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I.1. PRELIMINARY REMARKS* 

The project's goal is to integrate results of recent 
research in the fields of theoretical linguistics and 
computer science. In this way we aim to develop a system 
for machine translation by a methodologically sound 
procedure and to fulfill two conditions of adequacy: 

(i) The system should be based on a well-established 
linguistic theory that includes a clearly defined grammar 
formalism. (The format of the grammatical theory is of 
overall importance insofar as all components of the system 
intrinsically depend on the type of grammar chosen.) 

(ii) With the exception of language particular descriptive 
components (grammars, transfer rules), the components of 
the system should be suitable for universal application, 
i.e., usable by any grammar of the chosen type. Conversely 
the (language-dependent) components may serve as input to 
any component compatible with the given formalism. 

The decision to design our system on the basis of these 
conditions was motivated by several theoretical as well as 
practical considerations: 

1) The obvious advantages of 'buying' a well-established 
(and well-specified) grammatical theory 'off the shelf’: 
It can be assumed to have been tested sufficiently for 
practical application, and to have been examined with 
respect to its most fundamental formal properties (e.g. 
decidability).  This saves on the preliminary basic 
research, always necessary to establish the fundamental 
practicability and feasibility of a new formalism. 

2) Not only can one exploit results of previous research, 
but also the accessibility of project work makes possible 
innovational feedback from other scientists working in the 
same paradigm. Indirectly this increases the number of 
collaborators. 

3) Since the development of algorithms for the various 
components is meant to yield general theoretical insights, 
the system's components should be independent of the 
actual application domain. Consequently the various compo- 
nents can be used where ever grammars of the chosen type 
are applied. This guarantees a certain projectability of 
research results. 

4) A clearly defined linguistic formalism permits one to 
develop the grammatical and the computational components 
independently and therefore in parallel, which facilitates 
inter-disciplinary cooperation of theoretical linguists 
and computer scientists. Neither linguists nor computer 
scientists have to wait for each other's research results. 
Nor do linguists and computer scientists have to re- 
discover results well-known to the experts in the alien 
discipline. 

The choice of LFG as grammatical theory was motivated by 
the following considerations: 

a) LFGs are decidable and generate a superset of the class 
of     context-free      languages.         This      guarantees       practical 

applicability and certainly provides enough expressive 
power for describing natural languages. 

b) The theory was developed by linguists. Consequently one 
can expect, that it provides enough heuristics for the 
empirical application by theoretical linguists. The form- 
alism is sufficiently explicit to be applied by computer 
scientists. 

c) The control-structure (functional- or f-structure) 
built up by an LFG for each sentence of a language seems 
to  contain  enough syntactic as well  as  semantic 
information about the sentence to translate it adequately 
on a context independent, sentence-by-sentence basis using 
systematic  rules.  Such a translation system will 
inherently have an upper limit on the quality of 
translation. 

The working hypothesis in c) receives support from the 
fact, that a purely semantic representation, reducing the 
sentence to its truth conditions, is too weak on the one 
hand -- as one might like to draw on information about 
the syntactic form of the source expression (e.g. passive, 
relative clauses, topic/ focus structure, etc.) -- and too 
strong on the other hand as ambiguities of scope that are 
not reflected in the surface string will normally not have 
to be taken into consideration. [fn.l] 

I.2. STRUCTURE AND STATE OF DEVELOPMENT OF THE 
SYSTEM 

In the following we give a short survey on the structure 
and components of the system as well as the time schedule 
for its development. (Two of these components will be 
introduced in more detail in the later chapters.) 

A. Linguistic Input 

- Gg (German grammar), under development since April 1985, 
(cf. III.) 

- Fg (French grammar), under development since April 1985 
- TR (Transfer rules): 

- lexical TR , under development since April 1985, 
- structural TR, second phase from 1987 onwards 

B. System Components 
- PC (parser compiler),  existing for top-down parsing, 

under development for bottom-up parsing. [fn.2] 
- GC (generator compiler), existing algorithm (cf. IV.), 
implementation under development. 
- TC (transfer automaton compiler) second phase of project 

Adequacy condition I.(ii) above can be elaborated for the 
language independent components as follows: 

It should be provable for the construction algorithms on 
which PC and GC are based that for any LFG the constructed 
- (PC) parser accepts an input string s by building up an 
f-structure f iff 
- (GC) generator accepts an input f-structure f  by 
building up a terminal string s  iff 

s   is   element   of   the   language   and   has   the   f-structure   f. 
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II. THE FRAGMENT OF GERMAN GRAMMAR 

This section will give a short survey of the fragment 
currently covered by the German grammar and will describe 
some parts of it in more detail. 
The German grammar contains descriptions for the following 
structures and phenomena: 

1) Sentence type and sentence mood 
2) Position of the finite verb and separable verb prefixes 
3) Infinitival constructions 
4) Periphrastic tense forms and passives 
5) Extraposition phenomena 
6) Free word order of NP- and PP-complements 

In section II.1. we give a rough sketch of some differen- 
ces between the version of LFG we use and the one given in 
[9] . Since much of the grammar has or will be documented 
elsewhere ([11], [12]) we will concentrate in the sections 
II.2. and II.3. on the points mentioned under 1) and 2). 

II.1. DIFFERENCES TO THE STANDARD VERSION OF LFG 

In the following we will sketch some of the relevant 
differences between the traditional KB version of LFG and 
the one used in our system. This version of LFG differs 
from the one given in [9] with respect to the treatment of 
1) unbounded dependencies and 2) non-configurational 
encoding. 

