
[International Conference on the State of Machine Translation in Аmerica, Asia and
Europe. Proceedings of IAI-MT86, 20-22 August 1986, Bürgerhaus, Dudweiler]

Peter Hellwig

Program for Language Analysis and Inference (PLAIN)

Germanistisches Seminar

Universität Heidelberg

Hauptstraße 207-209

6900 Heidelberg 1

-210-

PROGRAMS FOR LANGUAGE ANALYSIS AND INFERENCE (PLAIN)
A WORKBENCH FOR MACHINE TRANSLATION

Peter Hellwig

0. Data about the system

Name: PLAIN.
Type: knowledge based system for natural language analysis and processing.
Components: analysis, deduction, transfer.
Data bases for MT: morphological lexicon, valency lexicon, transfer rules.
Implementation language: PL/1.
Storage requirements: 384 KB maximum.
Operation: dialog and batch.
Hardware and operating systems: IBM/MVS, Siemens/BS 2000.

1 • Characteristics

PLAIN ("Programs for Language Analysis and Inference") is a comprehensive
system for the analysis and processing of natural languages. It has the
following features:

(1) PLAIN is based on a theory of grammar called "Dependency Unification
Grammar" (DUG) resulting in a new parsing device. DUG incorporates many
ideas from traditional linguistics. At the same time, it fits with the
recent developments in grammar theory. It shares with other modern
formalisms the concept of "governing", the use of complex categories, the
orientation towards syntactic functions, the lexicalistic approach to
grammar, the unification method as the basis of the parsing algorithm.
The unique feature of DUG is its augmented dependency structure which
results in the parallel treatment of three linguistic dimensions: the
individual lexical meanings, the grammatical functions, and the outward
form.

(2) PLAIN uses a special language for representing linguistic facts called
"Dependency Representation Language" (DRL). DRL is a language ideally
suited for the linguistic domain. Individual grammars can be programmed in
it in declarative form. The design of DRL - independent of its currently
being embedded in PLAIN - is an alternative to the other languages used in
computational linguistics, e.g. LISP and PROLOG.

(3) PLAIN is a package of programs for developing linguistic software.
Its architecture has been designed with the linguist in mind who is
drawing up a DUG for an individual language. In addition, PLAIN is a
knowledge-based system that supplies a shell for prototypes of translation
systems and natural language expert systems. Commands, options and
parameters offer a maximum of comfort, transparency and control during the
processing of large volumes of linguistic data. PLAIN is implemented at
several universities in Germany and is also available at the University of
Cambridge, U.K. It can be provided to other research groups for
experimental use.

-211-

2- Survey of the main components of PLAIN

-212-

The two main components of PLAIN are the programs ANA and DED. ANA
analyses natural language input and converts it into expressions of DRL
(Dependency Representation Language). For this purpose the following data
on the input language is needed: a definition of the morpho-syntactic
categories used, a morpho-syntactic lexicon, and a valency lexicon. DED
transfers DRL expressions according to given rules into new DRL
expressions. It is suited to cover essential functions within automatic
translation, theorem proving and deductive question answering. So-called
meta-semantic rules determine the logical form of the input; these rules
result in DRL expressions that are themselves rules according to which DED
subsequently carries out deductions. The meta-semantic rules also include
translation rules which convert DRL representations of one language
into DRL representations of another language. The data sets on the left
of the diagram have to be compiled by linguists for the particular input
languages. Taken together they form a complete single-language or
bilingual lexicon with a specification of morphology, syntax and
semantics. The data sets on the right of the diagram result from the
actual use of PLAIN. They are built up automatically. The lexeme and role
inventory is created by any lexeme and role names being used in DRL
expressions. The knowledge base is set up as follows: any statements on
an object domain are entered, analysed by ANA, transformed by DED and
finally stored in a database. In this process, general statements on the
object domain are converted into inference rules. In addition to the
components shown, PLAIN has further programs to define categories and
other special symbols (DFN), to update the lexicon (LEX), to organise
network-like databases (UBS) and to make various print-outs (DFN, LEX,
PBS).

