
[Coling Budapest, August 1988] 

 
How to Get Preferred Readings in 

Natural Language Analysis 

Jun-ichi Tsujii, Yukiyoshi Muto 
Yuuji Ikeda, Makoto Nagao 

Dept. of Electrical Engineering, 
Kyoto University, 

Yoshida-honimachi, Sakyo, Kyoto, 606, JAPAN 

Abstract 
This paper describes a parsing program called KGW+p 

which is designed for integrating various sorts of knowledge 
to get most preferred structural descriptions of sentences. 
The system accepts not only a set of rules specifying con- 
straints which any descriptions of sentences should satisfy, 
but also preferential rules which are utilized in selecting 
most preferred descriptions among possible ones. Dur- 
ing the parsing process, the preferential rules are utilized 
to select feasible parsing paths. Furthermore, KGW+p 
is complete in the sense that it can generate all possible 
structural descriptions of sentences if required. The de- 
scriptions are generated in a preferential order. 

1     Introduction 

One of the most crucial problems in natural language process- 
ing is how to conquer the problem of combinatorial explosions in 
sentence analysis [Ford82][Tsujii84][Hirsh84][Pereira85]. Linguis- 
tic constraints so far formulated by theoretical linguists are too 
weak to prevent many possible interpretations from being gener- 
ated. They have concentrated only on formulating of syntactic 
constraints, which are obviously insufficient for selecting single 
interpretations of input sentences. 

On the other hand, various methods have been proposed, by 
researchers in Artificial Intelligence and Computational Linguis- 
tics for eliminating possible interpretations by referring to other 
sorts of knowledge such as semantic, pragmatic ones, etc. How- 
ever, these methods are not satisfactory either, because most of 
them presuppose very restricted subject fields and cannot deal 
with the openness, the essential property of natural languages. 
They also formulated semantic and pragmatic knowledge as con- 
straints which interpretations should satisfy. 

However, human readers utilize various cues as preferential. 
That is, there are many sorts of knowledge which seem to be 
better formalized in the form of rules for selecting feasible inter- 
pretations. 

  In ordinary reading situations, human readers cannot expect 
to have all information necessary for deciding interpretations. On 
the contrary, they would have only incomplete, partial knowledge 
about contexts and subject fields. Even so, they can easily fix 
single interpretations for given sentences. They might select one 
interpretation for 'I saw Mary with a telescope' based on semantic 
intimacy between 'to see' and 'a telescope'. They might also 
select one interpretation for 'John was given a book by his uncle'. 
Such selections cannot be explained by constraint rules, because 
other interpretations are also possible. 

In this paper, we propose a new parser called KGW+p in 
which constraint rules and preferential rules can be separately 
described in modular forms and integrated in the parsing process 

both effectively and efficiently [Ikeda86][Muto88|, 
KGW+p is implemented on Symbolics 3600 by using the favor 

system. 

2    Organization of KGW+p 

Fig.1 shows the organization of KGW+p. KGW+p consists of 
three separate components, the structure building component 
(SBC), the preference rating component (PRC), and the sched- 
uler. The SBC accepts constraint rules in the form of CFG rules 
with feature augmentations, and applies them to generate syn- 
tactically possible structures of sentences. The rules the SBC 
accepts are the rules in unification grammars. 

The SBC is a bottom-up and breadth-first parser with top- 
down filtering, and constructs partial parse trees (PPTs) from 
left to right.    Without the PRC and the scheduler, the SBC 
produces all syntactic structures compatible with a given set of 
constraint rules. 

On the other hand, the PRC computes plausibility values 
(PVs) of PPTs generated by the SBC, and the scheduler loosely 
controls the whole parsing process based on PVs. The sched- 
uler suspends less preferred parsing paths, and resumes them if 
the preferred ones go to deadend in the later stages of process- 
ing. Though KGW+p works at promising parsing paths first, it 
can generate, if required, all structural descriptions by resuming 
suspended paths. 