1) In [9] unbounded dependencies were captured by a 
mechanism called constituent control. The long distance 
identification of the controlling and the controlled f- 
structure was established by bounded domination meta- 
variables properly annotated to the righthand sides of the 
rules. Thus it was possible to express an infinite number 
of different controller-controllee linkages, if a recurs- 
ive category from which the controlee was derivable was 
reachable   from   the   domain   root. 

The new treatment of unbounded dependencies expresses 
these possible linkages by means of regular expressions 
over the functional vocabulary. An annotated regular 
expression denotes all f-structure paths which can link 
the controlling and controlled f-structure. Both 
mechanisms are closely related since one can indicate for 
a given controller-controllee pair a regular expression 
that denotes all f-structure paths which can link the 
controller and controllee in derivations of c-structures 
containing the controllee, from the root node of the 
controller. As a regular expression denotes paths that are 
generable using a regular grammar with annotated unary 
rules, an additional condition has to ensure that the set 
of paths consistent with the f-structure is not infinite, 
if the functions are not governable functions (ADJ.etc.). 
(In the old version this is guaranteed, as unary recursive 
categories are excluded such that a recursively derived 
iteration of ungoverned functions has to become apparent 
in the surface string.) 

In [10] the coherence condition of [9] is modified to an 
'extended coherence condition' which covers the set of 
nuclear functions. The nuclear functions are the govern- 
able functions plus ADJ and XADJ, which are all together 
the functions the regular expressions are formulated over. 
For the ungovernable functions among the nuclear functions 
the extension of the coherence condition says the follow- 
ing: each of these functions has to be element of an 
f-structure with a PRED attribute. Thus the length of a 
path which is element of the set denoted by a regular 
expression is bounded by the length of the string. 

2) We have introduced variables to dispense with disjunct- 
ions for the non-configurational encoding of grammatical 
functions (cf. [16]). 

The principle of non-configurational encoding is to anno- 
tate disjunctions of pairs of function assigning and 
feature assigning equations. The disjuncts have the form 
< (↑G) = ↓, (↓ F) = v > (cf [1]). Which function of the 
disjunction is selected, depends on the value of the 
feature F. Each disjunction can be assigned bijectively a 
variable ranging over the set of functions of the dis- 
junction. Each function in the range is assigned the 
feature-assigning equation (in a more general version a 
partial f-structure) which selects the function the 
variable is instantiated by. 

Thus it is possible to store the range and the feature 
assigning equations for the variables independent from the 
lexicon and the rule system and to instantiate the 
variables as soon as the f-structure information necessary 
for the instantiation is available. This reduces the 
amount of backtracking and makes the rule system a little 
bit clearer. 

II.2. SENTENCE MOOD AND SENTENCE TYPE 

The underlying idea in our treatment of sentence mood and 
sentence type follows the assumption that (in German) 
these two features are basically determined by a sentence 
initial structural position. 

We will distinguish between sentence S-MOOD (ranging over 
feature values like interrogative, assertive etc.) and 
sentence S-TYPE (with values like subordinate, relative 
etc.). We hypothesize that in a theory like LFG, where no 
use is made of information about categorial distinctions 
in the subcategorization frames of lexical items, both 
features will be necessary to characterize a clause 
sufficiently. Take for example verbs like 'behaupten' vs. 
'fragen':    Both    may    take    finite    structures    as     complements, 
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however the first will accept any sentence that may be 
characterized as assertive, whereas the latter is 
sensitive to the distinction between (possible) main 
clause vs. subordinate clause (see below). 
To cover at least some of the relevant data of 
subordination and sentence mood one has to account for the 
fact that 
- main clauses in German may be introduced by structures 
like: 
(a) XP   +   Vfin  (assertive / declaratives) 
(b) XP   +   Vfin  (Wh-interrogatives, the XP has to 

contain a interrogative pronoun) 
 (c) Vfin  (Yes/No interrogatives) 
- subordinate clauses follow the patterns: 
(d) CONJ         (conjunctive clauses) 
(e) XP              (relative   clauses,      the      relative 

pronoun has to agree with the noun 
the relative clause refers to and 
subordinate interrogatives) 

(f) XP   +   Vfin       (assertive subordinate clauses) 
These structures are illustrated by the following 
sentences and clauses (C and S are two categories into 
which we divide these sentences, see below): 

C                                             S (-VP) 
(1)Der Mann hat                              das Buch gelesen. (a) 
(2)Das Buch hat der Mann       gelesen. 
(3)Wer          hat das Buch gelesen? (b) 
(4) Hat  der Mann das Buch gelesen? (c) 
(5) daß              der Mann das Buch gelesen hat. (d) 
(6) der                               das Buch gelesen hat. (e) 
(7) wer                              das Buch gelesen hat. (e) 

                                          C S 
(8)die Behauptung, daß/*ob       er das Buch gelesen habe 
(9)die Behauptung, er habe             das Buch gelesen 
(10) die Frage, *daß / ob   er das Buch gelesen hat, 
(11) die Frage, wer/*der        das Buch gelesen hat, 
(12) die Frage, *hat           er das Buch gelesen, ... 
(13) der Mann, *wer / der      das Buch gelesen hat. 
The sentences (8)-(13) exemplify that in German certain 
lexical items are compatible only with specific con- 
junctions; also, (similar to English) there are lexical 
items that permit assertive main clause structures as 
subordinate clauses but not interrogative structures like 
(12). As an additional complication German distinguishes 
between d_relative pronouns and w_pronouns, the latter 
being used in free relative clauses and subordinate 
interrogative clauses. [fn.3] 
 