Below, a demonstration of some of PLAIN'S components is given. The
listings are the same as the output which appears on the screen.

3. Analysis Example

The example shows the analysis of the sentence "Sheila persuades Arthur
to attend the conference on machine translation." The result is a list (in
the sense of list-processing) or a "tree" representing the linguistic
structure of the sentence. The parentheses as well as the indentation show
the dependency relationships of the elements. Each element with all of the
elements it dominates, i.e. everything that is between two complementary
parentheses, forms a partial tree. The composition of a list by partial
trees implicitly reflects the constituent structure of the input phrase.
Every list element contains a role marker, a lexeme and a complex
category, separated by a colon. In the example the role markers have
capital letters. Lexemes follow in the second position. The sentence
semantics is also represented by lexemes, cf. the lexeme "assertion".
The third position is for morpho-syntactic categories which consist of a
main category (generally a word class) and a sequence of subcategories
representing grammatical features. The notation of subcategories comprises
a name (such as, for example, "num" for number) and so-called values in
parentheses (in the case of "num", for instance, "1" for singular and "2"
for plural). Morpho-syntactic categories include positional features, such
as adjacency ("adj") and sequence ("seq").

-213-

*** ANALY - INPUT FOR ANALYSIS:

'SHEILA PERSUADES ARTHUR TO ATTEND THE CONFERENCE ON MACHINE
TRANSLATION. '

*** ANALY - RESULT OF ANALYSIS:

LIST 58:

1 (ILLOCUTION: assertion: clse typ<l>
2 (PREDICATE: persuade: verb fin<l> adj<l>
3 (SUBJECT: sheila: noun per<3,C> num<l,C> adj<l>)
4 (OBJECT: arthur: noun adj<2>)
5 (OBJECOMPL: attend: verb fin<2> seq<2>
6 (OBJECT: conference: noun adj<2>
7 (DETERMINATION: the: dete seq<l>)
8 (PREPCOMPL: on: prep adj<2>
9 (: translation: noun adj<2>

10 (ATTRIBUTE: machine: noun
adj<l>)))))));

*** ANA - STATISTICS:

WORDS= 11, LISTS BUILT BY LEXICON LOOKUP = 12
AVERAGE READINGS PER WORD (HOMONYMY) = 1.09
AVERAGE MORPHEMES PER WORD (COMPLEXITY)= 1.00
SLOTS EXAMINED= 150, DERIVED LISTS = 58
DERIVED LISTS / AV. MINIMUM (EFFICIENCY) = 5.80
RESTARTS (DISCONTINUITY)= 0, CPU-SECONDS = 1.11

4. Representation for further processing

This is the analysis result without the morpho-syntactic categories. After
all, the latter describe surface features of the input languages. After
the analysis has been completed, they can be removed.

1 (ILLOCUTION: assertion
2 (PREDICATE: persuade
3 (SUBJECT: sheila)
4 (OBJECT: arthur)
5 (OBJECOMPL: attend
6 (OBJECT: conference
7 (DETERMINATION: the)
8 (PREPCOMPL: on
9 (: translation

10 (ATTRIBUTE: machine)))))));

-214-

5. Definition of the morpho-syntactic categories

Categories must be defined before they can be used in terms. In
particular, for each subcategory the number of values and the operation
which is to be responsible for processing the values must be specified.
At present fourteen operations are available which correspond to a
typology of the categories which linguists have used in formal and
non-formal grammars and dictionaries. The category definition which be was
used for the processing the above example is the following:

clse typ 1 2
verb fin 1 3 per 1 3 num 1 2 seq 11 2 adj 12 2
noun gen 1 3 per 1 3 num 1 2 seq 11 2 adj 12 2
dete seq 11 2 adj 12 2
prep seq 11 2 adj 12 2

