
Subgrammars, Rule Classes and Control in the
Rosetta Translation System *

Lisette Appelo Carel Fellinger Jan Landsbergen

Philips Research Laboratories
P.O. Box 80 000, 5600 JA Eindhoven, The Netherlands

A b s t r a c t

The paper discusses a recent extension of the linguistic
framework of the Rosetta system. The original frame-
work is elegant and has proved its value in practice,
but it also has a number of deficiencies, of which the
most salient is the impossibility to assign an explicit
structure to the grammars. This may cause problems,
especially in a situation where large grammars have
to be written by a group of people. The newly devel-
oped framework enables us to divide a grammar into
subgrammars in a linguistically motivated way and to
control explicitly the application of rules in a subgram-
mar. On the other hand it enables us to divide the
set of grammar rules into rule classes in such a way
that we get hold of the more difficult translation rela-
tions. The use of both these divisions naturally leads
to a highly modular structure of the system, which
helps in controlling its complexity. We will show that
these divisions also give insight into a class of difficult
translation problems in which there is a mismatch of
categories.

1 T h e R o s e t t a F r a m e w o r k

In this section we will give an outline of the approach
to machine translation pursued in the Rosetta project,
which takes place at Philips Research Laboratories.
The linguistic framework of Rosetta can be character-
ized by a number of principles. These are 'working
principles', intended to be helpful for systematic re-
search on translation and for the actual construction
of translation systems.

The principles are discussed here to the extent in
which they are relevant to this paper.

~rhis paper is the merger of two complementary papers
on the Rosetta translation system that were submitted to
the European ACL Conference 1987, i.e. 'Subgrammars and
Rule Classes in the Rosetta Translation System' by Appelo
and Fellinger and 'Controlled M-Grammars in the Rosetta
System' by Landsbergen.

This research was partially sponsered by Nehem (Neder-
landse Herst ruct ureringsmaatschappij).

P r i n c i p l e o f E x p l i c i t G r a m m a r s : There is
an explicit grammar for both the source and the
target language.

In most translation systems the target language is
defined indirectly by means of contrastive transfer
rules that specify the differences with the source
language. We think it important to have an in-
dependent criterion for correctness of the target
text.

C o m p o s i t i o n a l i t ¥ Principle." The meaning of
an expression is a function of the meaning of its
parts and the way in which they are syntactically
combined.

This principle was adopted from Montague Gram-
mar (cf. Thomason, 1974). Obviously, this prin-
ciple will lead to an organlsation of the syntax
that is strongly i~nfiuenced by semantic considera-
tions. But as it is an important criterion of a cor-
rect translation that it is meaning-preserving, this
seems to be a useful guideline in machine transla-
tion.

The compositional grammars of Rosetta, called
M-grammars, consist of three components: a syn-
tactic, a semantic and a morphological compo-
nent.

The s y n t a c t i c c o m p o n e n t defines surface trees
of sentences. The surface trees used in Rosetta,
called S-trees, are ordered trees of which the
nodes are labelled with syntactic categories and
attribute-value pairs that bear other morpho-
syntactic information. The branches are labelled
with syntactic relations. S-trees are used as inter-
mediate representations as well.

The syntactic component defines the set of correct
S-trees by specifying:

1. a set of bas ic express ions .

2. a set of compositional s y n t a c t i c ru les .

These rules make it possible to derive new S-trees
and ultimately surface trees of sentences from the
basic expressions. The rules have ' transforms.
tional power', they may perform various opera-
tions on S-trees. The process of deriving a surface

118

tree starting from basic expressions by applying
syntactic rules recursively, in a 'bottom-up' way,
can be represented in a syntactic derivation
tree with the basic expressions at the terminals
and the names of the applied rules at the non-
terminals. With each node of the derivation tree
an intermediate resulting S-tree can be associated,
i.e. the S-tree that is the result of the application
of the rule of that node on the resulting S-trees of
its daughters (see figure I).

the donkey is eating apples

-the donkey

the donkey eat apples

donkey R,

eat zl z2

R4 Ra

R2

z t eat apples

apples

apple

Figure I: syntactic derivation tree, the derived S-trees are

paraphrased by strings

The leaves of a complete surface tree correspond
to the words of the sentence, but they have the
form of categories and attribute-value pairs. The
morphological component relates these leaves
to actual symbol strings. In this paper we will
ignore this morphological component and the S-
trees will be 'paraphrased' by strings most of the
time to enhance the readability of these trees.

The M-grammars have a semantic component
that specifies

1. the meaning of the basic expressions (basic
meanings).

2. the meaning of the rules (rule mean ings) .

In Montague Grammar these meanings are ex-
pressed in intensional logic. In the Rosetta system
the meanings of rules and basic expressions are
not elaborated on in a logical language, but they
are represented by means of unique names. The
consequence is that a meaning of a sentence can
be represented as a so-called semantic deriva-
tion tree: a tree with the same geometry as the

syntactic derivation tree but labelled with names
of rule meanings and basic meanings instead of
syntactic rules and basic expressions. In figure 2
an example of a semantic derivation tree is given,
corresponding to the syntactic derivation tree of
figure 1.

As basic expressions may have various meanings,
there is in general a set of semantic derivation
trees corresponding to a syntactic derivation tree.
There is in general a set of syntactic derivation
trees corresponding to each semantic derivation
tree, because a basic meaning may correspond to
various basic expressions and a meaning rule may
correspond to various syntactic rules.

M6

I
Ms

M+ Ma

B~ Mt M2

/ % i
B2 X~ X2 Bt

Figure 2: semantic derivation tree corresponding to the

syntacticderivatlon tree of figure 1

One Grammar Principle: The analysis and
generation components for one language are based
on the same grammar.

In other terms, we require the compositional
grammar defined above to be 'reversible'. The
analysis component maps sentences onto deriva-
tion trees, the generation component maps deriva-
tion trees onto sentences.

Because of this principle M-grammars have to
obey certain conditions. The most important con-
dition is that for each generative syntactic rule
there must be a reverse analytical rule. For a
more extensive discussion of these conditions we
refer to Landsbergen (1984). Thanks to these con-
ditions analysis algorithms can be defined which
yield for any input sentence the set of syntactic
derivation trees of that sentence (see section 6 for
the formal definitions).

In addition to theoretical motives, there are eco-
nomic motives for adopting the One Grammar
Principle. If we plan to make translation systems
that translate both from and into a particular lan-
guage, it is efficient if these systems can be based
on one grammar.

Because of this principle it suffices most of the
time to discuss the grammars from a composi-
tional, generative point of view only.

1 1 9

• I s o m o r p h y P r i n c i p l e : Two sentences are trans-
lations of each other if their meanings are derived
from the same basic meRnings in the same way, i.e.
if they have the same semantic derivation tree.

So this principle says that the information that
has to be conveyed during translation is not only
the meaning, but also the way in which the mean-
ing is derived.

This implies that we have to attune the grammars
of the system in the following way:

1. each basic expression in one grammar corre-
sponds to at least one basic expression in the
other grammar with the same meaning (i.e.
corresponding to the same basic meaning).

