecting
branches, we suggest to keep the tree diagrams 1n their
usual form and to show the string separately. For

sentence (3), then, we get the following diagram.
Figure 3: Separation of a string and its "discontinuous"
PS tree

Now, as before, the root of the tree still corresponds
to w=w(0_n), and a leaf corresponds to an interval of
length 0 or 1 (or more, see above). But an Internal node
with m daughters corresponds to a sequence of Intervals,
which is the "union" of the m sequences corresponding to
its daughters.

More precisely, a "sequence" of intervals 1s a list of
the form S = w(i1_j1),...,w(ip_jp), in order (1k<1k+1 for
0<k<p) and without overlapping (jk<ik+1 for 0<k<p). Its
union (denoted by "+") with an interval I = w(i_j) is the
smallest list containing all elements of S and of I. For
example, S+I is:

- S itself, if there is a k such that ik≤i and j≤jk;

- S, augmented with w(i_j) inserted in the proper place,
if j<il or jp<i or there is a k<p such that jk<i and
j<ik+l;
60

- w(i1_j1),...,w(iq_jq),w(i_jr),...,w{ip_jp), if there
are q and r such that jq<i<iq+1 and ir≤j≤jr (other
cases are analogous).

2. DEPENDENCY TREES (F-STRUCTURES)

In classical dependency trees, elements of the
represented string appear on the nodes of the tree, with
no auxiliary symbols, except a "dummy node", often
indicated by "+", which serves to separate the left
daughters from the right daughters.

There are two aspects 1n the correspondence. First, a
node corresponds to an element of the string, usually an
Interval of length l. Second, the complete subtree rooted
at a node corresponds to the Interval union of the
intervals corresponding to the node and to its subtree.
These Intervals may not overlap.

The string can be produced from the tree by an in order
traversal (one starts from the root, and, at any node,
one traverses first the trees rooted at the left
daughters, then the node, then the trees rooted at the
right daughters, recursively).

Sentences (1) and (2) might be represented by trees
(8) and (9) below.

Figure 4: Examples of classical dependency trees

In those trees, the discontinuities shown 1n the PS
trees (4) and (5) have disappeared, we have shown on some
nodes the syntactic functions usually attached to the
edges.

There may be some discussion on the structures
produced. For example, some linguists would rather see
"politics" dominating "about". This is not our topic
here, but we will use this other possibility in a later
diagram. For the moment, note that discontinuity does
not always disappear in dependency trees. Here 1s an
example corresponding to sentence (3).

Figure 5: Example of a "discontinuous" dependency tree

Let us now take a simple example from the area of
programming languages, which shows an abstract tree
associated to an assignment, where some elements of the
string are "missing" in the tree, and where a node
corresponds to a "discontinuous" substring (a sequence of
intervals).

Figure 6: Example of "abstract" tree for a formal
language expression

Here, we have shown the correspondence between
nodes
and sequences. The parentheses are missing in the tree,
which means that the sequence corresponding to the
subtree rooted at node "+" is more than the union of the
sequences corresponding to its subtrees. However, there
is no overlapping between sequences corresponding to
independent nodes or subtrees.

Another remark is that the elements appearing on the
nodes are not always identical with elements of the
represented string. For example, we have replaced ":=" by
"=:" and the (discontinuous) substring "if then else" by
" if_then_else", in a usual fashion.

3. PREDICATE-ARGUMENT TREES (P-STRUCTURES)

In "predicate-argument structures", it is usual to
construct a unique node for a compound predicate, in the
same spirit as the "if_then_else" operator above. With
sentences (1) and (2), for example, we could get trees
(12) and (13) below. Beside the logical relation
(argument place) or the semantic relation, the nodes must
also contain some other information, like tense, person,
etc., which is not shown here.

Figure 7; Examples of predicate-argument trees

We now come to situations where overlapping occurs,
and where it is natural to consider "Incomplete" subtrees
corresponding to "discontinuous" groups.

This occurs frequently 1n cases of coordination with
elision, as in:

"John and Mary give Paul and Ann trousers and
dresses."