To capture these regularities we make the following 
assumptions: 
- All finite clauses are categorized as S' 
- S' dominates a category which we call C [fn.4] and a 
category S 
- The category S in German is equivalent to VP. It may or 
nay not contain the SUBJect NP. Also it may or may not 
contain the finite verb. 
- C may be expanded further or it may immediately dominate 
a terminal symbol (conjunction) 
 
Irrespective of the theoretical status or value of these 
assumptions is, it should be obvious that this subdivision 
of sentences permits to isolate a structural position C 
which is subject to much variation from a structure S 
which can be shown to be independent of this variation. 

The start rule for the grammar is then (Rl) [fn.5] 
(Rl)     S'  - >    C      ↑ =  ↓ 

(↑ TENSE) 
[S  ↑ =  ↓] 

Since we assume only finite sentences to have a C con- 
stituent, this symbol is assigned an existential con- 
straint requiring the sentence to have a verbal head that 
contains a value for TENSE. The trivial equation assigned 
to C may be justified for two reasons: On the one hand C 
may contain the functional head of the sentence, the 
finite verb, on the other hand (as long as one doesn't 
assume that conjunctions are subcategorized for sentential 
complements) this rule permits to isolate a structural 
position without affecting the corresponding f-structures. 

The category C could then be expanded as follows: 
We do not make a strict distinction between lexical 
categories and syntactic categories, in the sense of 
deriving lexical items only from lexical categories. In 
theory it thus becomes possible to access the lexicon from 
any non-terminal symbol. Our LFG system, which is built 
along this line, thus provides a very simple way of making 
sure that conjunctions like 'daß' (that), 'ob' (whether) 
will always appear in a complementary distribution with 
the finite verb by categorizing them as C right away: 
 
(L1) daß:           C,         (↑  S-TYPE) - subordinate 

(↑  S-MOOD) - assertive 
(L2) ob:             C,         (↑  S-TYPE) - subordinate 

(↑ S-MOOD) - interrogative 
For relative clauses and subordinate clauses introduced by 
a w_constituent, we have to expand C to an NP. Suppose 
we have NP-rules like (R2)/(R3) which will derive express- 
ions like 'der Mann' or 'Peters Vaters Hut': [fn.6] 
 
(R2)     NP       ->          DET   ↑ =  ↓ 

N'       ↑ =  ↓ 
(R3)     NP       ->          NP  (↑ POSS) =  ↓ 

        (↓ CASE) = genitive 
N'    ↑ =  ↓ 

Relative and interrogative pronouns like 'der', 'wer' 
(who), 'dessen', 'wessen' (whose) in these constructions 
always have to be exhaustively dominated by an NP-node. 
(This node can be the highest NP-node itself or a possess- 
ive NP at the lowest level of embedding.) Assigning 
to these pronouns the category NP will consequently yield 
the desired results in connection with rule (R4): 

(L3) wer:        NP,         (↑  PRED) = "pro" 
(↑  WH) = qu 
(↑  AGR NUMBER) = sing 
(↑  CASE) = nom. 

(L4) der:         NP,          (↑  PRED) = "pro" 
 (↑  WH) = rel 

                                        (↑  AGR NUMBER) = sing 
 (↑ AGR GENDER) = masc 
 (↑ CASE) = nom. 

(L5) dessen:    NP,          (↑ PRED) = "pro" 
                                         … 

(↑ CASE) = genitive. 

(The feature AGReement seems to be useful to subsume a 
bundle of features like Number,  Gender and Person; 
although complex-valued,AGR is not to be interpreted as a 
function.) 
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(R4)     C     ->        NP             (↑  XCOMP* G) =  ↓ 
(/(↑ QU-POCUS) = (↓ POSS*) 
   (↑ QU-POCUS WH) =c qu 
   (↑ S-MOOD) = interrogative 
   (↑ S-TYPE) = subordinate 
 /(↑ TOPIC) = (↓ POSS*) 
  (↑ TOPIC WH) =c rel) 
  (↑ S-TYPE) = relative /). 

The first functional schema annotated at the NP in (R4) 
will have the effect that this constituent is analyzed as 
a governable function contained in the range of the 
variable G, and as representing the argument of a verb, 
which may be arbitrarily deep embedded in an f-structure 
that can be reached along a path containing any number n 
of XCOMPs. The relative pronoun 'dem' in (14) is the OBJ2 
of the embedded and extraposed non-finite verb 'schenken': 

(14) der Mann, den sie versucht hat, ein Buch zu schenken. 

The functional control schema referring to QU-FOCUS and 
TOPIC equates the partial f-structure which represents 
either the f-structure corresponding to the NP itself or 
to a POSS-function within the NP with the value of these 
attributes. This attribute will be accessible at the top 
level of the sentence's f-structure, which will be 
necessary and useful for two reasons: In interrogatives 
one would obviously like to know, what the focus of the 
question is; in relative clauses one has to guarantee that 
the respective relative pronoun agrees with the nominal 
head of the NP which this relative clause refers to. 
By formulating a constraining equation over these 
f-structures, requiring that they (and equally the 
corresponding partial f-structure within the NP) will have 
a value for WH, we make sure that the NP actually contains 
an appropriate pronoun at some unpredictably deep level of 
embedding. 