The main categories are clse (clause), verb, noun, dete (determiner), prep
(preposition). The explanation of the subcategories is as follows:

typ = type of clause - operation 1 (Boolean)
values : 1 main, 2 subordinate

fin = finiteness - operation 1 (Boolean)
values : 1 finite, 2 infinitive,
3 past participle

per = person - operation 1 (Boolean)
values : 1 first, 2 second, 3 third

num = number - operation 1 (Boolean)
values : 1 singular, 2 plural

gen = gender - operation 1 (Boolean)
values : 1 masculine, 2 feminine, 3 neuter

seq = sequence - operation 11 (positional)
values : 1 preceding, 2 following

adj = adjacency - operation 12 (positional)

values : 1 left-adjacent, 2 right-adjacent

6. Morpho-syntactic lexicon

At the beginning of the analysis, the input character string is broken
down into basic segments each of which is assigned one or more DRL
elements with a lexeme and a morpho-syntactic category. This happens by
consulting the morpho-syntactic lexicon. The lexicon is arranged in
so-called sections, especially into sections for stems and for endings.
References lead from one section to another which corresponds to the
possible continuation of the character strings in the words. A
backtracking mechanism makes sure that all of the possible decompositions,
including those of compounds, are found. For example, the German
equivalent for "to attend", the word 'TEILNEHMEN ', is processed
according to the part of the lexicon printed here as follows. First the
segment 'TEIL' is found in the section of the stems; a DRL term is formed
for this segment with the lexeme "teil". Section 128 is referred to for
continuation. In Section 128 under ' ', i.e. without another character
being added, the category "prfx kmp<l>" is found, i.e. prefix in compound.
Since there is no reference to another section, the analysis of the first
word component 'TEIL' ends here. Now the section of the stems is tried
again and 'NEHM' is found. After a new DRL element "(*:nehmen)" has been
created, the processing continues in section 105. This section contains
the endings of the infinitive and of the present tense of those forms
which do not change the stem (while section 107, which is also listed,

-215-

contains the endings corresponding to stems with Ablaut, e.g. 'NIMM').
The end of the word is reached with the ending 'EN ' (which occurs twice).
The terms and categories associated with the ending are added to the DRL
representation for the segment 'NEHMEN '.

*** PUTLX - LEXICON SECTION NO. 3:
Testvokabular aus "Bausteine des Deutschen"

'TEIL'
(*: teil);
SECTION 128

'NEHM'
(*: nehmen);
SECTION 105
SECTION 107

*** PUTLX - LEXICON SECTION NO. 128:
Abtrennbare Praefixe des Verbs

' '

prfx kmp<l>

' '

prfx

*** PUTLX - LEXICON SECTION NO. 105:
Verben -
Infinitiv, Praesens Indikativ ohne 2. und 3. Person Singular
(d.s.die nicht umlautenden Formen bei Umlaut), Imperativ Plural

' '
verb kmp<l>

'E'
verb kmp<l>

'E '
((TEMPS: praesens')(MODUS: indikativ'));
verb fin<l> num<l> per<l> tmp<l>

'EN '
((TEMPS: praesens')(MODUS: indikativ'));
verb fin<l> num<2> per<l,3> tmp<l>

'EN '
verb fin<2>

' T '
((TEMPS: praesens')(MODUS: indikativ'));
verb fin<l> num<2> per<2> tmp<l>

 ' T '
((MODUS : imperativ_pl')) ;
verb fin<4> num<2> per<2>

-216-

*** PUTLX - LEXICON SECTION NO. 107:
Verben -

Praesens Indikativ 2. und 3. Person Singular
(d.s. die umlautenden Formen bei Umlaut)