2. each syntactic rule of one grammar corre-
sponds to at least one rule in the other
grammar with the same meaning (i.e. cor-
responding to the same rule meaning).

So, two sentences are translations of each other
if they have corresponding, i s o m o r p h i c syntac-
tic derivation trees, i.e. trees with the same ge-
ometry and corresponding basic expressions and
corresponding rules at the leaves and at the nodes
respectively (see figure 3).

Following this principle there are corresponding
sets of rules, related to the same meaning rule,
and corresponding sets of basic expressions, re-
lated to the same basic meaning. We call the
grammars isomorphic if these corresponding sets
of rules obey certain applicability conditions.

The Isomorphy Principle is the most characteris-
tic principle of the Rosetta system, as it expresses
our compositional theory of translation.

In this approach complex structural transfer rules
are avoided, as rules and basic expressions of the
source language are related locally to rules and
basic expressions of the target language, although,
of course, the individual grammars may be com-
plicated because of the attuning.

• Principle of Interllnguality: There is an
intermediate language into which analysis com-
ponents of various languages translate and from
which the generation components of these lan-
guages are able to translate. If we combine this
principle with the Isomorphy Principle, the main
consequence is that the semantic derivation trees
constitute the intermediate language and that the
attuning of the grammars is done for possibly
more than two grammars.

It should be stressed that the isomorphy and not
the interlinguality is the primary characteristic of
the Rosetta framework.

For a more extensive discussion of these principles
and more interesting examples we refer to Appelo and
Landsbergen (1986). Leermakers and Rous (1986) give

an introduction to the Rosetta method along different
lines.

The global design of the Rosetta system, which fol-
lows from these principles is sketched in figure 4. For
each M-grammar the following system components are
defined:

• an analytical and a generative morphological com-
ponent, A-MORPH and G-MORPH. They ac-
count for the relation between strings and lexical
S-trees (i.e. S-trees corresponding to words).

• an analytical and a generative syntactic com-
ponent, M-PARSER and M-GENERATOR.
They account for the relation between surface
trees and syntactic derivation trees. These sys-
tem components follow directly from the syntac-
tic component of an M-grammar. Their formal
definition is given in subsection 6.1.

• an analytical and a generative semantic compo-
nent, A - T R A N S F E R and G - T R A N S F E R .
They account for the relation between syntactic
and semantic derivation trees.

M-PARSER is preceded by a component called S-
P A R S E R (for surface parser) which maps a sequence
of lexical S-trees (which is the output of A-MORPH)
onto a set of surface trees of which the lexical S-trees
are the leaves. This set should contain the correct sur-
face trees, but may contain also incorrect ones. The
generative counterpart, L E A V E S , is trivial; it maps
the surface tree onto the sequence of its leaves.

2 P r o b l e m s w i t h t h e R o s e t t a
f r a m e w o r k

The framework outlined above has been worked out in
a way that is simple and mathematically elegant, as the
formal definitions in subsection 6.1 will illustrate. This
formalism has also proved its value in practice: the
implemented systems Rosettal and Rosetta2 have been
written in this framework. In the sequel we will refer
to it as the Rosetta2 framework. However, it also has
a number of deficiencies, which may cause problems,
especially in a situation where large grammars have
to be written by a group of people. Three kinds of
problems can be distinguished.

1. Lack of s t r u c t u r e in M-g rammaar s
Grammars for natural languages are very large
and inherently complex. In an M-grammar the
syntactic component specifies a set of rules with-
out any internal structure. Although the mathe-
matical elegance of free production systems is ap-
pealing, they are less suited for large grammars.
As the number of rules grows, it becomes more
and more desirable that the syntax be subdivided
into parts with well-defined tasks and well-defined
interfaces with other parts.

120

ENGLISH <==> DUTCH

the donkey

donkey

R6 / " ~ - - - - - - _ _ _ _ ~ _
I the donkey is eating apples

Rs
the donkey eat apples

R4 R3 ~ ~ R~

Ri R2 ~ ezel

apples

eat z, z2 apple

R'~
I de ezel eet appels

R I
/ ~ de ezel appel8 eten

~ zt appels eten

R'~ R~

//~I appas
eet zt z~ appel

Figure 3: isomorphic syntactic derivation trees for the sentence The donkey is eating apples and its translation in Dutch De ezel
set appel8

Source language Target language

sentence sentences

A-MORPH

J, ?
sequences of sequences of

lexical S-trees lexical S-trees $ 't

S-PARSER | L AVES ,,,]

surface trees

4,
M-PARSER

surface trees

syntactic syntactic
derivation derivation
trees J, trees

A-TRANSFER I G-TRANSFER

) semantic derivation trees J, I

Figure 4: Global design of the Rosetta system

2.

This holds in particular if the grammars are devel-
oped by a group of people. It is necessary to have
an explicit division of tasks and to coordinate the
work of the individuals in a flexible way so that
the system will be easy to modify, maintain and
extend.

In computer science it is common practice to di-
vide a large task into subtasks with well-defined
interfaces. This is known as the m o d u l a r ap-
proach . This approach has gained recognition in
the field of natural language processing too (cf.
Isabelle and Macklovitch, 1986 and Vauquols and
Boitet, 1985). The question is how such a mod-
ular approach can be applied in a compositional
grammar, in an insightful and linguistically moti-
vated way.

Lack of con t ro l on ru le applications
In many cases the grammar writer has a certain
ordering of the rules in mind, e.g. he may want
to express that the rules for inserting determiners
during NP-formation should be applied after the
rules for inserting adjectives. In the M-grammar
formalism explicit ordering is impossible, but the
rules can be ordered implicitly by characterizing
the S-trees in a specific way, e.g. by splitting up
a syntactic category into several categories, and
by giving the rules applicability conditions which
guarantee that the aspired ordering is achieved.
For example, if one wishes to order two rules that
both operate on an NP, this can be achieved by
creating categories NP1, NP2 and NP3 and to
let the first rule transform an NP1 into an NP2
and the second rule an NP2 into an NP3. This
approach w ~ followed in Rosetta2. One of its

121

disadvantages is that it leads to a proliferation of
rather unnatural categories.

It is hard to find an elegant and transparent way
of specifying rule order in a compositional gram-
mar; the situation is more complicated than in
transformational systems llke ROBRA (Vauquois
and Boitet, 1985), because rules may have more
than one argument.

In addition to linear ordering one may want to
add other means of controlling the application of
rules, e.g. one may want to make a distinction
between obligatory, optional and recursive rules.
In M-grammars all rules are optional and poten-
tially recursive. It is not clear how to add obliga-
tory rules to such a free production system; in fact
it is hard to understand what that would mean.
There is also a problem with the reversibility of
obligatory rules: a rule that is obligatory dur-
ing generation is not necessarily obligatory during
analysis.