 

3    Algorithm of the SBC 

Maximal flexibility in controlling CFG parsing can be obtained in 
the active chart parser [Kay80][Winograd83]. In this algorithm 
schemata, a parsing process is taken as a sequence of attaching 
an active or inactive arc to Chart, one at each time. 

Though each attachment of an arc creates a set of arcs to 
be attached, the chart parser in a general form does not attach 

683 



them immediately, but registers them in Agenda . A scheduler 
decides which arc in Agenda is to be attached next. Because no 
a priori ordering of arc attachment is assumed, one can realize 
arbitrary, flexible control mechanisms in this schemata. 

However, such a maximal flexibility is obtained at the cost of 
efficiency. The scheduler has to be invoked at each cycle to decide 
which arc to be attached. Furthermore, when arcs are created, 
we have to take away the arcs which exist in Agenda or in Chart, 
before registering them in Agenda. The same arcs may exist to 
the arcs only whose leftmost constituents are filled by inactive 
arcs. Because of the reachability condition, we also have to check 
applicability of rules to all the inactive arcs in the right neighbor, 
whenever an active arc is attached. Such repeated checkings can 
be avoided in more restricted algorithms. 

In KGW+p, we use an Agenda-like list (S-list - suspending 
list) but unlike the Agenda in the active chart parser, it only 
keeps the arcs which will be tried after the preferred ones fail. 
The other created arcs are attached immediately. Instead of 
the scheduler, the SBC has its own control scheme for building 
PPTs mechanically from left to right. The scheduler of KGW+p 
is more like a demon watching the SBC. When it finds less 
preferred PPTs (arcs) generated, it jumps out to store them in 
the S-list. Or when it finds the SBC goes to deadend, it decides 
which suspended PPTs in the S-list should be resumed. 
      The  SBC  in  KGW+p uses two data structures, one for inac- 
tive arcs and the other for active arcs in Chart. As in Fig. 2, 
the inactive arcs from vertex i to j are stored in P(i, j) and the 
active arcs with ending vertices i are stored in G(i). We call the 
arcs in P(i, j) inactive PPTs and the arcs in G(i) active PPTs. 
Both P(i, j) and G(i) are realized as flavor instances of each type 
(P-Flavor and G-Flavor). 

 

We also realize active and inactive PPTs as instances of the 
PPT-flavor, each of which keeps the following items (c-PPT in 
the following means the PPT which is expressed by the flavor 
instance) 

604 

(l)  starting and ending vertices of c-PPT 
(2) syntactic category and features of the top node of 
c-PPT 
(3) completed constituents: a list of inactive PPT- 
instances filling the child nodes of c-PPT 
(4) remainders: a list of constituents to be filled. If 
c-PPT is inactive, the remainders is an empty list. 
We call the leftmost constituent of the remainders 
the waiting constituent. Note that the waiting con- 
stituents of PPTs in G(i) are to be filled by inactive 
PPTs with starting vertex i. 
(5) pairs of a larger PPT which incorporates c-PPT 
as the leftmost constituent and the rule which was 
used to create the larger PPT. 

Because PPT-instances keep (1) - (4) as the arcs in Chart, 
they can be suspended in the S-list (not immediately stored in 
P(i, j) or G(i)) and resumed afterwards freely. (5) is used to 
avoid redundant processings in the retrial phases (see Section 4). 

The basic cycle of parsing is implemented as a set of methods 
of  P-Flavor. When P(i, j)-instance is triggered, the methods in 
P-Flavor perform the following operations for each PPT stored 
in P(i ,j). 

