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ABSTRACT 

This paper describes some of 
the features of a sophisti- 
cated language and environment 
designed for experimentation 
with unification-oriented 
linguistic descriptions. The 
system, which is called ud, 
has to date been used success- 
fully as a development and 
prototyping tool in a research 
project on the application of 
situation schemata to the 
representation of real text, 
and in extensive experimenta- 
tion in machine translation. 

While the ud language bears 
close resemblances to all the 
well-known unification grammar 
formalisms, it offers a wider 
range of features than any 
single alternative, plus 
powerful facilities for nota- 
tional abstraction which allow 
users to simulate different 
theoretical approaches in a 
natural way. 

After a brief discussion of 
the motivation for implement- 
ing yet another unification 
device, the main body of the 
paper is devoted to a descrip- 
tion of the most important 
novel features of ud. 

The paper concludes with a 
discussion of some questions 
of implementation and com- 
pleteness. 

several languages: principally 
a demanding machine transla- 
tion exercise and a substan- 
tial investigation into some 
practical applications of 
situation semantics (Johnson, 
Rosner and Rupp, forthcoming). 

The interaction between users 
and implementers has figured 
largely in the development of 
the system, and a major reason 
for the richness of its 
language and environment has 
been the pressure to accommo- 
date the needs of a group of 
linguists working on three or 
four languages simultaneously 
and importing ideas from a 
variety of different theoreti- 
cal backgrounds. 

Historically ud evolved out of 
a near relative of PATR-II 
(Shieber, 1984), and its ori- 
gins are still apparent, not 
least in the notation. In the 
course of development, how- 
ever, ud has been enriched 
with ideas from many other 
sources, most notably from LFG 
(Bresnan, 1982) and HPSG (Sag 
and Pollard, 1987). 

Among the language features 
mentioned in the paper are 

a wide range of data 
types, including lists, 
trees and user-restricted 
types, in addition to the 
normal feature structures 

i. Introduction. 

The development of ud arose 
out of the need to have avail- 
able a full set of prototyping 
and development tools for a 
number of different research 
projects in computational 
linguistics, all involving 
extensive text coverage in 

comprehensive treatment 
of disjunction 

dynamic binding of 
name segments 

path- 

A particular article of faith 
which has been very influen- 
tial in our work has been the 
conviction that well-designed 
programming languages (includ- 
ing ones used primarily by 
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linguists), should not only 
supply a set of primitives 
which are appropriate for the 
application domain but should 
also contain within themselves 
sufficient apparatus to enable 
the user to create new 
abstractions which can be 
tuned to a particular view of 
the data. 

We have therefore paid partic- 
ular attention to a construct 
which in ud we call a rela- 
tional abstraction, a general- 
isation of PATR-II templates 
which can take arguments and 
which allow multiple, recur- 
sive definition. In many 
respects relational abstrac- 
tions resemble Prolog pro- 
cedures, but with a declara- 
tive semantics implemented in 
terms of a typical feature- 
structure unifier. 

are intended to be read as 
subscripts. 

Three other special symbols 
are used: 

+ stands for the unifica- 
tion operator 

* stands for top, the 
underdefined element. 

# stands for bottom, the 
overdefined element that 
corresponds to failure. 

The semantics of unification 
proper are summarised in fig- 
ures 2 - 4. Clauses [i] - [3] 
define its algebraic proper- 
ties; clauses [4] - [6] define 
unification over constants, 
lists and trees in a manner 
analagous to that found in 
Prolog. 

i.i. Structure of the paper 

Section 2 gives a concise sum- 
mary of the semantics of the 
basic ud unifier. This serves 
as a basis for an informal 
discussion, in Section 3, of 
our implementation of rela- 
tional abstractions in terms 
of 'lazy' unification. The 
final section contains a few 
remarks on the issue of com- 
pleteness, and a brief survey 
of some other language 
features. 

2. Basic Unifier Semantics 

In addition to the usual atoms 
and feature structures, the ud 
unifier also deals with lists, 
trees, feature structures, 
typed instances, and positive 
and negative disjunctions of 
atoms. This section contains 
the definition of unification 
over these constructs and 
employs certain notational 
conventions to represent these 
primitive ud data types, as 
shown in figure I. 

Throughout the description, 
the metavariables U and V 
stand for objects of arbitrary 
type, and juxtaposed integers 
C~--N 

In figure 4, clause [7] treats 
positive and negative disjunc- 
tions with respect to sets of 
atomic values. Clause [8] 
deals with feature structures 
and typed instances. Intui- 
tively, type assignment is a 
method of strictly constrain- 
ing the set of attributes 
admissible in a feature struc- 
ture. 