3. Lack of s t r u c t u r e In t he t r a n s l a t i o n r e l a t i on
As we have explained in section 1, the translation
relation between languages is defined by attuning
the grammars to each other. In this way complex
structural transfer (as discussed in Nagao and
Tsujii, 1986) can be avoided, but in some cases
the dependency between the grammars may com-
plicate individual grammars. C a t e g o r y mis-
m a t c h is one of these translation problems, e.g.
the graag//iilce case, where a Dutch adverb corre-
sponds to an English verb. In cases like this there
is a mismatch of syntactic categories coupled with
different behaviour with respect to, e.g., tense: a
verb has tense, whereas an adverb has not.

In Landsbergen (1984) a solution of the graag//like
problem by means of isomorphic grammars w ~
discussed, for small example grammars. For
larger grammars a more systematic and struc-
tured treatment of these translation problems is
needed, but this is not supported by the Rosetta2
formalism.

Another problem is caused by the fact that in
the isomorphic grammar framework each syntac-
tic rule of one grammar must correspond to at
least one rule of another grammar. For rules that
contribute to the meaning this is exactly what we
want, because what h ~ to be conveyed during
translation is not only the meaning, but also the
way in which the meaning is derived. However,
there is a problem with rules that are only rele-
vant to the form of the sentence and that carry no
translation-relevant information, especially if they
are language-specific. A purely syntactic transfor-
mation as Verb-Second in an SOV language like
Dutch does not correspond in a natural way to
a syntax rule of English. In Rosetta2 this prob-
lem could be solved in one of the following two
ways: by adding a corresponding rule to the En-

glish syntax that did nothing more than change
the syntactic category or by merging the Dutch
transformation rule with a meaningful rule. These
solutions are not very elegant and complicate the
grammars unnecessarily. It would be better if
the correspondence between rules as required by
the Isomorphy Principle must hold for meaning-
ful rules only. The translation relation would then
be defined in terms of a reduced derivation tree,
which is labelled with meaningful rules. The gen-
eration component (M-GENERATOR) will oper-
ate on such a reduced tree and will have to decide
what syntactic transformations are applicable at
what point of the derivation. This requires some
way of controlling the applicability of the trans-
formation rules.

In the next sections we will describe the modular ap-
proach chosen for the development of Rosetta3, which
may help to solve the above-mentioned problems. We
will discuss a syntax oriented dlvlslon into subgram-
mars in section 3 and a translation oriented division
into rule classes in section 4. In section S we will argue
that a combination of the two divisions is needed. In
section 6 the newly introduced notions will get a formal
treatment. It will turn out that the way in which sub-
grammars are defined enables us to define the control
of rule applications in a transparent way.

The proposed modifications are completely in accor-
dance with the basic principles mentioned in section 1.

3 Subgrammars, a Syntax
Oriented Division

From the computer language Modula2 (cf. Wlrth,
1985) we learned the essentials of the modular ap-
proach:

I. divide the total into smaller parts (modules)
with a well-defined task,

2. define explicitly what is used from other parts
(Import) and what may be used by other parts
(expor t) ,

3. separate the definition from the implementation.

The explicit definition of import and export and
the strict separation of implementation and definition
makes it possible to prove the correctness of a module
in terms of its imports, without having to look at the
implementation of the imported modules. This tack-
les the above-mentioned complexity problem and the
coordination problem caused by the lack of structure
in the M-grammars nicely. In our view, applying the
modular approach to grammars comes down to the fol-
lowing requirements:

1. dividing the grammar into s u b g r a m m a r s with a
well-defined linguistic task,

/22

2. defining explicitly what is visible to other sub-
grammars (export) and what is used from other
subgrammars (Import),

3. ensuring that the actual implementation (i.e. the
rules) is of local significance only.

Dividing grammars into subgrammars with a linguistic
task has been done before, e.g. in the GETA-systems
(cf. Vauquois and Boitet, 1985). However, to our
knowledge, they do not meet requirement 2 and 3

The actual subdivision chosen for the development of
Rosetta3 was inspired by the notion projection from
the X.-theory of Transformational Generative Gram-
mar (cf. e.g. Chomsky, 1970): every major category X
is said to have a maximal projection X '~z, e.g. NOUN
has the maximal projection NP. Such projections pro-
vide a syntactic division of the constituents of language
and appear to be a useful choice for modular units in
a natural language system.

Applying this idea to the compositional grammars
of Rosetta implies that basic expressions have a ma-
jor category X and that there are syntactic rules that
will ultimately compose S-trees of category X "~'=. For
each maximal projection a subgrammar can now be de-
fined that expresses how X '~ can be derived from X
and other imported categories. We will call a possible
derivation process of the projection from X to X maz a
projection path (see figure 5. The most important
major categories (and their projections) in use in the
Rosetta systems are: NOUN (NP), VERB (VP), ADJ
(ADJP), ADV (ADVP) and PREP (PP).

R X "~z

/
R

S

I
41

R

/
X

Figure 5: A projection path from X to X 'naz

X-theory also states that all projections have a sim-
ilar syntactic structure (i.e. phrase marker), which is
represented in the schema of figure 6, but this aspect
is less relevant for the Rosetta grammars. For us, it is
of more interest whether they are the result of similar
derivations. We will come back to this point in section

5.

A sentence is usually seen as a subject-predicate re-
lation, i.e. a combination of an NP and a VP. But other

(speci/Z~.. " ~

(complement) X (complement)

Figure 6: The projection of X to X 'naz

XP (i.e. X maz) categories than VP, together with an
NP, can express a subject-predlcate relationship as well
(cf. Stowell, 1981). Such subject-predlcate relations
are called small clauses. For example, the NP him and
the ADJP funny in I think [him funny], or the two NP's
him and a fool in I consider [him a foo 4 form a small
clause. In Rosetta such tenseless clauses are called XP-
PROP in which X stands for the X of the predicate.
For example, in [him funny] we have ADJPPROF (with
X = ADJ) and in [him a foo4 we have NPPROP (with
X = NOUN). A tensed XPPROP is called a CLAUSE
in Rosetta. For example, in the sentences I think that
he is sleeping and I think that he is funny we have the
CLAUSEs [that he is sleeping] and [that he is funny]
respectively.

This means that, starting from a basic expression of
category X, in principle three S-trees with a different
top category X '°P can be derived: XP, XPPROP and
CLAUSE. Figure 7 shows some of the resulting deriva-
tion trees and S-trees of the examples given above.

Defining subgrammars in accordance with these
'projection paths' provides a natural way of expressing
the application order of the rules within a subgrammar:
the order is defined with respect to the projection path
only. A side effect of this explicit ordering of rule ap-
plication is that it enables us to use a more efficient
parse algorithm (M-PARSER).

A subgrammar can now be characterized as follows:

1. export S-tree of category X t"p (XP, XPPROP or
CLAUSE)

2. import:

• S-tree with a special category, the X-
category, also called the head category.

• S-trees with categories that are exported by
other subgrammars and that can be taken
as an argument by rules with more than one
argument.

3. rules: a set of rules that take care of the pro-
jection from X to X '°p. Every rule has one argu-
ment, which is called the head argument, i.e.
the S-tree with the head category or one of the
intermediate results during its projection.