• (Extension of Active PPTs) look for active PPTs in G(i) 
which can incorporate the PPT as the leftmost constituent 
of the remainders, and create new PPTs 

• (New Rule Application) look for rules whose leftmost con- 
stituents in rhs can be unified with the PPT and whose 
nonterminals in Ihs can reach to the nonterminals of the 
waiting constituents of active PPTs in G(i), and applies 
them to create new PPTs 

By storing newly created PPTs in the corresponding P(i', j') 
or G(j') immediately , a naive bottom-up, breadth-first and left 
to-right parsing with top-down filtering can be easily realized as 
follows. 

(l)After completion of the basic cycle, P(i, j)-instance 
triggers the execution of the basic cycle in P(i-1, j)- 
instance 
(2)A trigger to P(0, j)-instance is taken as a trig- 
ger to the SBC-manager. The manager creates new 
PPTs by using the rules A → aj+1 (aj+1 is the j+1 
th words), stores them in P(j+1, j+1) and triggers 
P(j+1, j+1)-instance 
(3)Parsing is started by triggering P(0, 0)-instance 
(This leads to the triggering of P(1, 1) in (2)). 

The basic control scheme of the SBC is the same as the above 
one. However, in KGW+p, after each basic cycle of creating 
new PPTs, newly created PPTs are rated by the PRC and the 
scheduler suspends less preferred (active or inactive) PPTs by 
storing them in the S-list. Only preferred ones are stored in 
corresponding P(i', j') or G(j') in parallel. Thus, though the 
scheduler loosely controls the whole process, the SBC analyzes 
sentences basically from left to right in a breadth-first manner 
by its own efficient control scheme. Note that the basic control 
scheme is an extended one of the algorithm proposed by V. Pratt 
[Pratt75] to deal with n-ary rules. 



4    Resuming the Suspended PPTs 
When all of preferred paths fail, the scheduler resumes some of 
suspended PPTs. This can be done simply by transferring them 
from the S-list to the corresponding P(i, j) or G(j) and triggering 
P(j',j'). Here, j' is the smallest one among j of P(i, j) and 
G(j) in which the resumed PPTs are transferred. 

After restoring the suspended PPTs, the same bottom-up, 
left -to right and breadth-first parsing is performed from the j'-th 
word. However, special care is taken in KGW+p to reuse PPTs 
already constructed in the preceding trials to avoid duplicated 
processings. 

We can reduce necessary processings in the n-th retrial phase 
as follows. 

(Case-1) P(i, j) contains no PPTs newly created in 
the n-th   retrial phase, and G(i) contains no active 
PPTs newly created in the n-th  retrial phase : 
we can completely skip the basic cycle for P(i, j). 
(Case-2 ) P(i, j) contains no PPTs created in the 
n-th retrial phase, but G(i) has active PPTs newly 
created in the n-th  retrial phase: 
While we have to perform the Extension of Active 
PPTs   operation in the basic cycle for each PPT in 
P(i, j), we only have to consider the new active PPTs 
in G(i). This operation may lead to creation of new 
PPTs in the n-th retrial phase. 
We also have to perform the New Rule Application 
operation of the basic cycle, because the reachability 
condition may change. However, it may happen that 
the same rules have already applied to the PPTs in 
the ft inner trials. In this case, because each PPT 
keeps a list of pairs of the larger PPTs and the rules 
(see Section 3), we can reuse the larger PPTs and 
avoid creating new PPTs in the n-th retrial phase. 

In order to minimize the redundant processings in the retrial 
phases, P- and G-flavors provide different slots for PPTs created 
in the n-th trial and for those created in the former trials (see 
Fig.3). The analysis proceeds in the retrial phases in exactly the 
same way as in the first trail, but the duplication of operations 
are carefully avoided. 

(1)  P-Flavor 

new-ppts: keeps the inactive PPT-instance created 

in the n-th retrial phase, 

re-ppts:  keeps the inactive PPT-instances which 

are  grown in  the n-th  retrial  phase.  But 

the  same  PPT-instances  have  been  created 

in  the  former  trial  phases. 

old-ppts:  keeps  the  inactive  PPT- instances  created 

in  the  former  trial  phases. 

