
[International Conference on the State of Machine Translation in Аmerica, Asia and Europe.
Proceedings of IAI-MT86, 20-22 August 1986, Bürgerhaus, Dudweiler]

An LFG-based Approach To Machine Translation

Klaus Netter / Juergen Wedekind
Department of Linguistics

University of Stuttgart
West Germany

I.1. PRELIMINARY REMARKS*

The project's goal is to integrate results of recent
research in the fields of theoretical linguistics and
computer science. In this way we aim to develop a system
for machine translation by a methodologically sound
procedure and to fulfill two conditions of adequacy:

(i) The system should be based on a well-established
linguistic theory that includes a clearly defined grammar
formalism. (The format of the grammatical theory is of
overall importance insofar as all components of the system
intrinsically depend on the type of grammar chosen.)

(ii) With the exception of language particular descriptive
components (grammars, transfer rules), the components of
the system should be suitable for universal application,
i.e., usable by any grammar of the chosen type. Conversely
the (language-dependent) components may serve as input to
any component compatible with the given formalism.

The decision to design our system on the basis of these
conditions was motivated by several theoretical as well as
practical considerations:

1) The obvious advantages of 'buying' a well-established
(and well-specified) grammatical theory 'off the shelf’:
It can be assumed to have been tested sufficiently for
practical application, and to have been examined with
respect to its most fundamental formal properties (e.g.
decidability). This saves on the preliminary basic
research, always necessary to establish the fundamental
practicability and feasibility of a new formalism.

2) Not only can one exploit results of previous research,
but also the accessibility of project work makes possible
innovational feedback from other scientists working in the
same paradigm. Indirectly this increases the number of
collaborators.

3) Since the development of algorithms for the various
components is meant to yield general theoretical insights,
the system's components should be independent of the
actual application domain. Consequently the various compo-
nents can be used where ever grammars of the chosen type
are applied. This guarantees a certain projectability of
research results.

4) A clearly defined linguistic formalism permits one to
develop the grammatical and the computational components
independently and therefore in parallel, which facilitates
inter-disciplinary cooperation of theoretical linguists
and computer scientists. Neither linguists nor computer
scientists have to wait for each other's research results.
Nor do linguists and computer scientists have to re-
discover results well-known to the experts in the alien
discipline.

The choice of LFG as grammatical theory was motivated by
the following considerations:

a) LFGs are decidable and generate a superset of the class
of context-free languages. This guarantees practical

applicability and certainly provides enough expressive
power for describing natural languages.

b) The theory was developed by linguists. Consequently one
can expect, that it provides enough heuristics for the
empirical application by theoretical linguists. The form-
alism is sufficiently explicit to be applied by computer
scientists.

c) The control-structure (functional- or f-structure)
built up by an LFG for each sentence of a language seems
to contain enough syntactic as well as semantic
information about the sentence to translate it adequately
on a context independent, sentence-by-sentence basis using
systematic rules. Such a translation system will
inherently have an upper limit on the quality of
translation.

The working hypothesis in c) receives support from the
fact, that a purely semantic representation, reducing the
sentence to its truth conditions, is too weak on the one
hand -- as one might like to draw on information about
the syntactic form of the source expression (e.g. passive,
relative clauses, topic/ focus structure, etc.) -- and too
strong on the other hand as ambiguities of scope that are
not reflected in the surface string will normally not have
to be taken into consideration. [fn.l]

I.2. STRUCTURE AND STATE OF DEVELOPMENT OF THE
SYSTEM

In the following we give a short survey on the structure
and components of the system as well as the time schedule
for its development. (Two of these components will be
introduced in more detail in the later chapters.)

A. Linguistic Input

- Gg (German grammar), under development since April 1985,
(cf. III.)

- Fg (French grammar), under development since April 1985
- TR (Transfer rules):

- lexical TR , under development since April 1985,
- structural TR, second phase from 1987 onwards

B. System Components
- PC (parser compiler), existing for top-down parsing,

under development for bottom-up parsing. [fn.2]
- GC (generator compiler), existing algorithm (cf. IV.),
implementation under development.
- TC (transfer automaton compiler) second phase of project

Adequacy condition I.(ii) above can be elaborated for the
language independent components as follows:

It should be provable for the construction algorithms on
which PC and GC are based that for any LFG the constructed
- (PC) parser accepts an input string s by building up an
f-structure f iff
- (GC) generator accepts an input f-structure f by
building up a terminal string s iff

s is element of the language and has the f-structure f.