In order to simplify the trees, we abstract this by
the formal language {an v bn cn 1 n>0}, and propose the
two trees (14) and (15) below for the string
"a a v b b c c" (also written a.l a.2 v b.1 b.2 c.1 c..2
to show the positions) as more "natural" representations
than the syntactic tree derived from a context-sensitive
grammar in normal form for this language (all rules are
of the form "1 A r --> 1 u r", 1 and r being the left and
right context, respectively).

Figure 8: Examples of p-structures for a1 a2 v bl b2 c1
c2

On certain nodes, we have represented the sequence
corresponding to the complete subtree rooted at the node,
followed by the sequence corresponding to the node
itself. For nodes A, B, C in tree (14), this "local"
sequence 1s empty.

In both trees, it is clear that the sequence a1 V b1
c1 corresponds to an "incomplete" subtree, namely
V(A(a1),B(b1),C(c1)) in (14) and V(al,b1,c1) in (15).

In tree (14), the coordination is shown directly on
the graph, and the verb (V) is not shown as elided. It is
a matter of further analysis to accept or not the
distributive interpretation ("respectively" may hold
between the three groups, the last two ones, or nones).

On the contrary, tree (15), in a sense, is a more
"abstract" representation. It shows directly the
interpretation as a coordination of two sentences, and
"restores" the elided V.

4. MULTILEVEL TREES (M-STRUCTURES)

Multilevel tree structures, or m-structures for short,
have been introduced by B.VAUQUOIS in 1974 (see
(Vauquois 78)) for the purposes of Machine Translation. On
the same graph, three "levels of interpretation" are
described (constituents, syntactic dependencies, logical
and semantic relations). As seen in other examples
above, the nodes which refer directly to the string do
not contain elements of the string, but rather
representatives of (sequences of) elements of the string,
called "lexical units" (LU), like "repair" for
"reparation", plus some Information about the derivation
used.

The graph is deduced by simple rules from a dependency
tree: each internal node is "lowered" in the "*" position
and its syntactic function becomes "GOV" (for "governor",
or head in some other terminology), discontinuous lexical
elements (like "ne...pas" or "ai...donné" are represented
by one node, coordination 1s represented by "vertical
lists" as 1n tree (14), lexical units of referred
elements are put 1n the nodes corresponding to the
pronouns, an approximation of coindexing, etc..

From the point of view of the associated
correspondence between representation trees and
represented strings, nothing new has to be mentioned.

II. A PROPOSAL: STRUCTURED STRING-TREE CORRESPONDENCES

Our proposal is now almost complete.

1. DEFINITIONS

a) The correspondence between a string and its
representation tree is made of two interrelated
correspondences:

- between nodes and (possibly discontinuous) substrings;

- between (possibly incomplete) subtrees and (possibly
discontinuous) substrings.

61

b) It can be encoded on the tree by attaching to each node N
two sequences of intervals, called SNODE(N) and
STREE(N), such that:

1. SNODE(N) < STREE(N), which means that SNODE(N) is
"contained" in STREE(N) with respect to its basic
elements (the w(i_j)), that is, that
STREE(N) = STREE(N) U SNODE(N). Note that equality
can not be required, even on the leaves, because the
string "(b)" may well have a representation tree with the
unique node b.

2. if N has m daughters Nl...Nm, then
STREE(N) > STREE(N1)+...+STREE<Nm) + SNODE(N).
In case of strict containment, the difference correspond to
the elements of the string which are represented by the
subtree but which are not explicitly represented, like "("
and ")" in "(b)".

c) The sequence SSUBT(X,N) corresponding to a given
incomplete subtree X rooted at node N of the whole
tree T is defined recursively by:

- SSUBT(X,N) = STREE(X) if X = N, that is, if X is
reduced to one node, not necessarily a leaf of T;

- SSUBT(X,N) = SSUBT(X1)+...+SSUBT(Xp) U SNODE (N), if
N, the root of X, has p subtrees X1...Xp in T.

In other words, one takes the smallest sequence
containing the biggest sequence corresponding to the
leaves of X(STREE on the leaves) and compatible with
the monotony rules above.