(2)   G-Flavor 

new-ppts:   keeps   the  active  PPT-instances  created 

in  the  n-th  retrial  phase. 

old-ppts:  keeps  the  active  PPT-instances  created 

in  the  former  trial  phases. 

Fig.3  Internal Structures of the P-Flavor and the G-Flavor 

5    Format of Preference Rules and the 
PV Calculation 

In the basic cycle, for each PPT in P(i, j), the SBC creates a 
set of new PPTs which incorporate the PPT. These new PPTs 
represent different hypotheses based on the same bottom-up ev- 
idence, the incorporated PPT. 

The PRC computes the PVs (plausibility values) of these dif- 
ferent hypotheses by invoking a package of preference rules. A 
rule package is defined for computing the PVs of larger PPTs 
incorporating the same inactive PPT. That is, a rule package is 
defined for each syntactic category (nonterminal) of a PPT to 
be incorporated. A set of rales for PP-attachment, for example, 
ace defined in a package which is invoked when the incorporated 
PPT is a prepositional phrase. 

In order to compute PVs, we can refer in preference rules to 
various sorts of information as follows (we use tree and TREE for 
the incorporated PPT and the incorporating PPT, respectively). 

(1) the top node of tree 
(2) the top node of TREE 
(3) constituents of TREE   already incorporated (the 
left brothers of tree  in THEE) 
(4) sequence of active PPTs which eventually predict 
TREE (note that each PPT keeps the larger PPTs 
which will incorporate the PPT when it is completed 
- see Section 3) 
(5) lexical information of words which appear in the 
light unanalyzed portion of sentences (look-ahead) 

(4) and (5) indicate the global nature of preference rules of 
KGW+p in the sense that the PVs of TREEs are computed 
not only from the constituents of TREEs but also from their 
surrounding contexts (Fig.4). 

 

Fig.5 shows the format of preference rules. [Incompatible- 
Cases] enumerates different relationships between tree and TREE. 
In the package for PP-attachment, we enumerate as incompat- 
ible cases different types of PP-attachments such as PPs filling 
one of the valences of verbs, PPs as adjuncts, etc. A set of 
[Independent-Evidences] is defined for each incompatible case. 

When a set of created PPTs with the same incorporated PPT 
are given, the PRC invokes a package, and for each created PPT, 
it determines which exclusive case matches with it. Then, the 
set of independent evidences for the case is evaluated. 

Each independent evidence is expressed in a condition-value 
pair and, if the condition matches with the created PPT, it re- 
turns the specified value. The PRC gets a set of values from the 
independent evidences, each of which is a primitive PV based on 
a certain aspect of the PPT such as semantic intimacy of words, 
well-formedness of syntactic trees, etc. By combining the values 
with a certain function (currently, we use simple addition as this 

685 



 
The actual PV of the created PPT is determined by the 

combination of 

(1) PV in the above which is given to the combina- 
tion of tree  and TREE 
(2) PV of tree 
(3) PV of TREE : TREE  has already incorporated 
left constituents and have accumulated their PVs 
(4) PV of the larger PPTs which incorporate TREE 
when it is completed 

Though one can consider any functions for integrating the 
above set of PVs, we use simple addition in the present experi- 
ments. And we do not use (4) (the PV from top-down) in this 
addition. 

In the present experiment, after the PRC computes the PVs 
of larger PPTs incorporating the same PPT, the scheduler sus- 
pends PPTs which have low PVs compared with the most prefer- 
able PPT. That is, if the difference between the highest PV and 
the PV of a PPT exceeds a certain (predetermined) threshold, 
the PRC suspends the PPT. 

6    Experiments 
We conducted various experiments by using KGW+p. In this 
section, we will show the experiment of disambiguating sentences 
containing the word that. That can be taken as a pronoun, a 
determiner, a relative pronoun, a complementizer, a noun as an 
antecedent of a relative clause, a conjunction for an appositional 
clause or adverbial clause, an adverb, etc. 