-199-

II. THE FRAGMENT OF GERMAN GRAMMAR

This section will give a short survey of the fragment
currently covered by the German grammar and will describe
some parts of it in more detail.
The German grammar contains descriptions for the following
structures and phenomena:

1) Sentence type and sentence mood
2) Position of the finite verb and separable verb prefixes
3) Infinitival constructions
4) Periphrastic tense forms and passives
5) Extraposition phenomena
6) Free word order of NP- and PP-complements

In section II.1. we give a rough sketch of some differen-
ces between the version of LFG we use and the one given in
[9] . Since much of the grammar has or will be documented
elsewhere ([11], [12]) we will concentrate in the sections
II.2. and II.3. on the points mentioned under 1) and 2).

II.1. DIFFERENCES TO THE STANDARD VERSION OF LFG

In the following we will sketch some of the relevant
differences between the traditional KB version of LFG and
the one used in our system. This version of LFG differs
from the one given in [9] with respect to the treatment of
1) unbounded dependencies and 2) non-configurational
encoding.

1) In [9] unbounded dependencies were captured by a
mechanism called constituent control. The long distance
identification of the controlling and the controlled f-
structure was established by bounded domination meta-
variables properly annotated to the righthand sides of the
rules. Thus it was possible to express an infinite number
of different controller-controllee linkages, if a recurs-
ive category from which the controlee was derivable was
reachable from the domain root.

The new treatment of unbounded dependencies expresses
these possible linkages by means of regular expressions
over the functional vocabulary. An annotated regular
expression denotes all f-structure paths which can link
the controlling and controlled f-structure. Both
mechanisms are closely related since one can indicate for
a given controller-controllee pair a regular expression
that denotes all f-structure paths which can link the
controller and controllee in derivations of c-structures
containing the controllee, from the root node of the
controller. As a regular expression denotes paths that are
generable using a regular grammar with annotated unary
rules, an additional condition has to ensure that the set
of paths consistent with the f-structure is not infinite,
if the functions are not governable functions (ADJ.etc.).
(In the old version this is guaranteed, as unary recursive
categories are excluded such that a recursively derived
iteration of ungoverned functions has to become apparent
in the surface string.)

In [10] the coherence condition of [9] is modified to an
'extended coherence condition' which covers the set of
nuclear functions. The nuclear functions are the govern-
able functions plus ADJ and XADJ, which are all together
the functions the regular expressions are formulated over.
For the ungovernable functions among the nuclear functions
the extension of the coherence condition says the follow-
ing: each of these functions has to be element of an
f-structure with a PRED attribute. Thus the length of a
path which is element of the set denoted by a regular
expression is bounded by the length of the string.

2) We have introduced variables to dispense with disjunct-
ions for the non-configurational encoding of grammatical
functions (cf. [16]).

The principle of non-configurational encoding is to anno-
tate disjunctions of pairs of function assigning and
feature assigning equations. The disjuncts have the form
< (↑G) = ↓, (↓ F) = v > (cf [1]). Which function of the
disjunction is selected, depends on the value of the
feature F. Each disjunction can be assigned bijectively a
variable ranging over the set of functions of the dis-
junction. Each function in the range is assigned the
feature-assigning equation (in a more general version a
partial f-structure) which selects the function the
variable is instantiated by.

Thus it is possible to store the range and the feature
assigning equations for the variables independent from the
lexicon and the rule system and to instantiate the
variables as soon as the f-structure information necessary
for the instantiation is available. This reduces the
amount of backtracking and makes the rule system a little
bit clearer.

II.2. SENTENCE MOOD AND SENTENCE TYPE

The underlying idea in our treatment of sentence mood and
sentence type follows the assumption that (in German)
these two features are basically determined by a sentence
initial structural position.

We will distinguish between sentence S-MOOD (ranging over
feature values like interrogative, assertive etc.) and
sentence S-TYPE (with values like subordinate, relative
etc.). We hypothesize that in a theory like LFG, where no
use is made of information about categorial distinctions
in the subcategorization frames of lexical items, both
features will be necessary to characterize a clause
sufficiently. Take for example verbs like 'behaupten' vs.
'fragen': Both may take finite structures as complements,