123

R2

NP

A
he

CLAUSE

he is sleeping

Rl CLAUSE

xl VP
/,,,
sleep

xL VERB

A
sleep

R4

NP

A
him

A D J P P R O P

him funny

R3--ADJPPROP

x2 ADJP
/ ' , .
funny

x2 ADJ

funny

NPPROP

him a fool

R6,

A
NP Rs

him

x3 NOUN

~ o l

NPPROP

x~ NP
/ N
a fool

Figure 7: The derivation trees with the resulting S-trees of

the projection of VERB to CLAUSE, ADJ to ADJPPROP

and NOUN to NPPROP

4. con t ro l express ion : a definition of the possible
application sequences of the rules, ordered with
respect to their head arguments.

Neither the rules nor the intermediate results are
known to other subgrammars. They can be considered
local to the subgrammar. So 1 and 2 define the relation
with other subgrammars, whereas 3 and 4 are only of
local significance, thus meeting our requirements for
the modular approach.

An example of a subgrammar is the NP-subgrammar
with a NOUN as head and exporting an NP. Other
categories that are imported by this subgrammar are
DETP, ADJPPROP, etc. the set of rules contains
modification rules and determiner rules, the control
expression indicates that the modification rules can be
applied recursively and that they precede the deter-
miner rules.

Obviously, there will now be subgrammars that con-
tain the same rules, e.g. the subgrammars for NOUN
to NP and PRONOUN to NP. For efficiency reasons,
it is allowed to merge such subgrammars by defining
a set of heads as import and a set of top categories as

export.
For an elaboration of the notion control expression

and a formalisation of subgrammars we refer to section

6.

The advantages of this division into subgrammars
are 1) that the structure of the grammar has become
more transparent, 2) that we now have units with well-
defined interfaces which enables us to divide the work
over several people, 3) that we can work at and test
smaller parts of a grammar.

4 R u l e C l a s s e s , a T r a n s l a t i o n
O r i e n t e d D i v i s i o n

In the Rosetta framework as sketched in section 1, the
translation relation is defined at the level of rules and
basic expressions. If there is a rule or basic expression
in one grammar, there must be at least one rule or
basic expression in the other grammar with the same
meaning (the Isomorphy Principle). It is hard to get
hold of the translation relation as a whole in terms of
these primitives alone. What we need is some structure
of a higher order.

1. We distinguish purely syntactic rules called
t r a n s f o r m a t i o n s and m e a n i n g f u l ru les .

Some rules in the Rosetta grammars do not carry
'meaning', but serve only a syntactic, transforma-
tional purpose. In the Rosetta2 framework these
meaningless rules, which are often of a highly
language-specific character, sometimes required
rules in other languages that were of no use there.

124

This point was already mentioned in section 2.
Such rules are now no longer considered to be
part of the translation relation that is expressed
by the isomorphy relation between the grammars.
Therefore, they can be added freely to a gram-
mar. In this way a better distinction can be made
between purely syntactic (and hence language-
specific) knowledge and t r a n s l a t i o n r e l e v a n t
knowledge. The translation relation now can be
freed from improper elements, which is highly de-
sirable.

In section 2 it was noticed that the introduction of
transformation rules requires some way of control-
ling their applicability. The control expressions
introduced in section 3 and formalised in section
6 provide for this.

2. The set of rules of the grammars are divided into
groups called ru l e classes, each of which handles
some linguistic phenomenon. These rule classes
are subdivided into transformation classes and
meaningful rule classes. A meaningful rule class
handles a linguistic phenomenon of which the se-
mantics should be preserved during translation.

Such translation relevant linguistic phenomena
are, e.g., valency/semantic relations, scope, time,
negation and voice. The translation relation can
be further structured by these meaningful rule
classes. Only rules of different languages that be-
long to the same meaningful rule class may corre-
spond to each other or, to put it in other words,
rules that do not belong to the same meaningful
rule class can never be translations of each other
(see figure 8). Within a meaningful rule c l~s
there can, of course, be some 'semantic differentia-
tion', which should be retained under translation.
For example, in the time rule class more than one
time reference can be distinguished, each with a
distinct meaning, t

There can also be 'corresponding' transformation
classes in the grammars for different languages -
e.g. agreement rules -, but they do not play a role
in the translation relation.

5 Combining Subgrammars
and Rule Classes

Having introduced some order into the syntactic rules
of the grammar and into the translation relation, we
see that these divisions of rules are along 'vertical ' and
'horizontal ' lines respectively (see figure 9). The pro-
jections of basic categories in one grammar, leading
to the division of the grammar into subgrammars, are

1For each distinct time reference meaning a separate rule
can be defined, but it is also possible to introduce abstract
basic expressions ranging over the possible time references
and have one rule that has such an abstract basic expression
as argument.

m e a n i n g f u l ru le classes

time rule class [~

i

negation rule class

G r a m m a r s : Gt G2

Figure 8: meaningful rule classes bring order in the trans-

lation relation between the grammars of the languages in-

volved

along vertical lines. The relations between the gram-
mars, leading to the division of all the rules of the
grammars into (meaningful) rule classes, are along hor-
izontal lines.

These two ways of dividing grammars have several
consequences.

On the one hand, subgrammars help to structure
the grammar in a more modular way; they also give
some insight into the translation relation, but only in
the more ' trivial ' cases, where the corresponding basic
expressions have the same syntactic category, subgram-
mar G,l of grammar G corresponds solely to subgram-
mar Gt of grammar G . In category mismatch cases
the corresponding basic expressions fall into different
subgrammars (e.g. the graag/like case of section 2).

On the other hand meaningful rule classes group to-
gether semantically related rules, which gives insight
in what has to be preserved during translation, but
they are not the.right unit to make a modular struc-
ture. This makes it hard to define an adequate inter-
face (import/export) between rule classes, because e.g.
the rule that negates a sentence is determined more by
the rules that form a sentence than by the other nega-
tion rules (e.g. in an adjective phrase) with which it
forms the negation rule class.

However, both subgrammars and rule classes allow
for a division of the labour over people. That this is the

case with subgrammars is trivial, as subgrammars form
a modular structure. The reason that rule classes are
also useful units to divide the work is that knowledge
of a specific linguistic topic is needed for every rule
class, knowledge that can typically be handled by one
person.

In order to have the benefits of both we combined
subgrammars and rule classes in the following way:

I. the rules of subgrammars are divided into rule
subclasses, which are subsets of rule classes

2. the application sequences of rules are defined in
terms of rule subclasses instead of rules.

125

m e a n i n g f u l ru l e classes

time rule class [

rule class i" negation !

I
NP

~#/~/~

CLAUSE
• m

VP i NP VP CLAUSE

S u b g r a n t m a r s o f g r a m m a r G 1 S u b g r a m m a r s o f g r a m m a r G:

Figure O: horizontal and vertical division within grammars. The shaded part denotes the subclass of the negation rules for the

CLAUSE subgrammar of G t.

The combination results in a modular structure of each
grammar and helps to reduce the complexity of the
translation relation. It also helps to solve the class of
category mismatch problems elegantly.