The following are examples we realize as preference rules in 
the experiment. (Note that, in the present experiment, the PVs 
given by independent evidences are classified into 5 ranks, most 
preferred (+2), more preferred (+1), neutral (0), less preferred 
(-1) and least preferred (-2)). 

686 

 

(1) Nouns such as fact, news, etc.   are often collo- 
cated with appositional clauses. When the head of a 
noun phrase preceding that is one of such nouns, the 
appositional clause interpretation  is more preferred. 
(2) When the verb in the sentence is one of the verbs 
subcategorized by that-clause, the complementizer in- 
terpretation  is most preferred. 
(3) When the word so or such appears in the preced- 
ing part of the sentence, the adverbial phrase inter- 
pretation is most preferred. 
(4) PP-attachments over clauses are less preferred. 
(5) Omission of relative pronouns is less preferred. 
(6) The pronoun   and determiner interpretation of 
that are less preferred in written texts. 
(7) Different usages of a verb have different prefer- 
ences. The verb to tell, for example, has five usages, 
'to tell sth to sb', 'to tell sth', 'to tell sb sth', 'to tell sb 
that-cl' and 'to tell'. The last usage (the intransitive 
usage) has the least preference. 

etc. 
An example of actual preference rules is given in Fig. 6. The 

sentences in the following are used in the experiment. 

1. I told the fact that sulfuric acid dissolves the metal. 
2. I told the man that sulfuric acid dissolves the metal. 
3. I was so tired that I could not move. 
4. I was so surprised at the fact that John told us. 
5. I told the fact that sulfuric acid dissolves the metal to John 

For 1 and 2, the SBC generates seven descriptions as follows. 

(a) [s ... [vp tell [npthe [np1fact [app-clthat sulfuric ..]]]]] 
(b) [s ... [vptell [npthe fact] [that-clthat sulfuric ...]]] 
(c) [s..[vptell [npthe fact [rel-cl[npthat sulfuric] ..]] [npthe metal]]] 
(d) [s..[vptell [npthe [nplfact [app-cl [npthat sulfuric] ..]]]]] 
(e)[s..[vptell [np the fact] [that-cl [npthat sulfuric] ...]]] 
(f)[s...[vptell (npthe fact [ree-clthat sulfuric ..]]][npthe metal]]] 
(g)[s...[vp tell [np the fact [app-clthat sulfuric ..]][npthe metal]]] 

(c) - (g) are rated low because they contain less preferred con- 
structions. For example, (c) contains the omission of a relative 
pronoun, the determiner interpretation of that, a PP-attachment 
over a clause (the phrase the metal), etc. As the result, (c) be- 
comes the least preferred one among the interpretations. 

function), the PRC determines the PV for the incorporation of
tree   into TREE. 



(a) and (b) are most preferable for 1 and 2, respectively. The 
PVs of (a) and (b) in these sentences differ by the semantic con- 
dition that the usage 'to tell sb that-cl' prefers human as sb and 
by the collocation condition that the noun fact is often collo- 
cated with an appositional that-clause but the noun man is not. 
For the sentences 1 and 2, KGW+p succeeds in integrating such 
different sorts of preferential cues to give the highest PVs to the 
interpretations most preferable for human readers. Furthermore, 
because the paths which lead to these interpretations have the 
highest PVs during the whole parsing process, any threshold val- 
ues can be used for suspending less preferred interpretations. 

KGW+p also produces the valid interpretation for the sen- 
tence 3 in a straightforward way, but it encounters certain diffi- 
culties in 4 and 5. 