-200-

however the first will accept any sentence that may be
characterized as assertive, whereas the latter is
sensitive to the distinction between (possible) main
clause vs. subordinate clause (see below).
To cover at least some of the relevant data of
subordination and sentence mood one has to account for the
fact that
- main clauses in German may be introduced by structures
like:
(a) XP + Vfin (assertive / declaratives)
(b) XP + Vfin (Wh-interrogatives, the XP has to

contain a interrogative pronoun)
 (c) Vfin (Yes/No interrogatives)
- subordinate clauses follow the patterns:
(d) CONJ (conjunctive clauses)
(e) XP (relative clauses, the relative

pronoun has to agree with the noun
the relative clause refers to and
subordinate interrogatives)

(f) XP + Vfin (assertive subordinate clauses)
These structures are illustrated by the following
sentences and clauses (C and S are two categories into
which we divide these sentences, see below):

C S (-VP)
(1)Der Mann hat das Buch gelesen. (a)
(2)Das Buch hat der Mann gelesen.
(3)Wer hat das Buch gelesen? (b)
(4) Hat der Mann das Buch gelesen? (c)
(5) daß der Mann das Buch gelesen hat. (d)
(6) der das Buch gelesen hat. (e)
(7) wer das Buch gelesen hat. (e)

 C S
(8)die Behauptung, daß/*ob er das Buch gelesen habe
(9)die Behauptung, er habe das Buch gelesen
(10) die Frage, *daß / ob er das Buch gelesen hat,
(11) die Frage, wer/*der das Buch gelesen hat,
(12) die Frage, *hat er das Buch gelesen, ...
(13) der Mann, *wer / der das Buch gelesen hat.
The sentences (8)-(13) exemplify that in German certain
lexical items are compatible only with specific con-
junctions; also, (similar to English) there are lexical
items that permit assertive main clause structures as
subordinate clauses but not interrogative structures like
(12). As an additional complication German distinguishes
between d_relative pronouns and w_pronouns, the latter
being used in free relative clauses and subordinate
interrogative clauses. [fn.3]

To capture these regularities we make the following
assumptions:
- All finite clauses are categorized as S'
- S' dominates a category which we call C [fn.4] and a
category S
- The category S in German is equivalent to VP. It may or
nay not contain the SUBJect NP. Also it may or may not
contain the finite verb.
- C may be expanded further or it may immediately dominate
a terminal symbol (conjunction)

Irrespective of the theoretical status or value of these
assumptions is, it should be obvious that this subdivision
of sentences permits to isolate a structural position C
which is subject to much variation from a structure S
which can be shown to be independent of this variation.

The start rule for the grammar is then (Rl) [fn.5]
(Rl) S' - > C ↑ = ↓

(↑ TENSE)
[S ↑ = ↓]

Since we assume only finite sentences to have a C con-
stituent, this symbol is assigned an existential con-
straint requiring the sentence to have a verbal head that
contains a value for TENSE. The trivial equation assigned
to C may be justified for two reasons: On the one hand C
may contain the functional head of the sentence, the
finite verb, on the other hand (as long as one doesn't
assume that conjunctions are subcategorized for sentential
complements) this rule permits to isolate a structural
position without affecting the corresponding f-structures.

The category C could then be expanded as follows:
We do not make a strict distinction between lexical
categories and syntactic categories, in the sense of
deriving lexical items only from lexical categories. In
theory it thus becomes possible to access the lexicon from
any non-terminal symbol. Our LFG system, which is built
along this line, thus provides a very simple way of making
sure that conjunctions like 'daß' (that), 'ob' (whether)
will always appear in a complementary distribution with
the finite verb by categorizing them as C right away:

(L1) daß: C, (↑ S-TYPE) - subordinate

(↑ S-MOOD) - assertive
(L2) ob: C, (↑ S-TYPE) - subordinate

(↑ S-MOOD) - interrogative
For relative clauses and subordinate clauses introduced by
a w_constituent, we have to expand C to an NP. Suppose
we have NP-rules like (R2)/(R3) which will derive express-
ions like 'der Mann' or 'Peters Vaters Hut': [fn.6]

(R2) NP -> DET ↑ = ↓

N' ↑ = ↓
(R3) NP -> NP (↑ POSS) = ↓

 (↓ CASE) = genitive
N' ↑ = ↓

Relative and interrogative pronouns like 'der', 'wer'
(who), 'dessen', 'wessen' (whose) in these constructions
always have to be exhaustively dominated by an NP-node.
(This node can be the highest NP-node itself or a possess-
ive NP at the lowest level of embedding.) Assigning
to these pronouns the category NP will consequently yield
the desired results in connection with rule (R4):

(L3) wer: NP, (↑ PRED) = "pro"
(↑ WH) = qu
(↑ AGR NUMBER) = sing
(↑ CASE) = nom.