Any case not covered by [i] to 
[8] yields #. Moreover, all 
the complex type constructors 
are strict, yielding # if 
applied to any argument that 
is itself #. 

The extensions to a conven- 
tional feature structure 
unifier described in this sec- 
t, ion are little more than 
cosmetic frills, most of which 
could be simulated in a stan- 
dard PATR environment, even if 
with some loss of descriptive 
clarity. 

In the rest of the paper, we 
discuss a further enhancement 
which dramatically and perhaps 
controversially extends the 
expressive power of the 
language. 
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:Type name 

:constant 

list 

n-ary tree 

+ve disjunction 

-ve disjunction 

feature structure 

typed instance 

Notation 

A B C 

[U : V] 

V0(VI .... Vn) 

/el .... Cr/ 

"/Cl,..,Cr/ 

{<AI,VI> .... <Ar,Vr>} 

<C,{<AI,VI> .... <An,Vn>}> 

figure 1 : Notational Conventions 

[i] ÷ is commutative: 

U + V 

[2] * is the identity: 

V + * 

[3] + is #-preserving: 

V÷# 

figure 2 : Algebraic Properties 

= V + U 

= V 

-- # 

[4] unification of constants: 

Cl + C2 = Cl, if C1 = C2 

[5] unification of lists: 

[UI:U2] + [VI:V2] = [UI+VI:U2+V2] 

[6] unification of trees: 

U0(UI,..,Un) + V0(VI,..,Vn) = UO+VO(UI+VI,..,Un+Vn) 

figure 3 : Constants, Lists and Trees 
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[7] disjunction: 

/CI,..,Cn/ + C = C, if C in {Cl ..... Cn} 

/AI .... Ap/ + /BI,..,Bq/ 
= /Cl,..,Cr/, if Ci in {AI,..,Ap} 

and Ci in {BI,..,Bq}, 
l<=i<=r, r > 0 

~/Cl,..,Cn/ + C = C, if C ~= Ci, l<=i<=n 

~/AI,..,Ap/ + ~/BI,..,Bq/ 
= ~/Cl,..,Cr/, where Ci in {AI,..,Ap} 

or Ci in {BI,..,Bq}, 
l<=i<=r 

/AI,..,Ap/ + ~/BI,..,Bq/ 
= ~/Cl,..,Cr/, where Ci in {AI,..,Ap} 

and Ci not in {BI,..,Bq}, 
l<=i<=r 

[8] feature structures: 

{<AI,UI>,..,<Ap,Up>} + {<BI,VI>,..,<Bq,Vq>} 
= {<Ai,Ui> : Ai not in {BI,..,Bq}} union 

{<Bj,Uj> : Bj not in {AI .... Ap}} union 
{<Ai,Ui+Vj> : Ai = Bj}, 
l<=i<=p, l<=j<=q} 

<C,{<AI,UI>,..,<Ap,Up>}> + <C,{<AI,VI> .... <Ap,Vp>}> 
= <C,{<AI,UI+VI>,..,<Ap,Up+Vp>}~ 

<C,{<AI,UI> .... <Ap,Up>}> + {<BI,VI> .... <Bq,Vq>} 
= <C,{<Ai,Ui> : Ai not in {BI,..,Bq}} 

union {<Ai,Ui+Vj> : Ai = Bj}>, 
if all Bj in {AI,..,Ap}, 
where l<=i<=p, l<=j<=q 

figure 4 : Atomic Value Disjunctions and Feature Structures 

3. Extending the Unifier 

One of the major shortcomings 
of typical PATR-style 
languages is their lack of 
facilities for defining new 
abstractions and expressing 
linguistic generalisations not 
foreseen (or even foreseeable) 
by the language designer. This 
becomes a serious issue when, 
as in our own case, quite 
large teams of linguists need 
to develop several large 
descriptions simultaneously. 

To meet this need, ud provides 
a powerful abstraction mechan- 
ism which is notationally 
similar to a Prolog procedure, 
but having a strictly declara- 
tive interpretation. We use 
the term relational abstrac- 
tion to emphasise the non- 
procedural nature of the con- 
struct. 

~'!" Some Examples of Rela- 
tional Abstraction 

The examples in this section 
are all adapted from a 
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description of a large subset 
of German written in u_dd by 
C.J. Rupp. As well as rela- 
tional abstractions• two other 
ud features are introduced 
here: a built-in list concate- 
nation operator '÷+' and gen- 
eralised disjunction, notated 
by curly brackets (e.g. 
{X,Y}). These are discussed 
briefly in Section 4. 