Modifying the NP-rule as in (R5) we will obtain for a 
string like (15) c-structure (C1) and f-structure (F1). 

(R5)    NP       ->          DET ↑ =  ↓ 
N'    ↑ =  ↓ 
[S'  (↑ RELADJ)  =  ↓ 

                                             (↑ AGR) = (↓ TOPIC AGR) 
                                             (↓ TOPIC WH) =c rel ]. 

(14) der Mann, dessen Hut die Frau gefunden hat. 
 

(15) (C1) 

 

To derive the main clauses (WH-, Y/N-interrogatives and 
declaratives) we will expand C in the following way: 

(R6)     C      ->      [NP (↑ XCCMP* G) =  ↓ 
(/(↑  S-MOOD) = assertive 
 /(↑ QU-FOCUS) = (↓ POSS*) 
  (↑ QU-FOCUS WH) =c qu 
  (↑  S-MOOD) = interrogative /}] 

V    ↑ =  ↓ 
(/(↑  S-MOOD) =c assertive 
/(↑  S-MOOD) = interrogative /). 

The constraining equation at the verb will guarantee, that 
it is preceded by a constituent in declarative clauses. In 
the other cases either an additional QU-FOCUS will be 
contained in the f-structure marking a WH-interrogative 
and its focus, or C will exhaustively dominate the verb 
indicating (Y/N-)interrogative mood. 
Noun and verbs requiring a specific sentential complement 
can then be subcategorized accordingly: 

(L6) behauptet:         V, (↑ PRED) = "behaupt <(SUBJ) (COMP)>" 
(T COMP S-MCOD) -c assertive 

                                        … 
(L7) Behauptung:     N, (↑  PRED) = "behaupt <(SUBJ) (COMP)>" 

(↑ COMP S-MOOD) =c assertive 
                                       … 
(L8) Frage:            N,    (↑ PRED) = "frag <(SUBJ) (COMP)>" 

(↑ COMP S-MOOD) =c interrogative 
(↑ COMP S-TYPE) =c subordinate 

                                        … 

The expansion of N' in the NP-rule will then be: 

(R7)     N'       ->              N   ↑ =  ↓ 
[S'  (↑  COMP) =  ↓]. 

and cover the data given in (8) - (13). 
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II.3. SEPARABLE VERB-PREFIXES 

In section II.2. we assumed, that the finite verb will 
always be in a complementary distribution with 
subordinative conjunctions and WH-constituents in sub- 
ordinate clauses. This means that if the finite verb 
cannot be derived within the C-position it has to be 
derived where all the other (non-finite) verbforms also 
have to be derived: to the right of their respective 
arguments in a clause final position (modulo extraposed 
constructions): 

(16) Er wird    das Buch gelesen haben. 
(17) daß  er das Buch gelesen haben wird. 
(18) wer      das Buch gelesen haben wird, .. . 
(19) daß  er das Buch zu lesen haben wird. 

One of the interesting phenomenon connected with this 
clause-final position are separable verb prefixes: 

(20)Er hat           das Problem dargestellt  . 
he has            the problem presented. 

(21)Daß          er das Problem dargestellt hat. 
(22)daß er           das Problem darzustellen hat. 
(23)Er stellt        das Problem dar. 
(24)Daß          er das Problem darstellt. 
(25)*Er darstellt das Problem. 

Clearly, it is only the finite stem that may occur in a 
sentence initial position, in all other cases the verb 
occurs together with the prefix, being separated only by 
a participle ('ge') or infinitive marker ('zu)'. 
(Actually one could interpret this distribution as an 
indication that it is not the finite verb itself, but the 
finite features that are bound to the C-position. In cases 
where this position is not realized by a conjunction, 
which would 'expel' the finite features, some 
phonological material categorized as V has to 'move' from 
its clause-final position to the initial position in order 
to take up and phonologically realize these abstract 
features.) 

In order to account for these data we assume that the 
(finite and non-finite) verb forms occurring in the 
sentence final position correspond to a higher projection 
V of the lexical category V. [fn.7] 

As mentioned in II.2. we also assume that this position is 
immediately dominated by S and that all non-finite forms 
will be derived from a left-branching verb complex: 

(R8)   S      ->             NP* (↑ XCOMP* G) =  ↓ 
[V"  (↑ XCCMP) =  ↓ 

                                   [V’   ↑ =  ↓]. 
(R9)   V"    ->            [V" (↑ XCCMP) =  ↓] 

V   ↑ =  ↓. 

(R10)  V     ->           [ZU (↑  INF) = zu] 
v ↑ =  ↓. 

These rules will work fine with simple verb entries like 
the following: 

(L9) wird:   V,               (↑ PRED) = "werden < (XCCMP) > (SUBJ)" 
(↑ SUBJ) = (↑ XCOMP SUBJ) 
(↑ XCOMP INF) = bare. 

(L10) haben: V,             (↑  PRED) = "haben < (XCOMP) > (SUBJ)" 
(↑  SUBJ) = (↑ XCOMP SUBJ) 
{/ (↑ XCOMP INF) = ge 
/ (↑ XCOMP INF) = zu /}. 

(L11) liest:      V,          (↑ PRED) = "lesen < (SUBJ) (OBJ) >" 
(↑ TENSE) = pres 
(↑ SUBJ NUM) = sg 
(↑ SUBJ CASE) = nom 
(↑ OBJ CASE) = akk. 