2. PROPERTIES

Here are some interesting properties of SSTCs which
may help to classify them.

A SSTC is non-overlapping if

- STREE(N1) and STREE(N2) have an empty intersection if
Nl and N2 are independent;

- SNODE(N1) and STREE(N2) have an empty intersection if
N2 is a daughter of Nl.

A SSTC is projective if

it is non-overlapping;

- for any two sister nodes N1 and N2, Nl to the left of
N2, STREE(Nl) is completely to the left of STREE(N2).
This means that,

if STREE(N1) = w(i1_j1)...w(ip_jp) or 0
and STREE(N2) = w(k1_l1)...w(Kq_lq) or 0,
then jp<k1.

A SSTC is direct if, for each elementary interval
w(i_j+l), there is a node N such that
SNODE(N) = w(i_j+1).

A SSTC is complete if each elementary interval 1s
contained in SNODE(N) for some nods N.

A SSTC is of the constituent_type if SNODE(N) is empty
for each non terminal node N,

3. QUESTIONS OF REPRESENTATION

In the examples above, we have encoded the
correspondence in the tree. However, this is in practice
not always necessary, or even practical.

In the case of explicit and projective SSTCs, for
instance, the string can be obtained directly from the
tree, and there is no need to show the intervals.

Note that, in the process of generating a string from
a tree, one naturally starts from the top, not knowing
the final length of the string, and goes down
recursively, dividing this interval into smaller
intervals. Rather than to introduce variables
representing the extremities of the created intervals, 1t
may be more practical to start from a fixed interval, say
0_i or 0_100. Then, the positions between the elements of

62

the string will be denoted by an increasing sequence of
rational numbers (0, 1/3, 1/2, 5/7), etc.

In the case of "local" non-projectivity, we have tried
some devices using two relative integers (POS,LEV)
associated with each node N. POS(N) shows the relative
order in the subtree rooted at mother(N), if LEV{N)=0, or
more generally at its LEV(N+1) ancestor, if LEV(N)>0.
Unfortunately, all these schemes seem to work only for
particular situations.

Also, if the SSTC is overlapping, or not complete, it
may be computationally costly to find the (smallest)
subtree associated with a given (possibly discontinuous)
substring. But this operation would be essential in a
"structural" editor of NL texts. A possibility is then
to encode the correspondence both in the tree and in the
string.

Finally, take the example of tree (15) above. Suppose
that the user of a NL editor wants to change b1 (Paul, in
the corresponding NL example) in a way which may
contradict some agreement constraint between a1, V, b1
and c1. One should be able to find the smallest SSTC
containing a1 and other elements, that is, the subtree
V(a1.b1.c1) and the discontinuous substring a1 v b1 c1
(the notation a._.v.b._.c._. might be suitable, if one
wants to avoid indices).

For these reasons, it may be worthwhile to consider
the possibility of representing the SSTC independently of
both the tree and the string. This is actually the idea
behind the formalism of STCG (String-Tree Correspondence
Grammar).

III. EXTENDING.THE STCG FORMALISM TO DEFINE A SSTC

1. BASIC NOTIONS ABOUT STCG

The static grammars of (Vauquois & Chappuy 85) are
devices to define string-tree correspondences. They have
been formalized by the STCGs of (Zaharin 86).

Here, a context-free like apparatus of rules (also
called "boards", for "planches" in French, because they
are usually written with two-dimensional tree diagrams)
is used to construct the set of "legal" SSTCs.

The axioms are all pairs (X,Y($F)), where X is an
unbounded string variable, Y a starting node (standing
for SENTENCE, or TITLE, for example), and $F is an
unbounded forest variable.

The terminals are all pairs (X,X'), where x is an
element of a string and x' a one-node tree which
represents it.

The rules show how a SSTC 1s made up of smaller ones.
The generated language is the set of all variable-free
(<str1ng>,<tree>) pairs derivable from an axiom by the
grammar rules.

In order to avoid undue formalism, let us give an
example for the formal language {an bn cn 1 n>0}.