(L4) der: NP, (↑ PRED) = "pro"
 (↑ WH) = rel

 (↑ AGR NUMBER) = sing
 (↑ AGR GENDER) = masc
 (↑ CASE) = nom.

(L5) dessen: NP, (↑ PRED) = "pro"
 …

(↑ CASE) = genitive.

(The feature AGReement seems to be useful to subsume a
bundle of features like Number, Gender and Person;
although complex-valued,AGR is not to be interpreted as a
function.)

-201-

(R4) C -> NP (↑ XCOMP* G) = ↓
(/(↑ QU-POCUS) = (↓ POSS*)
 (↑ QU-POCUS WH) =c qu
 (↑ S-MOOD) = interrogative
 (↑ S-TYPE) = subordinate
 /(↑ TOPIC) = (↓ POSS*)
 (↑ TOPIC WH) =c rel)
 (↑ S-TYPE) = relative /).

The first functional schema annotated at the NP in (R4)
will have the effect that this constituent is analyzed as
a governable function contained in the range of the
variable G, and as representing the argument of a verb,
which may be arbitrarily deep embedded in an f-structure
that can be reached along a path containing any number n
of XCOMPs. The relative pronoun 'dem' in (14) is the OBJ2
of the embedded and extraposed non-finite verb 'schenken':

(14) der Mann, den sie versucht hat, ein Buch zu schenken.

The functional control schema referring to QU-FOCUS and
TOPIC equates the partial f-structure which represents
either the f-structure corresponding to the NP itself or
to a POSS-function within the NP with the value of these
attributes. This attribute will be accessible at the top
level of the sentence's f-structure, which will be
necessary and useful for two reasons: In interrogatives
one would obviously like to know, what the focus of the
question is; in relative clauses one has to guarantee that
the respective relative pronoun agrees with the nominal
head of the NP which this relative clause refers to.
By formulating a constraining equation over these
f-structures, requiring that they (and equally the
corresponding partial f-structure within the NP) will have
a value for WH, we make sure that the NP actually contains
an appropriate pronoun at some unpredictably deep level of
embedding.

Modifying the NP-rule as in (R5) we will obtain for a
string like (15) c-structure (C1) and f-structure (F1).

(R5) NP -> DET ↑ = ↓
N' ↑ = ↓
[S' (↑ RELADJ) = ↓

 (↑ AGR) = (↓ TOPIC AGR)
 (↓ TOPIC WH) =c rel].

(14) der Mann, dessen Hut die Frau gefunden hat.

(15) (C1)

To derive the main clauses (WH-, Y/N-interrogatives and
declaratives) we will expand C in the following way:

(R6) C -> [NP (↑ XCCMP* G) = ↓
(/(↑ S-MOOD) = assertive
 /(↑ QU-FOCUS) = (↓ POSS*)
 (↑ QU-FOCUS WH) =c qu
 (↑ S-MOOD) = interrogative /}]

V ↑ = ↓
(/(↑ S-MOOD) =c assertive
/(↑ S-MOOD) = interrogative /).

The constraining equation at the verb will guarantee, that
it is preceded by a constituent in declarative clauses. In
the other cases either an additional QU-FOCUS will be
contained in the f-structure marking a WH-interrogative
and its focus, or C will exhaustively dominate the verb
indicating (Y/N-)interrogative mood.
Noun and verbs requiring a specific sentential complement
can then be subcategorized accordingly:

(L6) behauptet: V, (↑ PRED) = "behaupt <(SUBJ) (COMP)>"
(T COMP S-MCOD) -c assertive

 …
(L7) Behauptung: N, (↑ PRED) = "behaupt <(SUBJ) (COMP)>"

(↑ COMP S-MOOD) =c assertive
 …
(L8) Frage: N, (↑ PRED) = "frag <(SUBJ) (COMP)>"

(↑ COMP S-MOOD) =c interrogative
(↑ COMP S-TYPE) =c subordinate

 …

The expansion of N' in the NP-rule will then be:

(R7) N' -> N ↑ = ↓
[S' (↑ COMP) = ↓].

and cover the data given in (8) - (13).