Isomorphic subgrammars

As was already mentioned in section 3, X-theory
states that the projections of all major categories have
a similar structure. The division of the grammars into
subgrammars was based on the notion major category
and the sorts of projections that we recognize (XP,
XPPROP and CLAUSE). The fact that in X-theory
the phrase markers of the resulting constituents are
similar, suggests that it is possible to assign similar
derivations to them in a compositional grammar. This
similarity is also suggested by the fact that most rule
classes handle phenomena that play a role in every
subgrammar. For example, in all subgrammars rules
for valency/semantic relations and negation are found.
They may differ, of course, in their transformations.

The fact that we consider the Dutch NPs de ezel die
appels set and de appels etende ezel to be paraphrases
which are both translations of the English NP the don-
key that is eating apples 2 suggests that a tensed relative
clause should be composed similar to a tenseless 'ad-
jectival ' relative clause, or in other terms: that their
derivation trees should be i s o m o r p h i c with respect
to their meaningful rules. The same can be said for
the adjectival phrase smart and the relative clause that
is smart in the [smart] girl and the girl [that is smart/
respectively.

To make it possible that such phr~es and clauses are
translations of each other, the subgrammars involved
are attuned as far as possible, resulting in 'isomorphic'
subgrammars within one grammar.

We will discuss two cases:

2the eatin¢ apples donkey is ungrammatical.

1. Same head category, but different top category

2. Different head category

Same head category, but different top cate-
gory

In the example of the smart girl / the girl that is
8mart the subgrammars for the projection of ADJ to
A D J P P R O P and ADJ to CLAUSE are involved. They
differ in that a transformation exists for the insertion
of the auxiliary verb be in the clause case. For isomor-
phy reasons, in both cases a rule for time reference is
needed: in the clause case it spells out the tense for
the verb be; in the adjectival case it seems to be super-
fluous, but with model-theoretical semantics in mind
it can be argued to be needed, if we assume a model
with a time component (see figure 10).

A D J P P R O P C L A U S E

Rtimepre~ent Rtimepresent

!
R~tart R~tart

xl*~smext xt//~smart

Figure 10: Derivation trees resulting from the subgram-

mars ADJ to ADJPROP and ADJ to CLAUSE

This kind of paraphrasing can be helpful if the literal
translation is not allowed in the other language as is the
c ~ e with de appels etende ezei, which cannot be trans-
lated into *the eating apples donkell or I expect him to
leave which cannot be translated into *ik ~erwacht hem
te vertrekken, but has to be translated into ik verwaeht
dat hij vertrekt (I-expect-that-he-leaves).

126

C L A U S E

N P . ~ b . , , ~ ,

V E R B P P R O P V E R B P P R O P

C L A U S E

~ub.t,z l
RNPi[R...~.~.,

lllt,
hij I| R ,

[[R.,o..

X2 toeqallig [k xl komen

ADVPPROP VERBPPROP

He happened to come Hi] klnam toevallig

Figure l h Syntactic derivation trees with the relevant subgrammars

D i f f e r e n t h e a d c a t e g o r y

If the approach of attuning subgrammars as far as
possible is extended to subgrammars with different
head categories, then it can help to solve the problems
with the above-mentioned class of category mismatch
c a s e s .

For example, in he happened to come the raising verb
happen occurs and in hi] kwam toevallig the sentential
adverb toevallig. As these two sentences are considered
translations of each other, the subgrammars for VERB
and ADV should be attuned to each other. This seems
to be impossible because it is quite natural that the
complement of happen, i.e [he come] is inserted into the
clause of happen, whereas toevallig (the basic expression
that corresponds to happen) is inserted into the clause
corresponding to the complement clause of happen, i.e
[hi] komen].

Semantically, in both cases, the clause is the ar-
gument of happen and toevallig, but from a syntactic
viewpoint adverbs are inserted into their arguments.
We can solve this problem by allowing in these cases
a 'switch of subgrammar' . This is possible if the sub-
grammars are split into two parts in such a way that
the place of this subdivision coincides with the 'switch
point ' . There is another argument for making this sub-
division: the first part of the control expression of the
subgrammars for X to XPPROP and X to CLAUSE is
the same. The succeeding part is in the CLAUSE case
very similar for all X.

Figure 11 sketches how the examples He happened
to come and Hi] kwam toevallig now can be derived
isomorphically.

We noticed that this kind of mismatch of syntac-
tic category appears most frequently with modal verbs
and adverbs, auxiliaries and semi-auxiliaries, at least in
the languages Rosetta deals with (Dutch, English and
Spanish). In translation systems dealing with Japanese
and English these phenomena occur more frequently.

(cf. Nagao and Tsujii, 1986).

Partial i s o m o r p h y o f s u b g r a m m a r s

Isomorphy between grammars of different languages
must be defined in terms of isomorphy between the
subgrammars of these languages. It should be noted
that it is not always possible to make a subgrammar of
one language completely isomorphic to one subgram-
mar of the other language. However, it is possible to
make subgrammars partially isomorphic and sets of
subgrammars completely isomorphic, both within one
language and between different languages. For exam-
ple, within one language the subgrammars for ADJ to
CLAUSE and ADJ to ADJPPROP need not be com-
pletely isomorphic, neither do the ones for ADV to
CLAUSE and VERB to CLAUSE. But together the
subgrammars for ADJ to CLAUSE and ADJ to AD-
JPPROP for Dutch can be completely isomorphic to
the corresponding subgrammars for English.

6 F o r m a l a s p e c t s

In this section we will discuss the main consequences
for the Rosetta formalism of the ideas put forward
in sections 3, 4 and 5. These consequences relate
in particular to the definition of M-PARSER and M-
GENERATOR. We will first give - in section 6.1 - the
original definitions for the free, i.e. 'uncontrolled' M-
grammars of Rosetta2. In 6.2 we will give the revised
definitions for controlled M-grammars, currently used
for the development of Rosetta3.

6 . 1 F r e e M - g r a m m a r s

The syntactic component of an M-grammar defines a
set of objects called S-trees (surface trees).

1 2 7

An S - t r e e is
- a node N,
- or an expression of the form

N[rl/tl,..., r . / t .] (n>0)

where N is a node, the ri's are syntactic relations and
the t;'s are S-trees.

(we will often use this kind of recursive definition:
the second - recursive - part of the definition indi-
cates tha t S-trees may have arbitrary, but finite, depth;
the first part shows how the recursion terminates: the
leaves of the trees are always (terminal) nodes)

A node N is defined as a syntactic category followed
by a tuple of a t t r ibute-value pairs (ai:vi).

N = O{a l :v , ak:vk} (k>O)

For each syntactic category the corresponding .-it-
tributes are defined, for each attribute the set of pos-
sible values is defined. So, given a set of syntactic
relations and a set of syntactic categories with the cor-
responding attributes and values, the set of possible
S-trees is defined. This set is called T: the domain of
S-trees.

So the general form of an S-tree t is

t = C { a t : v , , . . . , ak:vk} [r t / t t , . . . , r , / t .]

C is called the syntactic category of t.

1 .

2.

3 .

ad 1.

ad 2.

The syntactic component of an M-grammar defines

- the domain T by enumerating the syntactic re-
lations, the categories and the corresponding at-
tributes and values.