(L12) lesen:    V,            (↑ PRED) = "lesen < (SUBJ) (OBJ) >" 
 (↑  OBJ CASE) = akk. 

(L13) gelesen: V,           (↑ PRED) = "lesen <(SUBJ) (OBJ)>" 
(↑ OBJ CASE) = akk 
(↑ INF) = ge. 

To capture the various constructions with separable pre- 
fixes, we assume the following: Forms like 'darstellt', 
'darzustellen' are categorized as V, i.e. as morpho- 
syntactically complex forms. (If we assume that the zu- 
infinitive may either be produced by a lexical or by a 
syntactic rule, it is more adequate to let forms, that 
already incorporate the 'zu'- and 'ge'- infinitival 
marker, be exhaustively dominated by V rather than 
inserting them under the V nodes as the right sister 
of an optional zu-infinitiv marker. If darzustellen were 
categorized as V there would be nothing to prevent zu as 
cooccurring as its left sister; the two f-schemata 'INF = 
zu' would simply be unified.) Most important, categorizing 
the finite forms like 'darstellt' as V will automatically 
prevent complex forms to be inserted under the C-node in 
(R6). [fn.8] 

(L14) darstellt: V, 
(↑ PRED) = "darstellen <(SUBJ) (OBJ)>" 
(↑ TENSE) = pres 
(↑ SUBJ NUM) = sg 
(↑ SUBJ CASE) = nom 
(↑ OBJ CASE) = akk. 

(L15) darzustellen: V', 
(↑ PRED) = "darstellen <(SUBJ) (OBJ)>" 
(↑ OBJ CASE) = akk 
(↑ INF) = zu. 

(L16) dargestellt: V', 
(↑ PRED) = "darstellen <(SUBJ) (OBJ)>" 
(↑ OBJ CASE) = akk 
(↑ INF) = ge. 

To account for the constructions where the prefix is 
separated from the verb, there are basically three options 
open to us (in fact one might want to use all of these 
possibilities to account for the whole range of phenomena 
from prefix verbs to idiomatized complements). 

1) We could introduce a feature PREF and identify the 
values of PREF with governable functions in the semantic 
forms of the simple verb. In the V-rule (R11) we intro- 
duce the prefix as PRE annotating it by (↑ (↓ PREF)) = ↓, 
analogously to the treatment of prepositional objects by 
(↑ (↓ PCASE)) = ↓. 

(L17) macht: V, 
(↑ PRED) = "machen < (SUBJ) (OBJ) (AUF PREF) >" 

(L18) auf:     PRE,          (↑ PREF) = AUF PREF 
(↑ PRED) = "auf". 

(L19) aufmacht: V', 
(↑ PRED) = "machen < (SUBJ) (OBJ) (AUF PREF) >"  ' 
(↑ AUF PREF PRED) = "auf". 

(Rll)  V'      - >               [PRE     (↑ (v PREF)) = ↓ 
[ZU      (↑ INF) = zu ] 
[V         ↑ = ↓] 
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The principles of consistency would then take care of all 
the rest. This could be motivated to a certain degree by 
the fact that especially with verbs of movement the prefix 
binds one argument position, that would otherwise be taken 
by an obligatory directional adverbial phrase: 

(26)Er ging weg / hinein / nach Hause ... 
(27)Er warf das Buch weg / hinein / in den Mülleimer ... 

However there is a serious objection to be raised against 
this approach: It is certainly not easy to justify that 
these prefixes should (always) have the same linguistic 
status as SUBJ, OBJ etc., i.e. that prefixes should be 
arguments rather than part of the predicate. Especially in 
the case of clearly lexicalized forms like 'darstellen', 
'übersetzen' it seems rather counterintuitive to assume 
an atomic predicate 'stellen' taking a (quite meaningless) 
argument 'dar', rather than having an atomic predicate 
'darstellen' right away. As mentioned, we do not want to 
rule out this approach right from the start and for all 
complex verbs, however if we go for it, it might put a 
heavy load on (compositional) semantics. 

2) To avoid this drawback we could have a lexical rule, 
that will generate for every complex entry PREF#VERB an 
entry for the verb, which will specify the meaning of the 
whole complex as an atomic predicate in its semantic form, 
as well as an entry for the prefix, which will specify its 
form by means of a FORM-feature: 

(L20) stellt:   V          (↑ PRED) = "darstellen < (SUBJ) (OBJ) >" 
(↑ FORM) =c dar 

                                   ... 
(L21) dar:    PRE,      (↑ FORM) = dar. 

This solution however requires that simple verb forms that 
must not cooccur with a prefix must be assigned a negative 
constraint: 

(28) *Er liest das Buch dar. 

(L22) liest:    V,         (↑ PRED) = "lesen < (SUBJ) (OBJ) >" 
                                   -(↑ FORM) 
                                    ... 

3) The third possibility may look strange at first sight, 
but might be the most adequate solution from a linguistic 
point    of      view.      If   we   look   at   coordinate    structures    like 
(29) they suggest,  that it is actually the prefix that 
'carries the semantic information' : 

(29) Peter macht die Türe auf und das Fenster zu. 

If 'macht' in these cases is assigned a predicate 
'aufmachen' or 'zumachen' we would have to introduce the 
complementary predicate by means of some coordination 
rule. However if we allow this we may also get two 
predicates ('ansehen' and 'sehen') in cases like (30) 
(which in 'my idiolect' is clearly out in a serious, non- 
punning context) 

(30) Peter sieht die Frau und das Auto an. 