'ST '
((TEMPS: praesens')(MODUS: indikativ'))•
verb fin<l> num<l> per<2> tmp<l>

'T '
((TEMPS: praesens')(MODUS: indikativ'));
verb fin<l> num<l> per<3> tmp<l>

7. Updating the morpho-syntactic lexicon by paradigm

In order to enlarge the morpho-syntactic lexicon, one can enter a paradigm
of inflectional and derivative forms by which PLAIN recognizes the
morphology of the word and then carries out an appropriate entry in the
lexicon. The prerequisite for this is the presence of patterns which
indicate both the expected form of the input as well as the ending
sections with which the stems of the words are to be linked. In the
example, the input format for the verb "NEHMEN" is documented and so is
the pattern that fits this paradigm. The pattern indicates that
the word stem "NEHM" is to be linked to section 105, the stem 'NIMM' to
section 107, the stem 'NAHM' to section 118, which is the past tense in
the indicative, the stem 'NAEHM' to section 123, which is the past
conjunctive, and the stem 'NOMM' to section 126, which contains the ending
of the past participle. The other patterns shown are part of the total
number of 230 paradigms which completely account for the German
morphology. The underscore in the patterns always stands for the stem of
the basic form. Included in the parentheses, the stem changes from Ablaut
and Umlaut are specified. The device does not only serve to simplify
drawing up the lexicon. The patterns also represent a theoretically
important systematization of the morphology, since they show the
relationships of the various forms.

Input:

NEHMEN NIMMST NAMST NAEMEST GENOMMEN
Pattern matching with this input:

_EN |105| _(EHM/IMM)ST |107| _(EH/A)ST |118| <_(EH/AE)EST |123|>
_(EHM/OMM)EN |126| ;

Examples of other patterns (a noun and an adjective):

DER _ |132| _ES _(+E)ER |168|;
(DER WALD WALDES WAELDER)

|195| <_(+E)ER AM _(+E)STEN |193|> <IST _ |190|> <DAS _E |191|> ;
(JUNG JUENGER AM JUENGSTEN IST JUNG DAS JUNGE)

-217-

8. Valency lexicon

In a dependency representation the syntactic relationships between the
basic elements of a language are represented directly. This corresponds
to the valency principle which says that the structure of complex
expressions are determined by the combination capability of the basic
elements. According to this approach, the syntax of a language is a
matter of a lexicon in which the combination capabilities of the language
elements are described. A possible way to formulate the combination
capabilities is to assign slots to each lexeme for all of the elements
which it is to be superordinated to in the structural tree, thereby also
taking into account the morpho-syntactic categorization. In the DRL
formalism, slots are represented by list elements with a variable in the
place of the lexeme. The classes of elements which are allowed to fill a
slot can be delimited as precisely as necessary by morpho-syntactic
categorization. The slots themselves are made functionally identifiable by
a role marker. If the same complement can go with different lexemes, a
completion pattern is set up and references are made to this from the
individual lexicon entries. Apparently this way of describing the
syntactic relationships is in agreement with the "frame" approach
advocated by Artificial Intelligence. The following completion patterns
and valency references suffice for the syntactic analysis of the above
example.

Completion patterns:

(*: +subject: verb fin<l>
(SUBJECT: = : noun per<C> num<C> adj<l>));

(*: +object: verb
(OBJECT: _ : noun adj<2>));

(*: +object_complement: verb
(OBJECOMPL: _ to_infinitival: verb fin<2> seq<2>));

(: +countable
(DETERMINATION: _ : dete seq<l>));

(: +attribute: noun
(ATTRIBUTE: _ : noun adj<l>));

(ILLOCUTION: assertion: clse typ<l>
(PREDICATE: - : verb fin<l> adj<l>));

Valency references:

(: -> (*: persuade) (& (: +subject)
(: +object)
(: +object_complement)));

(: -> (*: to_infinitival) (*: = : verb fin<2> adj<2>));

(: -> (*: attend) (& (: +subject)
 (: +object)));

(: -> (*: conference) (& (: +countable)
(: +attribute)));

(: -> (*: translation) (& (: +countable)
(: +attribute)));

-218-

9. The parsing process

After the base lexicon has been consulted and the terms have been
augmented by slots from the valency lexicon the following lists exist.
(We disregard grammatical ambiguities which results in more than one list
being associated with one word.)