- the set TM of well-formed S-trees, a subset of T.
TM consists of the surface trees of sentences that
are well-formed according to the grammar.

TM is defined by specifying:

a set B of basic S-trees,

a set of syntactic rules, called M-rules,

a special category: SENTENCE.

The set of basic S-trees is a subset of T (the basic
lexicon). A basic S-tree b has a unique name, to
be denoted as b_.

An M-rule R; defines a compositional function F:
from tuples of S-trees to finite sets of S-trees. So
application of R; to a tuple tt,...,t, yields a set
F~(tt,...,t,). The set is empty if the rule is not
applicable.

Each M-rule is reversible, i.e. it also defines an
analytical function Fi, the reverse of Fi.

t • F , (t t t .) ¢==~ (t t t ,) • F'i(t)

S-trees are constructed by applying M-rules recur-
sively, starting from basic expressions, The set TM is
the set of S-trees that can be derived in this way and
that have the category SENTENCE.

The derivation process can be displayed in a syntac-
tic derivation tree.

A d e r i v a t i o n t r e e is
- the name b of a basic expression,
- or an expression of the form
R~ <d t d , > , (n>0) ,
where R; is a rule name and d r , . . . , d , are derivation

trees.

On the basis of the syntact ic component of an
M-grammar the functions M - G E N E R A T O R and M-
PARSER can be defined. M - G E N E R A T O R is applled
to a derivation tree and yields a set of S-trees; M-
PARSER is applied to an S-tree and yields a set of
derivation trees.

M-GENERATOR(d) = ~,.f

{ t I 3b• B : d = b andt=b }

U { t] 3 t l , . . . , t . , dl d . , R i :
d = R , < d l , . . . , d . > and
t~ • M - G E N E R A T O R (d l) and

t . • M - G E N E R A T O R (d .) and
t • F, ' (t l t ,) }

(In this definition d, d~, d . are derivation trees, t,
t t , t . are S-trees, B is the set of basic S-trees, b is a
basic S-tree, b is the name of a basic expression, F: is
the compositional function defined by rule R~)

M-PARSER(t) =d..f

{ d [3 b• B : t = b a n d d=b}

U { d [9 t l , t . , d l ,dn, R; :
s

(t i , t .) • F i (t) ,
dt • M - P A R S E R (t l) and
• . .

d , • M-PARSER(t,~) and
d = R ; < d t , d . > }

(F'; is the analytical function defined by rule R;)

Given the reversibility of the M-rules, it is easy to
prove that

t E M-GENERATOR(d) ~ d E M-PARSER(t)

128

Note that M-PARSER and M-GENERATOR can
both be used to define the set TM of well-formed S-
trees. T~ can be defined as the set of S-trees (of cat-
egory SENTENCE) that can be derived by applying
M-GENERATOR to all possible derivation trees. Ta4
can also be defined as the set of S-trees (of category
SENTENCE) for which M-PARSER yields at least one
derivation tree. Because these definitions are equiva-
lent, the One Grammar Principle is obeyed.

An M-grammar has to obey the measure condi-

tion:

First, a measure on S-trees, i.e. a function from S-
trees to positive integers, must be defined.

The condition says: if t is the result of applying a
compositional rule to S-trees tl,...,tn then t is bigger
according to this measure than each of the arguments
tt,...,tn. So application of an analytical rule yields
smaller S-trees, which guarantees that the recursion in
M-PARSER is finite.

The algorithms for the components M-PARSER and
M-GENERATOR follow directly from the set-theoretic

definitions.

6 . 2 C o n t r o l l e d M - g r a m m a r s

The syntactic component of a c o n t r o l l e d M -
g r a m m a r defines the domain T of S-trees in the same
way as for free M-grammars .

The set TM of well-formed S-trees is defined by spec-
ifying:

1. a set B of basic S-trees,

2. a set of subgrammars ,

3. a special category: S E N T E N C E .

A s u b g r a m m a r Gi consists of:

• a set E X P O R T C A T S i of syntactic categories (the
categories of S-trees that can be exported).

• a set H E A D C A T S : of syntactic categories (the
categories of S-trees that are allowed as the head),

• a set I M P O R T C A T S : of syntactic categories (the
Categories of o ther S-trees that may be imported) ,

• a set of M-rules, subdivided into a set MF-
RULES: of meaningful rules and a set TR-
RULES: of t ransformat ion rules. For each mean-
ingful M-rule one of the arguments has to be
defined as the 'head ' argument (transformations
have only one argument) . For notat ional conve-
nience we will assume here that the head is always
the first argument .

• a control expression ce:, which indicates what se-
quences of rule applications are possible, from im-
ported head to exported result. (The ordering of
the rules concerns the head arguments)

The control expression indicates what the rule
subclasses are, how they are ordered, what rules they
consist of, and whether they are recursive, optional or
obligatory. A control expression ce has the following

form:
ce= Ao • At An,
where each A~ is a rule subclass, either a meaningful

rule class or a transformation class.
A rule class A~ may be
- obligatory: written as (Rt [...] Rt), where the

R,- are either meaningful rules or transformations.
- recursive: written as { RI [... [Rk },
- optional: written as [Rt [... [R~].

An example:

(R,). [R2 IRs l . (R41Rs }. (R 6] R ,)

This control expression defines all sequences beginning
with Ri, then R2 or R3 or neither, then an arbitrarily
long sequence (possibly empty) of R4 or R~, then either
RG or RT.

Actual ly a control expression is a restr icted kind of
regular expression over the alphabet of rule names. (It
is not restricted in i t s cons t ruc t ions but in the pos-
sible combinations of these constructions.) Each reg-
ular expression denotes a set of instances: sequences
of rule names. Each such rule sequence is a possible
p r o j e c t i o n p a t h in the subgrammar (of. section 3).
Note that the rules in a sequence need not be applica-
ble, this depends on the applicabili ty conditions of the
rules themselves.

It is required that each instance of the regular ex-
pression contains at least one meaningful rule.

The definition of a derivation tree has to be adjusted
as follows.

A d e r i v a t i o n t r e e is:
- the name b_ of a basic expression,
- or an expression of the form
(G.R;)<d~ ,d.> (n>0),
where Gi is (the name of) a subgrammar , R i is

(the name of) a meaningful M-rule, and dl , . . . ,d ,~ are
derivation trees.

There are two differences with the old definition.
The first is that the non-terminal nodes contain the
subgrammar name, next to the rule name. The sec-
ond is that the derivation tree is no longer a complete
trace of rule applications, because the transformations
d.re not indicated explicitly.

In the revised definition of M - G E N E R A T O R and M-
P A R S E R we will use a kind of incomplete derivat ion
tree, defined as follows.

An o p e n d e r i v a t i o n t r e e is:
- the ' empty derivation tree ' , D e .

129

- or an expression of the form
(G ; ,R /)<DI , . . . ,D , >,
where G# is the name of a subgrammar, R i is the

name of a meaningful M-rule, DI is an open derivation
tree, D2, . . . ,D, are derivation trees.