The first example illustrates 
a relation Merge, used to col- 
lect together the semantics of 
an arbitrary number of modif- 
iers in some list X into the 
semantics of their head Y. 
Its definition in the external 
syntax of the current ud ver- 
sion is 

Merge(X,Y) : 
!Merge-all(X, 

<Y desc cond>, 
<Y desc ind>) 

(The invocation operator '!' 
is an artefact of the LALR(1) 
compiler used to compile the 
external notation - one day it 
will go away. X and Y should• 
in this context, be variables 
over feature structures. The 
desc, cond and ind attributes 
are intended to be mnemonics 
for, respectively• 'descrip- 
tion' (a list of) 'condi- 
tions' and 'indeterminate'.) 

Merge is defined in terms of a 
second relation, Merge-all, 
whose definition is 

clearly indebted for the nota- 
tion, the important differ- 
ence, which we already 
referred to above• is that the 
interpretation of Merge and 
Merge-all is strictly declara- 
tive. 

The best examples of the prac- 
tical advantages of this kind 
of abstraction tend to be in 
the lexicon• typically used to 
decouple the great complexity 
of lexically oriented descrip- 
tions from the intuitive 
definitions often expected 
from dictionary coders. As 
illustration• without entering 
into discussion of the under- 
lying complexity, for which we 
unfortunately do not have 
space here, we give an exter- 
nal form of a lexical entry 
for some of the senses of the 
German verb traeumen. 

This is a real entry taken 
from an HPSG-inspired analysis 
mapping into a quite sophisti- 
cated situation semantics 
representation. All of the 
necessary information is 
encoded into the four lines of 
the entry; the expansions of 
Pref, Loctype and Subcat are 
all themselves written in ud. 
The feature -prefix is merely 
a flag interpreted by a 
separate morphological com- 
ponent to mean that traeumen 
has no unstressed prefix and 
can take 'ge-' in its past 
participle form. 

Merge-all([HdlTl], 
<Hd desc cond> ++ L, 
Ind) : 

Ind = <Hd desc ind> 
' !Merge-all(TI,L,Ind) 

Merge-all([],[],Ind) 

traeumen -prefix 
!Pref(none) 
!Loctype([project]) 
!Subcat(np(nom), 

{vp(inf,squi), 
pp(von,dat)}) 

Merge-all does all the hard 
work, making sure that all the 
indeterminates are consistent 
and recursively combining 
together the condition lists. 

Although these definitions 
look suspiciously like pieces 
of Prolog, to which we are 

Pref is a 
tion used 
syntax of 
prefixes 

syntactic abstrac- 
in unraveling the 
German separable 

Loctype is a rudimentary 
encoding of Actionsart. 

Subcat contains all the infor- 
mation necessary for mapping 
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instances of verbs with vp or 
pp complements to a situation 
schema (Fenstad, Halvorsen, 
Langholm and van Benthem, 
1987). 

Here, for completeness but 
without further discussion, 
are the relevant fragments of 
the definition of Subcat. 

Subcat(np(nom),pp(P,C)) : 
!Normal 
!Obl(Pobj,P,C,X) 
~Arg(X,2) 
<* subcat> = [PobjlT] 
!Assign(T,_) 

Subcat(np(nom),vp(F,squi)) 
!ControlVerb 
!Vcomp(VP,F,NP,Sit) 
!Arg(Sit,2) 
<* subcat> = [VP:T] 
!Assign(T,X) 
F = inf/bse 
!Control(X,NP) 

is that some unifications 
which would ultimately con- 
verge may not converge locally 
(i.e. at some given intermedi- 
ate stage in a derivation) if 
insufficient information is 
available at the time when the 
unification is attempted (of 
course some pathological cases 
may not converge at all - we 
return to this question 
below). 

We cope with this by defining 
an argument to the unifier as 
a pair <I,K>, consisting of an 
information structure I 
belonging to one of the types 
listed in section 2, plus an 
agenda which holds the set of 
as yet unresolved constraints 
K which potentially hold over 
I. Unification of two 
objects, 

<II,KI> + <I2,K2> 

Assign([X],X) 
<* voice> = active 
!Subj(X) 
!Arg(X,l) 

Assign({[Y],[]},Z) 
<* voice> = passive 
<* vform> = psp 
!Takes(none) 
!Obl(Y,von,dat,Z) 
!Arg(Z,l) 

4. Implementation o_ff the 
Extensions 

In this section we describe 
briefly the algorithm used to 
implement a declarative seman- 
tics for relational abstrac- 
tions, concluding with some 
remarks on further interesting 
extensions which can be imple- 
mented naturally once the 
basic algorithm is in place. 
For the moment, we have only 
an informal character!sat!on, 
but a more formal treatment is 
in preparation. 

4.1. The solutionalgorithm 

The main problem which arises 
when we introduce relational 
abstractions into the language 

involves the attempt to 
resolve the pooled set of con- 
straints 

K1 union K2 = K0 

with respect to the newly uni- 
fied information structure I0 
= Ii + I2, if it exists. 