*** ANALY - HISTORY OF LIST 58:

LIST 1 (BUILT BY LEXICON LOOKUP):
'SHEILA '
MORPHEM(S): 1, WORD(S): 1

1 (*: sheila: noun gen<2> per<3> num<l>);

LIST 2 (BUILT BY LEXICON LOOKUP):
'PERSUADES '
MORPHEM(S): 1, WORD(S): 01

1 (*: persuade: verb fin<l> per<3> num<l>
2 (SUBJECT: = <SLOTOBL>: noun per<C> num<C> adj<l>)
3 (OBJECT: _ <SLOT>: noun adj<2>)
4 (OBJECOMPL: _ to_infinitival <SLOT> : verb fin<2>

seq<2>));

LIST 3 (BUILT BY LEXICON LOOKUP):
'ARTHUR '
MORPHEM(S): 1, WORD(S): 001

1 (*: arthur: noun gen<l> per<3> num<l>);

LIST 4 (BUILT BY LEXICON LOOKUP):
'TO '
MORPHEM(S): 1, WORD(S): 0001

1 (*: = <SLOTOBL>: verb fin<2> adj<2>);

 SATISFYING: to_infinitival;

 - LOOKING FOR SLOTS WAS SKIPPED FOR THIS LIST -

LIST 5 (BUILT BY LEXICON LOOKUP):

'ATTEND '

MORPHEM(S): 1, WORD(S): 00001

1 (*: attend: verb fin<2>
2 (OBJECT: _ <SLOT>: noun adj<2>));

LIST 6 (BUILT BY LEXICON LOOKUP):
'THE '
MORPHEM(S): 1, WORD(S): 000001

1 (*: the: dete);

-219-

LIST 8 (BUILT BY LEXICON LOOKUP) :
'CONFERENCE '
MORPHEM(S): 1, WORD(S): 0000001

1 (*: conference: noun per<3> num<l>
2 (DETERMINATION: _ <SLOT> : dete seq<l>)
3 (PREPCOMPL: _ ? <SLOT>: prep adj<2>
4 (: ? on)));

LIST 9 (BUILT BY LEXICON LOOKUP):
'ON '
MORPHEM(S): 1, WORD(S): 00000001

1 (*: on: prep
2 (: = <SLOTOBL>: noun adj<2>));

SATISFYING: local' ;

LIST 10 (BUILT BY LEXICON LOOKUP):
'MACHINE '
MORPHEM(S): 1, WORD(S): 000000001

1 (*: machine: noun per<3> num<l>);

LIST 11 (BUILT BY LEXICON LOOKUP):

'TRANSLATION'
MORPHEM(S): 1, WORD(S): 0000000001

1 (*: translation: noun per<3> num<l>
2 (DETERMINATION: _ <SLOT> : dete seq<l>)
3 (ATTRIBUTE: _ <SLOT>: noun adj<l>));

LIST 12 (BUILT BY LEXICON LOOKUP):
' . '

MORPHEM(S): 1, WORD(S): 00000000001
1 (ILLOCUTION: assertion: clse typ<l>
2 (PREDICATE: = <SLOTOBL> : verb fin<l> adj<l>));

Once the lexical terms; are associated with completion patterns the parsing
process is fairly simple. Every list, beginning with the first one, looks
for a slot in another list. All the variables and category values of
filler lists and slot lists are unified. If the unification is successful,
then a new list is formed by insertion of the filler list in the slot. The
new list is added to the end of the line. When its turn comes, this list
also looks for a slot, and so on until no further insertions of filler
lists in slots are possible. Parsing has been successful when a list has
been constructed which comprises a term for every segment of the input
string. The following is the record of this procedure for the above
example:

-220-

LIST 13 (DERIVED FROM LIST 1 AND LIST 2):
'SHEILA PERSUADES '
MORPHEM(S): 1, WORD(S): 11

1 (*: persuade: verb fin<l> per<3> num<l>
2 (SUBJECT: sheila: noun per<3,C> num<l,C> adj<l>)
3 (OBJECT: _ <SLOT>: noun adj<2>)
4 (OBJECOMPL: _ to_infinitival <SLOT> : verb fin<2>

seq<2>));