The solution we have decided on therefore is to annotate 
the PRED-entry at the prefix and conversely a FORM-feature 
at the verb besides the respective TENSE and AGR-features: 

(L23) dar:   PRE,       (↑ PRED) = "darstellen < (SUBJ) (OBJ) >" 
(↑ FORM) =c stellen. 

(L24) stellt:   V,       {/(↑ PRED) = "stellen < ...>" 
/(↑ FORM) = stellen / 
(↑TENSE) = present 

In case the 'wrong' disjunct were chosen (i.e. if there 
were a FORM feature without an appropriate prefix being 
present or conversely two PRED's), the f-structures would 
be rejected as ill-formed. (Note that this solution does 
not involve any additional rule schemata beyond those 
required also in the second solution.) 

To incorporate this solution in the S-rule we have to 
spell out some of the permissible combinations within V : 
As the V rule should always derive a V-constituent if it 
is non-finite [fn.8], we have to spell out at least some 
of the possible combinations in the clause final position 
immediately dominated by S: a) PRE, b) PRE + V, c) V, 
d) 0. 
The cases b)/c) will be covered by the V'-rule (R10) as it 
stands. To capture a) and d) we simply modify the S-rule 
(R8) notating an alternative option PRE or an optional V': 

(R12)    S       - >                   NP*   (↑ XCOMP* G) = ↓ 
[V"   (↑ XCOMP) = ↓ ] 
(/[V    ↑ = v 

- (^ FORM)] 
/P      ↑ = ↓/). 

(The negative constraint on the form feature will prevent 
a verb with FORM from being inserted in the clause final 
position next to a verb in V-initial position.) 

HI. GENERATION 

III.1. GENERAL REMARKS ON THE DESIGN 

The algorithm for the generator-compiler constructs a 
generator for an arbitrary given LFG G. The generator is 
simply a recognizer for the set of (well-formed) 
f-structures of G. If it accepts an input structure, it 
builds up terminal strings as control structures. The set 
of control structures constructed for an input structure 
is exactly the set of all sentences of the language which 
have this structure as f-structure. Thus for each LFG the 
algorithm specifies a computable (binary) generability 
relation for which it is provable that a terminal string x 
is generable from a structure f iff x is derivable in G 
with f-structure f [fn.10). A language recognizer defines 
the relation between the set of terminal strings and the 
set of DAGs over the grammars functional vocabulary which 
is the inverse of the corresponding generator. 

The generation process is based on the monostratal 
conception of derivation for LFGs. The structures of these 
monostratal derivations are partial f-structures augmented 
by additional information about derived symbols and their 
linear order. The concept of monostratal derivation is 
strengthened for generation in such a way that derivations 
are directed by an input f-structure. This structure- 
driven derivation forms a simple top-down recognition 
procedure of f-structures which has the properties 
enumerated in the first paragraph. 

In the rest of this section, monostratal derivation and 
the generator construction algorithm will be described 
informally. For a more detailed and formally more explicit 
description see [17],[18]. 

-204- 



III.2. MONOSTRATAL DERIVATION 

For the class of LFGs fulfilling the conditions expressed 
by the contemporary version of the theory (cf. besides [9] 
especially [10]) it is possible to define an algorithm for 
the construction of equivalent monostratal variants. 

According to the usual multistratal version (cf. [9]) a 
terminal string x is regarded as well-formed iff it 
satisfies the following conditions: 

i. There is a c-structure for x that can be derived by the 
context-free base of the grammar. 

ii. There is an f-structure d and a mapping f from the set 
of nodes of c to the set of subDAGs of d such that d is 
the only minimal f-structure that satisfies the 
annotations associated with the c-structure nodes. (The f- 
description solution algorithm constructs f and d.) 

iii. All constraints in the f-description are satisfied 
by d. 

iv. d  is  complete  and  coherent. 

In the Kaplan/Bresnan version a derivation of an annotated 
c-structure is a sequence of annotated c-structures, 
where, except for the initial structure, each annotated 
c-structure results from the application of an annotated 
context-free rule to a terminal node of the preceding 
structure. A rule introduces an annotated c-structure. The 
start structure for the derivation of well-formed strings 
is an S-labelled node annotated with 'V. If one applies 
the f-description solution algorithm to those annotated 
c-structures, it constructs in each successful case the 
only minimal partial f-structure and a mapping from the 
c-structure nodes to the substructures of the partial 
f-structure. The figure below shows as examples the results 
of the application of the algorithm to the start entity 
and a c-structure introduced by a rule [fn.11]: 

 

The string of such an augmented structure is the set of 
all integer labelled edges, [fn.13] 

A  structure s'a  that is directly derivable from a 
structure sa

  by a rule ra has to be equal to a structure 
which results from sa 
(i.) by a replacement with respect to the underlying 
string and 
(ii.) by an extension with respect to the underlying 
f-structure. 

A structure s'a
 is directly derivable from a structure sa

 
 

by a rule ra iff 

I. the lefthand variable of the rule equals a variable of 
an integer labelled edge of sa

  . 