The question of deciding 
whether or not some given con- 
straint set will converge 
locally is solved by a very 
simple heuristic. First we 
observe that application of 
the constraint pool K0 to I0 
is likely to be non- 
deterministic, leading to a 
set of possible solutions. 
Growth of this solution set 
can be contained locally in a 
simple way, by constraining 
each potentially troublesome 
(i.e. recursively definined) 
member of K0 to apply only 
once for each of its possible 
expansions, and freezing pos- 
sible continuations in a new 
constraint set. 

After one iteration of this 
process we are then left with 
a set of pairs 
{<Ji,Ll>,...,<Jr,Lr>}, where 
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the Li are the 
straint sets 
corresponding Ji. 

current con- 
for the 

If this result set is empty, 
the unification fails immedi- 
ately, i.e. I0 is inconsistent 
with K0. Otherwise, we allow 
the process to continue, 
breadth first, only with those 
<Ji,Li> pairs such that the 
cardinality of Li is strictly 
less than at the previous 
iteration. The other members 
are left unchanged in the 
final result, where they are 
interpreted as provisional 
solutions pending arrival of 
further information, for exam- 
ple at the next step in a 
derivation. 

4.2. Decidability 

It is evident that, when all 
steps in a derivation have 
been completed, the process 
described above will in gen- 
eral yield a set of 
information/constraint pairs 
{<Ii,Kl>...<InKn>} where some 
solutions are still incomplete 
- i.e. some of the Ki are not 
empty. In very many cir- 
cumstances it may well be leg- 
itimate to take no further 
action - for example where the 
output from a linguistic pro- 
cessor will be passed to some 
other device for further 
treatment, or where one solu- 
tion is adequate and at least 
one of the Ki is empty. Gen- 
erally, however, the result 
set will have to be processed 
further. 

The obvious move, of relaxing 
the requirement on immediate 
local convergence and allowing 
the iteration to proceed 
without bound, is of course 
not guaranteed to converge at 
all in pathological cases. 
Even so, if there exist some 
finite number of complete 
solutions our depth first 
strategy is guaranteed to find 
them eventually. If even this 
expedient fails, or is unac- 
ceptable for some reason, the 
user is allowed to change the 

environment dynamically so as 
to set an arbitrary depth 
bound on the number of final 
divergent iterations. In 
these latter cases, the result 
is presented in the form of a 
feature structure annotated 
with details of any con- 
straints which are still 
unresolved. 

4.2.1. Discussion 

Designers of unification gram- 
mar formalisms typically avoid 
including constructs with the 
power of relational abstrac- 
tion, presumably through con- 
cern about issues of complete- 
ness and decidability. We 
feel that this is an unfor- 
tunate decision in view of the 
tremendous increase in expres- 
siveness which these con- 
structs can give. (Inciden- 
tally, they can be introduced, 
as in ud, without compromising 
declarativeness and monotoni- 
city, which are arguably, from 
a practical point of view, 
more important considera- 
tions.) On a more pragmatic 
note, ud has been running now 
without observable error for 
almost a year on descriptions 
of substantial subsets of 
French and German, and we have 
only once had to intervene on 
the depth bound, which 
defaults to zero (this was 
when someone tried to use it 
to run Prolog programs). 

In practice, users seem to 
need the extra power very 
sparingly, perhaps in one or 
two abstractions in their 
entire description, but then 
it seems to be crucially 
important to the clarity and 
elegance of the whole descrip- 
tive structure (list appending 
operations, as in HPSG, for 
example, may be a typical 
case). 

4.3. Other extensions 

Once we have a mechanism for 
'lazy' unification, it becomes 
natural to use the same 
apparatus to implement a 
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variety of features which 
improve the habitability and 
expressiveness of the system 
as a whole. Most obviously we 
can exploit the same framework 
of local convergence or 
suspension to support hand- 
coded versions of some basic 
primitives like list concate- 
nation and non-deterministic 
extraction of elements from 
arbitrary list positions. 
This has been done to advan- 
tage in our case, for example, 
to facilitate importation of 
useful ideas from, inter alia 
HPSG and JPSG (Gunji, 1987). 

We have also implemented a 
fully generalised disjunction 
(as oppposed to the atomic 
value disjunction described in 
section 2) using the same lazy 
strategy to avoid exploding 
alternatives unnecessarily. 
Similarly, it was quite simple 
to add a treatment of under- 
specified pathnames to allow 
simulation of some recent 
ideas from LFG (Kaplan, 
Maxwell and Zaenen, 1987). 

. Current state 

to other 
tions. 

lisp/unix combina- 
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