LIST 15 (DERIVED FROM LIST 3 AND LIST 13):
'SHEILA PERSUADES ARTHUR '
MORPHEM(S): 1, WORD(S): 111

1 (*: persuade: verb fin<l> per<3> num<l>
2 (SUBJECT: sheila: noun per<3,C> num<l,C> adj<l>)
3 (OBJECT: arthur: noun adj<2>)
4 (OBJECOMPL: _ to_infinitival <SLOT> : verb fin<2>

seq<2>));

LIST 16 (DERIVED FROM LIST 5 AND LIST 4):
'TO ATTEND '
MORPHEM(S): 1, WORD(S): 00011

1 (*: attend: verb fin<2>
2 (OBJECT: _ <SLOT>: noun adj<2>));

SATISFYING: to_infinitival;

LIST 17 (DERIVED FROM LIST 6 AND LIST 8):

'THE CONFERENCE '

MORPHEM(S): 1, WORD(S): 0000011

1 (*: conference: noun per<3> num<l>
2 (DETERMINATION: the: dete seq<l>)
3 (PREPCOMPL: _ ? <SLOT>: prep adj<2>
4 (: ? on)));

LIST 19 (DERIVED FROM LIST 10 AND LIST 11):

'MACHINE TRANSLATION'

MORPHEM(S): 1, WORD(S): 0000000011

1 (*: translation: noun per<3> num<l>
2 (DETERMINATION: _ <SLOT>: dete seq<l>)
3 (ATTRIBUTE: machine: noun adj<l>));

LIST 26 (DERIVED FROM LIST 19 AND LIST 9):
'ON MACHINE TRANSLATION'
MORPHEM(S): 1, WORD(S): 0000000111

1 (*: on: prep
2 (: translation: noun adj<2>
3 (ATTRIBUTE: machine: noun adj<l>)));

SATISFYING: local';

-221-

LIST 35 (DERIVED FROM LIST 26 AND LIST 17):
'THE CONFERENCE ON MACHINE TRANSLATION'
MORPHEM(S): 1, WORD(S): 0000011111

1 (*: conference: noun per<3> num<l>
2 (DETERMINATION: the: dete seq<l>)
3 (PREPCOMPL: on: prep adj<2>
4 (: translation: noun adj<2>
5 (ATTRIBUTE: machine: noun adj<l>))));

LIST 44 (DERIVED FROM LIST 35 AND LIST 16):
'TO ATTEND THE CONFERENCE ON MACHINE TRANSLATION'
MORPHEM(S): 1, WORD(S): 0001111111

1 (*: attend: verb fin<2>
2 (OBJECT: conference: noun adj<2>
3 (DETERMINATION: the: dete seq<l>)
4 (PREPCOMPL: on: prep adj<2>
5 (: translation: noun adj<2>
6 (ATTRIBUTE: machine: noun adj<l>)))));

SATISFYING: to_infinitival;

LIST 52 (DERIVED FROM LIST 44 AND LIST 15):
'SHEILA PERSUADES ARTHUR TO ATTEND THE CONFERENCE ON
MACHINE
TRANSLATION'
MORPHEM(S): 1, WORD(S): 1111111111

1 (*: persuade: verb fin<l> per<3> num<l>
2 (SUBJECT: sheila: noun per<3,C> num<l,C> adj<l>)
3 (OBJECT: arthur: noun adj<2>)
4 (OBJECOMPL: attend: verb fin<2> seq<2>
5 (OBJECT: conference: noun adj<2>
6 (DETERMINATION: the: dete seq<l>)
7 (PREPCOMPL: on: prep adj<2>
8 (: translation: noun adj<2>
9 (ATTRIBUTE: machine: noun

adj<l>))))));

LIST 58 (DERIVED FROM LIST 52 AND LIST 12):
'SHEILA PERSUADES ARTHUR TO ATTEND THE CONFERENCE ON
MACHINE
TRANSLATION. '
MORPHEM(S): 1, WORD(S): 11111111111