If we assume that we have derived the structure (sa
 ) 

which is introduced by the rule given above, this 
condition is met by the rule 

  

 

If one represents strings as sequences in the set 
theoretical sense the corresponding augmented f-structures 
are easily constructable: The occurrences (ordered pairs) 
of the string represented by the labelled terminal nodes 
of a c-structure tree are attached as additional labelled 
edges to the startnodes of those substructures of the 
partial f-structure to which the corresponding c-structure 
nodes are mapped. For the examples given above one will 
obtain the following entities (notationally these con- 
structed augmented structures and rules are denotated by 
symbols with a lower a-index) [fn.12] 

 
whose lefthand variable equals the variable of the <2,VP> 
edge. As the string of the derived DAG has to be the 
result of the replacement of (<1,VP>,<2,V>) for the second 
occurrence in the string of sa

 (<2,VP>), one has to 
construct from sa and the structure introduced by ra new 
structures ( R(s ) , R(p2(ra))) whose integer labelled 
edges represent together the result of the replacement 
((<1,NP>,<2,VP>,<3,V>,<4,VP'»); i.e. 

R(p2(ra)) equals the structure introduced by ra 

except that the integer labels of the edges are increased 
depending on the index of the edge the rule has to be 
applied to, and 

R(sa)equals sa
 with the exception that i. the edge to 

which the rule has to be applied is eliminated in R(sa) 
and ii. the labels of the edges which correspond to the 
right context of the substituted occurrence in Sa are 
increased in R(sa) depending on the length of the string 
of the structure introduced by ra . 
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The second defining condition 
is then: 
II. s'a

 equals the minimal 
extension of R(sa) which 
results from the unification 
of R(p2(ra)) with the subDAG 
of R(sa)  to which the 
removed edge was attached. 

If one defines the derivability concepts along the usual 
way, the language of an LFG is defined as the set of all 
terminal strings of those structures that are 
- derivable from the start entity 
- complete and coherent and 
- fulfill all constraints. 

III.3. GENERATION AS F-STRUCTURE-DRIVEN 
DERIVATION 

As mentioned above, the generator constructed for an LFG 
accepts the set of f-structures of that LFG. Thus one can 
use an arbitrary superset of the set of f-structures as 
possible input-set. To exclude right from the start those 
structures as possible input which cannot fulfill some 
directly decidable necessary conditions for wellformed- 
ness, one can restrict the input-set. The following 
conditions for DAGs over the functional vocabulary of an 
LFG seem to express the most natural restriction: 

- nonterminal edges are labelled with  complex-valued 
features  (grammatical functions), 

- terminal edges are labelled with atomic-valued features 
whose values are in the range respectively assigned 
to them (e.g. CASE cannot have the value SG), 

- the structure is complete and coherent. 

To start the derivation over an input structure in the 
sense described above, it is necessary to attach the <1,S> 
edge to the startnode of this DAG. The following condit- 
ions ensure that a terminal string is derivable iff it has 
the input structure as its f-structure: 

COHerence: The structure is not expanded by the rule 
applications except by additional integer labelled edges . 

COMpleteness: Every function and every atomic feature 
value pair of the structure (and its substructures) are 
introduced by the rule applications. [fn.14] 

In order to check the COM-condition we introduce for each 
function and each atomic feature value pair a special 
existential feature. (e.g. OBJ - > OBJ CASE=NOM - > 
CASENOM ) Each subDAG of an input structure is thus 
expanded by the empty-set-valued existential features for 
its atomic feature-value pairs and complex-valued features 
(functions). The start structures constructed by this 
extension from input structures are denotated by symbols 
which are indexed by an additional upper empty-set sign 
(to indicate the additional empty-set valued features). 
Given    for   example   the   following   input    (f-)   structure   s   for 

the sentence with the c-structure tree, given below, the 
constructed start entity s is (represented as DAG) the 
following structure: (for the sake of clarity it is 
slightly simplified). 

If the rules are augmented analogously with '+ - valued' 
existential features, the control of the COM-condition 
becomes a check on the non-emptiness of the existential 
feature values of the derived structure. The generator 
rules which are constructed from augmented rules are 
denotated by symbols with an upper '+' index. The 
generator rule constructed from the rule, given above, 
together with its (explicitly stated) constraint set is 
the following [fn.15]: 
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Depending on the method for checking the COM-condition 
different ways to define the concept of direct 
generability are possible. Below we give the simplest (and 
least efficient) possibility. It simply amounts to 
ignoring the check during the derivation and integrating 
it as postponed filter in the definiens of generability 
[fn.16]. 

A structure s'a is directly generable from a structure 
sa

  by a generator rule ra+ iff 
I. The lefthand variable of the rule equals a variable of 
an integer labelled edge of sa . 
II. The substructure to which this edge is attached to is 
an extension of the functional structure underlying the 
structure introduced by the rule. 

The underlying structure results from cutting off all 
integer labelled edges from the structure introduced by 
r a(!). This condition ensures the COHerence. 

III. The substructure to which this edge is attached, 
satisfies all constraints expressed by the rule. 

Since the structures of a generation process are complete- 
ly specified with respect to the underlying functional 
structure it is possible to check the constraints 
expressed by the rules in tandem with the generation. 

IV. s'a
  equals the minimal extension of R(sa) which 

results from the unification of  R(p2(ra+))   with the 
subDAG of R(sa ) to which the removed edge was attached. 

The S-rule is applicable to the start edge of s
s (I.), 

because s is an extension of the partial f-structure 
underlying "the structure introduced by the rule (II.; 
indicated by bold edges) and s satisfies the constraint 
set of the rule (III.). The new DAG in this case simply 
equals the unification of the structure introduced by the 
rule with sø

a  after having removed the start edge of sø
a . 