Figure 9: A simple SCSG for an bn cn

X, Y and Z are string variables, $F a forest variable,
and the Indices are Just there to distinguish elements
with the same label.

Actually, the formalism 1s a bit more precise and
powerful, because it is possible to sxpress that a
correspondence 1n the r.h.s. (right hand side) is
obtained only by certain rules, and to restrict the
possible unifications (rather, a special kind called

Figure 10 Example of with_ref part in a r.h.s.

R2: X/aX,... means that the subcorrespondence
(XYZ,S.2($F)) may be generated by rule R2, thereby
identifying X in XYZ with aX in aXbYcZ (in the l.h.s.).

In the version of (Zaharin 86), the correspondence is
always of constituent type, because the only applications
considered had been to m-structures used for MT, where
non-terminal nodes do not directly correspond to
substrings.

But this is by no means necessary, as the next example
illustrates, with the language {an v bn cn 1 n>0}.

Figure 11: STCG for an v bn cn giving tree (15)

This STCG generates correspondences such as
(aavbbcc, tree (15)). But something has to be added to
distinguish the STREE and SNODE parts.

2. AN EXTENSION

We simply associate to each constant or variable
appearing in a STCG rule one or two expressions
representing the STREE and SNODE sequences, separated by
a "/" if necessary, with basic elements of the form
"p_q", where p and q are constant or variable indices.

In any given (<string>,<tree>) pair, we associate one
such expression to each element of <string>, and two to
each node of <tree>, the first for STREE and the second
for SNODE. The second may be omitted: by default, SNODE
is taken to be empty on internal nodes and equal to STREE
on leaves.

Our last example may now be rewritten as follows.

Figure 12: Extended STCG for an v bn cn

3. CONSTRAINTS ON STCG

We will now give examples of STCGs which give rise to
unnatural correspondences and try to derive some
constraints on the rules. Let us first silently modify
our first STCG for an bn cn.

Figure 13: Example of "unordered" STCG

In the first element of R2, XYZ has been replaced by
ZYX. The following representation tree (16) would have
been naturally associated with the string
a1.a2.a3.b1.b2.b3.c1.c2.c3 by our first STCG. With this
modification, it becomes associated with
al.c2.a3.b1.b2.b3.c1.a2.c3, as shown in the next diagram.

Figure 14: Example of STCG "unordered" w.r.t. the
strings

The problem here is that the subtree rooted at S.2,
considered as a whole tree, should correspond to the
string a2.c3.b2.b3.cZ.a3, and that it corresponds to
O2.a3.b2.b3.a2.c3 when embedded in the whole tree rooted
at S. 1.

The STREE correspondences are not properly defined,
because one should be able to distinguish between
different permutations of the intervals, which is clearly

63

"identifications" in (Zaharin 86)). To illustrate this,
we may rewrite the last element of the r.h.s. as:

impossible with our previous definitions and
representations of SSTCs.

This is because the order of the elements of the
strings is not compatible in the l.h.s. and in the
r.h.s,: our first constraint will be to forbid this in
STCG rules.

Our second constraint will be to forbid the use of
auxiliary variables which do not correspond to substrings
(subtrees) of the terminal (variable-free) pairs produced
by the STCG.

Let us illustrate this with the following STCG, which
constructs the representation tree S(A(u),B(v)) for each
word w on (a,b,c) of even length such that w=uv and
Hu=Hv.

Figure 15: Example of STCG with auxiliary variables

There is a natural SSTC between the representation
tree and the string. For example, we get
S(A(a,b,c),B(b,a,c)) for w=abcbac. But the construction
of this final correspondence involves the construction of
pairs such as (abcPPP,S(A(a,b,c),P,P,P)), which are just
used for counting.

If we try to put sequence expressions on the P nodes
and string elements, we notice that it would be necessary
to extend the intervals of w, rather than to divide them.
Otherwise, we would make the first P of abcPPP correspond
to the second b of w=abcbac, which is quite natural, but
what would we associate to the first P of bacPPP ?