1 (ILLOCUTION: assertion: clse typ<l>
2 (PREDICATE: persuade: verb fin<l> adj<l>
3 (SUBJECT: sheila: noun per<3,C> num<l,C> adj<l>)
4 (OBJECT: arthur: noun adj<2>)
5 (OBJECOMPL: attend: verb fin<2> seq<2>
6 (OBJECT: conference: noun adj<2>
7 (DETERMINATION: the: dete seq<l>)
8 (PREPCOMPL: on: prep adj<2>
9 (: translation: noun adj<2>

10 (ATTRIBUTE: machine: noun
adj<l>)))))));

-222-

10. Translation German - English

After the analysis is finished, the morpho-syntactic categories are
removed from the lists turning DRL into a semantic representation language
which consists of terms with roles and lexemes, either constant or
variable, and of variables covering lists and sequences of lists. DRL
expressions of this type are processed by PLAIN'S deduction component
DED. The following listings illustrate the application of DED in the
framework of machine translation. The DRL representation of two German
sentences with the ambiguous verb "erinnern", one with the reading
"remind" the other one with the reading "remember", is transformed here
into a DRL representation for English sentences. (Within the framework of
an automatic translation system, a generation component would have to make
English sentences out of these lists. Such a component has not yet been
implemented).

*** DED - LIST_1:

(Du erinnerst mich an meine Freundin.)

1 (ILLOC: aussage'
2 (PRAED: erinnern
3 (TEMPS: praesens')
4 (MODUS: indikativ')
5 (SUBJE: adressat_sg')
6 (TRANS: sprecher_sg')
7 (CASPP: an
8 (: freundin
9 (REFER: definit')
10 (NUMRS: singular')
11 (ZUORD: sprecher_sg')))));

*** REPLC - LIST AFTER REPLACEMENT
(You remind me of my girl friend.)

1 (ILLOC: assertion'
2 (PRAED: remind
3 (TEMPS: praesens')
4 (MODUS: indikativ')
5 (SUBJE: you)
6 (TRANS: me)
7 (CASPP: of
8 (: girl friend
9 (REFER: definit')
10 (NUMRS: singular')
11 (ASSOC: my)))));

-223-

*** DED - LIST_1:
(Ich erinnere mich an meine Freundin.)

1 (ILLOC: aussage'
2 (PRAED: erinnern
3 (TEMPS: praesens')
4 (MODUS: indikativ')
5 (: reflexiv')
6 (SUBJE: sprecher_sg')
7 (CASPP: an
8 (: freundin
9 (REFER: definit')
10 (NUMRS: singular')
11 (ZUORD: sprecher_sg')))));

*** REPLC - LIST AFTER REPLACEMENT
(I remember my girl friend.)

1 (ILLOC: assertion'
2 (PRAED: remember
3 (TEMPS: praesens')
4 (MODUS: indikativ')
5 (SUBJE: I)
6 (TRANS: girl friend

7 (REFER: definit')
8 (NUMRS: singular')
9 (ASSOC: my))));

11. The translation rules used

These are the rules used for the transformation in 10. Each rule is made
up of a rule symbol (in the first list element). In the case here, we are
dealing with replacement rules. Every rule is made up of two partial
trees, subordinated to the rule symbol. The first tree is a pattern for an
initial structure, the second one is a pattern for a target structure.
Roles, lexemes, and entire partial trees can be substituted in rules by
variables. When the rules are applied, variables in the pattern for the
target structure are replaced by precisely the elements or trees that
corresponded to the same variables in the initial structure. Variables
allow for sufficient generalization, roles and lexemes for sufficient
restriction of the rule applications.