So an open derivation tree is like an ordinary deriva-
tion tree, but with an empty derivation tree as leftmost
leaf.

Where this is useful we will refer to an ordinary
derivation tree as a closed derivation tree.

Be given open derivation trees Dl and D~.
We define DL[D2] as the open derivation tree that

results if D2 is substituted for DE in Dr.
If D2 is a closed derivation tree, the result of the

substitution DI[D2] is a closed derivation tree.

We will now present the revised definitions of M-
PARSER and M-GENERATOR, for controlled M-
grammars. The definitions are not only valid for the
restricted control expressions, but in fact for any regu-
lar expression. Here the set-theoretical definitions are
given, the algorithms can be derived from them di-
rectly. The set TM of well-formed S-trees can be de-
fined in terms of these functions, in the same way as
in subsection 6.1.

Revised definition of M-PARSER

First we will give an informal description of M-
PARSER, in an 'operational' way.

M-PARSER operates on an S-tree t. If t is a ba-
sic expression b, M-PARSER(t) yields the derivation
tree b_. For a non-basic t M-PARSER(t) tries to apply
subgrammar parsers, by calling SG-PARSER(Gi,t) for
all subgrammars G; with the appropriate export cat-
egories (note that for the analytical functions the ex-

-port categories indicate what can be 'imported'). SG-
PARSER(Gi, t) tries to apply the rules of control ex-
pression cei to t (i.e. the ~nalytical versions of the
rules, starting at the right of the control expression).

A successful application of SG-PARSER yields a
pair (D, u), where D is an open derivation tree and
u is the resulting 'head' S-tree.

To u M-PARSER is applied again. If successful, M-
PARSER(u) yields a derivation tree d. Then D{d] is a
derivation tree of t.

SG-PARSER is defined by means of a function CE-
PARSER. CE-PARSER has 4 arguments (G;, ce, D,
t), where G, is a subgrammar name, ce is a control
expression, D is the open derivation tree resulting from
previous applications of CE-PARSER, t is the S-tree
that is yet to be parsed.

When CF_,-PARSER is called for the first time, D is
the empty derivation tree and ce is the control expres-
sion ce; of G;.

CF_,-PARSER(G;, ce, D, t) tries to apply the (an-
alytical versions of the) rules of control expression ce

to t, in right-to-left order. Successful application of a
rule yields a tnple of S-trees t l , . . . , t , . To tl the 'next '
rule of the control expression is applied. To t2, . . . , tn
the full M-PARSER is applied. During the recurslve
application of CF_,-PARSER D grows while ce shrinks.

Application of a meaningful rule Rj leads to substi-
tution of a new node (G#,Rj) in D. Application of a
syntactic transformation does not change the deriva-
tion tree.

The result of applying CE-PARSER successfully to
(Gi, ce~, D, t) is a triple (D2, u, A). All rules of one
instance of ce; have been applied then. D2 has the form
D{DI], where Dl is the open derivation tree with the
meaningful rules of this instance of cel at its projection
path and u is the remaining S-tree to be parsed yet
(the 'head'). A is a boolean, which tells whether a rule
(or transformation) has been applied. This is needed
to avoid vacuous recursion of CF_,-PARSER in case of
control expressions of the form { ce }, where ce has
empty instances, e.g. if ce has itself the form cel• The
boolean A would not be needed if the definitions would
be tuned to the restricted form of control expressions
as a sequence of rule classes.

The definitions:

M-PARSER(t) =d..I
{d 13 bEB:d=bandt = b }
u { d 13 G,, dr, D2, u:

syncat(t) E EXPORTCATS; and
(D2, u) E SG-PARSER(G;,t) and
d~ E M-PARSER(u)
and d = D2[d~] }

(In this definition d, dl are closed derivation trees,
D2 is an open derivation tree, t, u are S-trees, syncat(t)
is the syntactic category of t, b is a basic expression, b
is the name of a basic expresslon, Gi is a subgrammar)

SG-PARSER(G~,t) =d..!
{ (D, u) I
(D, u, true) e CE-PARSER(G;, ce;, DE, t)}

(ce; is the control expression of ce;)

CF_,-PARSER(G;, ce, D, t) =~..1

{ (D2, u, A) I q ceh ce2, DI, t l :
ce = cel.ce2 and "ce2 is not a concatenation s and
(DI, t l , A~) E CE-PARSER(GI, ce2, D, t) and
(D2, u, A~) E CE,-PARSER(G,, ce,, D, ,t,) and
A= Al orA2 }

U { (D2, u, A) [3 ce,, ce2:
ce = cellce2 and "ce~ is not a disjunction s and
(D2, u, A) e (OE-PARSER(G,, ce~, D, t)

130

U CF_.-PARSER(G,, cet, D, t)) }

U { (D~, u, A) I 3 cet:
ce = [ce, l and
((D~ = D and u = t and A = false) or
(D2, u, true) • CF_,-PARSER(GI, ce, , D, t) and
A = true) }

U { (D~, u, A) I B c e , :

ce = {ce,} and
((D~ = D and u = t and A = false) or
(3 D,, it, At:
(Dr, tt, true) • CE-PARSER(Gi, ce,, D, t) and
(D2, u, A,) • CE-PARSER(GI, ce, D,, tt) and
A = true)) }

U { (D2, u, true) I 3 k, n, Rk, d2 ,d.:
ce = Rk and
Rk • MF-RULESi and
D2 = D[(G;, Rk)<D~, d2 ,d.>] and

(u, ta t,) • F'k(t) and
d~ 6 M-PARSER(t2) and

d. •M-PARSER(t.) }

U { (D2, u, true) I 3 k, at:
Rk 6 TR-RULES; and
D2 =D and ce =Rk and
u • F't,(t) }

(ce, ce,, ce2 are control (sub)expressions, D, D,, D2
are open derivation trees, d2,...,d, are closed deriva-
tion trees, De is the empty derivation tree, t, t,, t2,
t., u are S-trees, Rk is an M-rule, F'k is the analytical
function defined by rule Rk, A, At, A2 are booleans)

An addit ional advantage of controlled M-grammars
is that the measure condition (cf. 6.1) can be reformu-
lated in a way that is much easier to obey that in the
original framework.

The measure condition is reformulated as follows:
1. For the grammar as a whole a measure must be

defined in such a way that application of a subgrammar
in generation yields exported S-trees which are bigger
than the imported S-trees. Consequently application
of a subgrammar during analysis yields smaller S-trees.
This measure is similar to the measure for rules we
had in the free M-grammar formalism, but it is easier
to define a measure for complete subgrammars than
for rules. Possible measures are: the total number of
nodes or the depth of an S-tree.

2. For each subexpression of the form { e } in a con-
trol expression a measure on S-trees must be defined,
such that application of e during analysis yields output
S-trees that are smaller than the argument S-trees ac-
cording to this measure. This measure can be defined
separately for each expression (e }.

R e v i s e d d e f i n i t i o n o f M - G E N E R A T O R

As the definitions relating to M - G E N E R A T O R are
completely symmetric to the definitions relat ing to M-
PARSER, we will present them without further com-
ments.