At the time when the word that is analyzed in the sentence 
4, the relative pronoun interpretation, which leads to the valid 
analysis, has a lower PV than the other two interpretations. The 
adverbial clause interpretation supported by the word so, and 
the appositional clause interpretation supported by the word fact 
have higher PVs. Therefore, if the threshold value is low, the 
valid interpretation is suspended. Furthermore, both interpreta- 
tions succeed, though they contain such a semantically less pre- 
ferred structure as [s [npJohn][ [vptell][npus]]] and the whole 
interpretations are rated low. 

In the sentence 5, because the interpretation most preferable 
to human readers contains a PP-attachment over a clause, it is 
rated less preferable than the one which contains [np the [np1 
metal [pp to John]]]. 

These examples, especially the sentence 4, show that we need 
a mechanism to notice that the selected parsing paths become 
less feasible (even though they do not fail) than the suspended 
paths. This mechanism requires a global method for comparing 
completely remote PPTs;. We also have to devise a sophisticated 
method for deciding the threshold value appropriately. 

Table 1 shows the effect of the threshold values in the analysis 
of the sentence 5. In the case when the threshold is 2, only a 
single analysis result is obtained at the first trial, but the result 
is not the most feasible one for human readers 

7     Conclusions 
In this paper, we describe the organization and the basic algo- 
rithm of KGW+p. KGW+p allows one to prepare knowledge for 
natural language parsing in two separate forms. One is for the 
constraint type of knowledge and the other is for the preference 
type of knowledge. 

By using the constraint type of knowledge, the SBC (Struc- 
ture Building Component) in KGW+p produces partial parse 
trees mechanically from left to right in a breadth-first man- 
ner. The scheduler, which is a kind of demon watching the 
SBC, loosely controls the whole parsing process by utilizing PVs 
(Plausibility Values) given by the PRC (Preference Rating Com- 
ponent). The PRC uses the preference type of knowledge to 
compute the PVs. 

KGW+p prepares a framework in which we can obtain the 
flexibility of control, the modularity in knowledge preparation , 
and the efficiency and completeness of parsing at the same time. 

It is a very delicate and difficult problem to decide the actual 
PVs of interpretations and the threshold value for suspending 
PPTs. Because various different sorts of factors may contribute 
to the PVs with different strengths, we certainly have to com- 
bine conventional NLP techniques with appropriate statistical 
and stochastic models. We hope that KGW+p gives us a good 
starting point for such future researches. 

References 
[Ford82] Ford, M., Bresnan, J., Kaplan, R.: A Competence 

Based Theory of Syntactic Closure, in The Mental Represen- 
tation of Grammatical Relations (ed: Bresnan) MIT Press 
1982. 

[Hirst84] Hirst, G.J. : Semantic Ambiguity against Ambiguity, 
phD thesis, Brown University, 1984. 

[Ikeda86] Ikeda, Y., Tsujii, J., Nagao, M.: Unification based 
Grammar and its Control in Parsing, SIG on Communica- 
tion and Natural Language Processing, JSECE, 198T (in 
Japanese). 

[Kay80] Kay, M.: Algorithm Schemata and Data Structures in 
Syntactic Processing, Technical Report CSL-80-12 Xerox 
PARC, 1986. 

[Muto88] Muto, Y., Tsujii, J., Nagao, M.: Preference Rule and 
their Application Mechanism in KGW+p, SIG on Commu- 
nication and Natural Language Processing, JSECE, 1988 (in 
Japanese). 

[Pereira85] Pereira, F.: A New Characterization of Attachment 
Preferences, in Natural Language Parsing (eds: Dowty, Kart- 
tunen, Zwicky), Cambridge University Press, 1985. 

[PrattY5] Pratt, V.R.:  A Progress Report, Proc. of 4th IJCAI 
1975. 

[Tsujii84j Tsujii, J., Nakamura, J., Nagao, M.: Analysis Gram 
mar of Japanese in the MU Project, Proc. of Coling 84 
Stanford, 1984. 

[Winograd83] Winograd, T.: Language as a Cognitive Process, 
Addison-Wesley, 1983 
 
 
 
 

687 