1 (: D-E= => <REPLACE>
2 (SUBJE: sprecher_sg')
3 (SUBJE: I));

1 (: D-E= => <REPLACE>
2 (ZUORD: sprecher_sg')
3 (ASSOC: my));

1 (: D-E= => <REPLACE>
2 (*: freundin
3 (-))
4 (*: girl friend
5 (-)));

-224-

1 (: D-E==> <REPLACE>
2 (TRANS: sprecher_sg')
3 (TRANS: me));

1 (: D-E==> <REPLACE>
2 (SUBJE: adressat_sg')
3 (SUBJE: you));

1 (: D-E"> <REPLACE>
2 (*: erinnern
3 (: reflexiv')
4 (CASPP: an
5 (: $1))
6 (-1))
7 (*: remember
8 (-1)
9 (TRANS: $1)));

1 (: D-E==> <REPLACE>
2 (*: erinnern
3 (TRANS: $1)
4 (CASPP: an
5 (-1))
6 (-2))
7 (*: remind
8 (-2)
9 (TRANS: $1)

10 (CASPP: of
11 (-D)));

1 (: D-E==> <REPLACE>
2 (*: aussage'
3 (-))
4 (*: assertion'
5 (-)));

12. Documentation of part of the transformation of 11

In DRL one can easily write rules according to which every DRL
expression can be freely transformed into almost any other one. The
structure of the target expression can be completely different from that
of the initial expression. The following printout shows the phase of the
translation in 11 in which the German reflexive verb "erinnern" with a
prepositional object is transformed into the English verb "remember" with
a direct object. The correspondence of variables and elements is kept in a
register (see "LIST OF VARIABLES").

*** REPLC - LIST AFTER REPLACEMENT:

1 (ILLOC: aussage'
2 (PRAED: erinnern
3 (TEMPS : praesens')
4 (MODUS: indikativ')
5 (: reflexiv')
6 (SUBJE: I)
7 (CASPP: an
8 (: girl friend
9 (REFER: definit')
10 (NUMRS: singular')
11 (ASSOC: my)))));

-225-

*** REPLC - RULE USED FOR REPLACEMENT:

1 (: D-E==> <REPLACE>
2 (*: erinnern
3 (: reflexiv')
4 (CASPP: an
5 (= $1))
6 (-1))
7 (*: remember
8 (-1)
9 (TRANS: $1)));

*** PVLST - LIST OF VARIABLES:

TYPE: 11 NAME: * REFERS TO: 2
TYPE: 12 NAME: -1 REFERS TO: 3
TYPE: 12 NAME: -1 REFERS TO: 4
TYPE: 12 NAME: -1 REFERS TO: 6
TYPE: 22 NAME: $1 REFERS TO: 8

*** REPLC - LIST (2) REPLACED ACCORDING TO RULE (7)

*** REPLC - LIST AFTER REPLACEMENT:

1 (ILLOC: aussage'
2 (PRAED: remember
3 (TEMPS: praesens')
4 (MODUS: indikativ')
5 (SUBJE: I)
6 (TRANS: girl friend

7 (REFER: definit')
8 (NUMRS: singular')
9 (ASSOC: my))));

12. Reports on PLAIN

Peter Hellwig, University of Heidelberg

Formal-desambiguierte Repraesentation. Vorueberlegungen zur maschinellen
Bedeutungsanalyse auf der Grundlage der Valenzidee. Stuttgart 1978.

"PLAIN - A Program System for Dependency Analysis and for Simulating
Natural Language Inference." In: Leonard Bolc (Hg.): Representation
and Processing of Natural Language. Muenchen, Wien, London 1980, pp.
271 - 376.

Programmsystem PLAIN - "Programs for Language Analysis and Inference" -
Benutzungsanleitung. Germanistisches Seminar der Universitaet
Heidelberg, Postfach 105760, D-69 Heidelberg. (PLAIN User's Guide)

"Bausteine des Deutschen". Daten fuer das Programmsystem PLAIN.
Germanistisches Seminar der Universitaet Heidelberg, Postfach 105760,
D-69 Heidelberg.

Program System PLAIN (Programs for Language Analysis and and Inference) -
Examples of Application. Computing Unit and Linguistics and
International Studies Department, University of Surrey,
Guildford/U.K. October 1985.

"The PLAIN Approach to Natural Processing". In the Proceedings of the 1986
Spring Meeting of the SHARE European Association(SEAS).

"Dependency Unification Grammar (DUG)", 1986. To appear in the proceedings
of COLING 1986.

-226-