M-GENERATOR(d) =d~/
{tlBb6B:d=bandt=b}
U { t I 3 G;, d,, D~, u:

d = D2[dt] and
u • M-GENERATOR(dr) and
syncat(u) • HEADCATS; and
t • SG-GEN(G;, D2, u) }

(d, dt are closed derivation trees, D2 is an open
derivation tree, t, u are S-trees, b is a basic expression,
b is the name of a basic expression, G# is a subgram-
mar, syncat(u) is the syntactic category of u)

SG-GEN(G;, D, u) =a..!
{t I (t, De, true) • CE-GEN(G,, ce,, D, u)}

(cei is the control expression of Gi, D~ is the empty
derivation tree)

CE-GEN(G;, ce, D2, u) =d-.!

{ (t, D, A)] q eel, ce2, D,, ti:
ce = ce,.ce2 and "cel is not a concatenation" and
(t,, D,, A,) • CF_,-GEN(GI, ce,, D2, u) and
(t, D, A2) • CE-GEN(G; , ce2, Dr, t l) and
A = Al or A2 }

U { (t, D, A) I 3 ce,, ce2:
ce = cel]ce2 and "cet is not a dlsjunction" and
(t, D, A) • (CE-GEN(G; , ce, , D2, u)

U CF_,-GEN(G,, ce, , D , , u)) }

U { (t, D, A) I 3 ce,:
ce = [cell and
((D~ = D and t = u a n d A = f a l s e) or
((t, D, true) e CE-GEN(G; , ce, , Ds, u) and
A = true)) }

U { (t , D , A) J q c e t :
ce = {cel} and
((D2 = D and t = u and A = false) or
(3 D*, tl, At:
(t , , Dr, true) E CF_,-GEN(G,, cel , Ds, u) and
(t, D, A,) 6 CE-GEN(G;, ce, Dl, tt) and
A = true)) }

U { (t, D, true) I 3 k, n, Rk, d~ , . . . ,d . :
ce = Rk and

131

Rk • MF-RULES; and
D2 = D[(G,, Rk)<D~, d2 ,d.>] and
t • Ft(u,t2,...,t,) and
t2 • M-GENERATOR(d2) and

t, • M-GENERATOR(d,))

U { (t, D, true) [q k, Rk:
Rk • TR-RULES~
D = D2 and
ce = Rt and t • Fk(u) }

(ce, cet, ce2 are control expressions, D, Dr, D2 are
open derivation trees, d2,...,d, are closed derivation
trees, D~ is the empty derivation tree, t, it, t2, t,,
u are S-trees, R~ an M-rule, Ft is the compositional
function defined by rule Rk, A, At, A2 are booleans)

Remarks

In case of a recursive transformation class there is
the possibility of infinite recurslon during application
of CE-GEN. This must be prevented by defining a mea-
sure on S-trees in such a way that each application of
a transformation of the class yields a smaller S-tree
according to this measure.

The definition of M-GENERATOR is symmetric to
the definition of M-PARSER• (There is one appar-
ent exception: the condition on EXPORTCATS in

• M-PARSER and the condition on HEADCATS in M-
GENERATOR. However, these conditions are redun-
dant from a formal point of view, because they must
follow from the applicability conditions of the rules
in the control expression•) Thanks to this symmetry
it is simple to prove that M-GENERATOR and M-
PARSER are each other's reverse. One of the virtues
of this way of controlling rule applications is that the
One Grammar Principle can still be obeyed.

7 Conclusion

In section 2 we enumerated three types of problems
with the free M-grammar formalism used for the de-
velopment of the Rosettal and Rosetta2 systems.

The first problem was the lack of structure in free M-
grammars. This was solved in section 3 by introducing
a modular approach, where M-grammars are divided
into subgrammars in a way that was inspired by the
programming language Modula-2 on the one hand and
by the notion projection from X-theory on the other
hand.

The second problem was that there is no way of
explicitly controlling the application of rules in free M-
grammars and that it is not obvious how this kind of
control could be introduced in a compositional gram-
mar, where rules may have more than one argument.
The insight that was important to the solution of this

problem was that application of a subgrammar comes
down to following a projection path, from the imported
head to the exported projection. This implies that
defining control in a subgrammar comes down to spec-
ifying a set of possible sequences of rule applications,
which can be done by means of a control expression,
a regular expression over rule names. An important
advantage of this way of controlling rule applications
is that the One Grammar Principle is still obeyed: the
same grammar (i.e. the same subgrammars: the same
rules, the same control expressions, etc.) can be used
for the compositional and the analytical definition of
a language. This is proved by the formal definitions in
subsection 6.2.

The third problem concerned the consequences of
defining the translation relation by means of isomor-
phic grammars. The introduction of an explicit dis-
tinction between meaningful rules and syntactic trans-
formations in section 4 avoids unnecessary complica-
tions of the grammars without affecting the Principle
of Isomorphy. Because the applicability of syntactic
transformations is restrained by the control expres-
sions, they do not cause problems with effectivity or
efficiency. The introduction of rule classes gave more
insight into complex translation relations. In section
5 it was shown that category mismatch problems can
be handled more systematically by a combination of
subgrammars and rule classes.

Acknowledgements

The authors would like to thank all the members of the
Rosetta team for their constructive criticism. In par-
ticular we want to mention the invaluable contributions
of Jan Odijk with respect to linguistic matters.

References

Appelo, L. and J. Landsbergen (1986), The Machine
Translation Project Rosetta, Philips Research M.S.
13.801, Proceedings First International Conference on
State of the Art in Machine Translation, Saarbriicken,
pp. 34-51.

Chomsky, N. (1970), Remar~ on Nominalisation, in
R.A. Jacobs and P.S. Rosenbaum (eds), Readings in
English Transformational Grammar, Georgetown Univer-
sity Press, Washington DC, pp. 184-9.21.

Isabelle, P. and E. Macklovitch (1086), Tran.sfer and
MT Modularity, Proceedings Coling 1986, Bonn, pp.
115-117.

Landsbergen, J. (1984), Isomorphic grammar~ and their
use in the Rosetta translation 8ystent, Philips Research
M.S. 12.950. Paper presented at the Tutorial on Ma-
chine Translation, Lugano. To appear in M. King (ed),

132

Machine Translation the state of the art, Edinburg Uni-
versity Press.

Leermakers, R. and J. Rous (1986), The Translation
Method of Rosetta, Computers and Translation, Voh 1,
Number 3, pp. 169-183.

Nagao, M. and J. Tsujii (1986), The Transfer Phase of
the MU Machine Translation System Proceedings Coling
1986, Bonn, pp. 97-103.

Stowell, T. (1981), Origins of Phrase Structure, Ph.D.
dissertation, MIT.

Thomason, B. (1974), Formal Philosophy. Selected Pa-
pers o| Richard Montague, Yale University Press, New
HRven.

Vauquois, B. and C. Boitet (1985), Automated Transla-
tion at Grenoble University, Computational Linguistics,
Vol. 11, Number 1, pp. 28-36.

Wirth, N. (1985), Programming in Modula-2, Springer-
Verlag, third corrected edition.

133