If we represent explicitly (and separately) the
structure of a given (<string>,<tree>) element of the
SSTC by its derivation tree in the STCG, the second
constraint will allow us to instantiate all variables by
substrings or subtrees of <string> and <tree>, without
having to construct other auxiliary strings and trees.
This, of course, would permit a more economical
implementation, in terms of space.

Finally, note that the interesting properties of SSTCs
mentioned in III.1 above have simple expressions as
constraints on the rules of our extended STCG formalism.

CONCLUDING REMARKS

Trees have been widely used for the representation of
natural language utterances. However, there have been
arguments saying that they are not adequate for
representing the so-called 'discontinuous' structures.
This has led to various solutions, relying, for instance,
on encoding the desired information in the nodes (e.g.
'coindexing'), or on defining trees with "discontinuous"
constituents.

we have presented here a proposal for representing
discontinuous constituents, and, more generally,
non-projective and uncomplete SSTCs with overlapping.

The proposal uses the ordinary definition of ordered
trees. This is made possible by separating the
representation tree from the surface utterance (which the
tree is a representation of). The correspondence between
the two may be represented explicitly by means of
sequences of intervals attached to the nodes.

This opens up a discussion on (and definitions of)
structured string-tree correspondences in general. This
representation might also be used in syntactic editors
for programs or in syntactico-semantic editors for NL
texts.

64

Finally, the formalism of the String-Tree
Correspondence Grammar has been extended to give the
means of representing the said structured
correspondences.

An analogous problem is to define structured
correspondences between representation trees, for
Instance between source and target Interface structures
in transfer-based MT systems. We do not yet know of any
satisfactory proposal.

A solution to this problem would give two very
Interesting results:

- first, a way to specify structural transfers in a
 reasoned manner, Just as STCGs are used to specify

structural analysers or generators,

- second, a way to put a text and its translation in a
very fine-grained correspondence. This is quite easy
with word-for-word approaches, of course, and also for
approaches using classical (projective) PS trees or
dependency trees, but has become quite difficult with
more sophisticated approaches using p-structures or
m-structures.

REFERENCES

(Bunt & al 87) H.BUNT, J.THESINGH & K. VAN DER SLOOT
(1987)
Discontinuous constituents in trees, rules and
parsing
Proc. 3rd Conf. ACL European Chapter, Copenhagen,
April 1987.

(McCawley 82) J.D. MCCAWLEY (1982)
Parenthetical and discontinuous constituent
structure
Linguistic Inquiry 13 (1), 91-106, 1982.

(Vauquois 78) B.VAUQUOIS (1978)
Description de la structure intermédiaire
Communication présentée au colloque de Luxembourg,
April 1978, GETA document, Grenoble.

(Vauquois & Boitet 85) B.VAUQUOIS & CH.BOITET (1985)
Automated translation at GETA (Grenoble University)
Computational Linguistics, 11:1, 28-36, January
1985.

(Vauquois & Chappuy 85) B.VAUQUOIS & S.CHAPPUY (1985)
Static Grammars
Proc. Conf. on theoretical & methodological issues
in MT, Colgate Univ., Hamilton, N.Y., August 1985.

(Zaharin 86) Y.ZAHARIN (1986)
Strategies and heuristics in the analysis of natural
language in Machine Translation
Ph.D. Thesis, Universiti Sains Malaysia, March 1986
(Research conducted under GETA-USM cooperation GETA
document, Grenoble.

(Zaharin 87a) Y.ZAHARIN (1987)
String-Tree Correspondence Grammar: a declarative
formalism for defining the correspondence between
strings of terms and tree structures"
Proc. 3rd Conf. ACL European Chapter, Copenhagen,
April 1987.

(Zaharin 87b) Y.ZAHARIN (1987)
The linguistic approach at GETA: a synopsis
the journal TECHNOLOGOS (LISH-CNRS), printemps,
1987, Paris.

(Zajac 86) R.ZAJAC (1986)
SCSL: a linguistic specification language for MT
Proc. of COLING-86, IKS, 393-398, Bonn,
August
25-29, 1986.