 

 
To define the generability relation, we have to take into 
account that COMpleteness is ensured iff no attribute of 
the derived structure and its substructures is empty-set- 
valued. 

A terminal string x is generable from a structure f iff x 
is the string of a structure d, which is generable from 
the start structure  fø

a , and the feature values of each 
substructure of d are anon-empty. 

A structure with a terminal string meeting the COM- 
condition which is derived from sø

a  is then [fn.17] 
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[fn.l] In case this hypothesis should be falsified, there 
are algorithms to construct from f-structures semantic 
representations (DRSs) that could be used as additional 
source for the transfer, (cf. [5], [15]) 

[fn.2] For a more detailed description of the compiler 
see [3], [4]. 

[fn.3] For more detailed descriptions and discussions see 
[6], [7], [13], [14]. 
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The application of the constructed NP generation rule (cf.
c-structure above) 

to the <1,NP> edge results in the following structure: 



[fn.4] We prefer C over Comp in this case to avoid any 
confusion with the function name COMP. C may actually 
still be a rather misleading name, suggesting that this 
position always has to contain a complementizer or con- 
junction. Unfortunately German is a rather exotic language 
in this respect, exhibiting a complementary distribution 
of the finite verb and genuine complementizers in this 
position. Other names have been suggested like CONFL com- 
prising COMP and INFL, however as this notational idiosyn- 
crasy has little consequences on the actual f-structures 
we will just stick to C for the moment, i.e. it should be 
kept in mind that we do not consider C as a lexical cate- 
gory but rather as a structural position. 

[fn.5] The format of the rules given below follows 
basically the notation in [2] with some minor differences: 
(/ a / b /.../} indicates a disjunction of (sets of) 
functional schemata a, b, . . . ; square brackets [ ] are used 
to notate optionality of a constituent. 

[fn.6] We carefully note, but ignore for the moment, that 
genitive phrases in prespecifying position do not always 
fulfill a POSSessive function. It should also be mentioned 
that POSS is a function that has to be covered by the 
extended coherence condition. 

[fn.7] V in fact should be seen as a way of expressing 
that verbs may be complex lexical categories. Another way 
of expressing this, would be to treat all verbforms as V 
and the complex verbs as being built up by a Pref + sub- 
lexical category V-l, 

[fn.8] Of course one could take an entirely different 
approach and try to derive all prefix verbs on the 
syntactic level. There are several arguments against this: 
T. HOEHLE has pointed out that there are some complex 
forms like 'urauffuehren', 'auferstehen' which clearly 
follow the pattern of separable prefix verbs, but are very 
resistant to being broken up into PREF and V: They are 
perfectly fine when inserted in a clause final position, 
but won't agree to an analysis into PREF and V which would 
be the prerequisite for a verb-initial construction: 

(1)als sie das Drama urauffuehrten, ... 
(2)weil sie das Drama uraufzufuehren haben, .. . 
(3)?/*Sie fuehrten das Drama urauf 
(4)*Sie auffuehrten das Drama ur 

Similarly (cf [8]) it seems, that non-finite prefix verbs 
behave as if they were one single constituent on the 
syntactic level. Although the 'Vorfeld' position in V- 
second clauses may be taken by simple non-finite verbs, 
this verb must not be fronted, if it leaves a prefix 
behind: 

(5)Küssen           will er die Studentin. 
(6)Darstellen      will er das Problem. 
(7)*Stellen          will er das Problem dar. 
(8)*Dar               will er das Problem stellen. 

[fn.9] This is mainly due to our treatment of 
extraposition, which we do not want to elaborate upon 
here. 

[fn.10] The provability of this statement implies that we 
departed from a strong adequacy condition for the 
generator. Thus the structural transfer can be built up 
more universally, i.e. for classes of languages rather 
than for a given target language. Suppose one has (for 
example) structural transfer rules to capture 
morphological as well as periphrastical tenses, then a 
wrong choice among the transfer rules causes backtracking 
since the input structure of the generator is not well- 
formed. 

[fn.ll] The examples are from the grammar presented in 
[11]. 

[fn.12] The augmented rules are actually triples 
consisting of a variable, an augmented structure and a set 
of constraints. The treatment of the constraints will be 
dealt with only with respect to generation. The treatment 
of sets is omitted here for the sake of simplicity. 

[fn.13] Since even in a graph theoretical reconstruction 
the atomic feature-values and symbols of the vocabulary 
have not to be represented as labelled terminal nodes, the 
feature and integer labelled edges are (together with 
their values) conceived as ordered pairs. 

[fn.14] As these conditions are in some sense extended 
completeness and coherence conditions, normally expressed 
by a predicate's subcategorization frame, they are named 
identically here. 

[fn.15] There are several possibilities to encode the 
constraints in such a way that the third rule component 
becomes superfluous. Since this rather complicates an 
informal description of the basic principles, we dispense 
with this here (cf. [18]). 

[fn.16] For more efficient methods cf [18]. 

[fn.17] If two paths of the input f-structure converge on 
the same node 

 

they have to be generated in exactly the same way by (a 
control schema) of a rule. This is a consequence of the 
fact, that on such paths only functions can occur, whose 
f-structures contain PRED features. If the generation 
rules produced these paths leading to different nodes and 
if the nodes were identified by the unification with the 
input structure, then the generation would fail as soon as 
the PRED's for the f-structures designated by the two 
paths are generated, because two instances of the feature 
PRED are not unifiable. 
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