-202-

II.3. SEPARABLE VERB-PREFIXES

In section II.2. we assumed, that the finite verb will
always be in a complementary distribution with
subordinative conjunctions and WH-constituents in sub-
ordinate clauses. This means that if the finite verb
cannot be derived within the C-position it has to be
derived where all the other (non-finite) verbforms also
have to be derived: to the right of their respective
arguments in a clause final position (modulo extraposed
constructions):

(16) Er wird das Buch gelesen haben.
(17) daß er das Buch gelesen haben wird.
(18) wer das Buch gelesen haben wird, .. .
(19) daß er das Buch zu lesen haben wird.

One of the interesting phenomenon connected with this
clause-final position are separable verb prefixes:

(20)Er hat das Problem dargestellt .
he has the problem presented.

(21)Daß er das Problem dargestellt hat.
(22)daß er das Problem darzustellen hat.
(23)Er stellt das Problem dar.
(24)Daß er das Problem darstellt.
(25)*Er darstellt das Problem.

Clearly, it is only the finite stem that may occur in a
sentence initial position, in all other cases the verb
occurs together with the prefix, being separated only by
a participle ('ge') or infinitive marker ('zu)'.
(Actually one could interpret this distribution as an
indication that it is not the finite verb itself, but the
finite features that are bound to the C-position. In cases
where this position is not realized by a conjunction,
which would 'expel' the finite features, some
phonological material categorized as V has to 'move' from
its clause-final position to the initial position in order
to take up and phonologically realize these abstract
features.)

In order to account for these data we assume that the
(finite and non-finite) verb forms occurring in the
sentence final position correspond to a higher projection
V of the lexical category V. [fn.7]

As mentioned in II.2. we also assume that this position is
immediately dominated by S and that all non-finite forms
will be derived from a left-branching verb complex:

(R8) S -> NP* (↑ XCOMP* G) = ↓
[V" (↑ XCCMP) = ↓

 [V’ ↑ = ↓].
(R9) V" -> [V" (↑ XCCMP) = ↓]

V ↑ = ↓.

(R10) V -> [ZU (↑ INF) = zu]
v ↑ = ↓.

These rules will work fine with simple verb entries like
the following:

(L9) wird: V, (↑ PRED) = "werden < (XCCMP) > (SUBJ)"
(↑ SUBJ) = (↑ XCOMP SUBJ)
(↑ XCOMP INF) = bare.

(L10) haben: V, (↑ PRED) = "haben < (XCOMP) > (SUBJ)"
(↑ SUBJ) = (↑ XCOMP SUBJ)
{/ (↑ XCOMP INF) = ge
/ (↑ XCOMP INF) = zu /}.

(L11) liest: V, (↑ PRED) = "lesen < (SUBJ) (OBJ) >"
(↑ TENSE) = pres
(↑ SUBJ NUM) = sg
(↑ SUBJ CASE) = nom
(↑ OBJ CASE) = akk.

(L12) lesen: V, (↑ PRED) = "lesen < (SUBJ) (OBJ) >"
 (↑ OBJ CASE) = akk.

(L13) gelesen: V, (↑ PRED) = "lesen <(SUBJ) (OBJ)>"
(↑ OBJ CASE) = akk
(↑ INF) = ge.

To capture the various constructions with separable pre-
fixes, we assume the following: Forms like 'darstellt',
'darzustellen' are categorized as V, i.e. as morpho-
syntactically complex forms. (If we assume that the zu-
infinitive may either be produced by a lexical or by a
syntactic rule, it is more adequate to let forms, that
already incorporate the 'zu'- and 'ge'- infinitival
marker, be exhaustively dominated by V rather than
inserting them under the V nodes as the right sister
of an optional zu-infinitiv marker. If darzustellen were
categorized as V there would be nothing to prevent zu as
cooccurring as its left sister; the two f-schemata 'INF =
zu' would simply be unified.) Most important, categorizing
the finite forms like 'darstellt' as V will automatically
prevent complex forms to be inserted under the C-node in
(R6). [fn.8]

(L14) darstellt: V,
(↑ PRED) = "darstellen <(SUBJ) (OBJ)>"
(↑ TENSE) = pres
(↑ SUBJ NUM) = sg
(↑ SUBJ CASE) = nom
(↑ OBJ CASE) = akk.

(L15) darzustellen: V',
(↑ PRED) = "darstellen <(SUBJ) (OBJ)>"
(↑ OBJ CASE) = akk
(↑ INF) = zu.

(L16) dargestellt: V',
(↑ PRED) = "darstellen <(SUBJ) (OBJ)>"
(↑ OBJ CASE) = akk
(↑ INF) = ge.

To account for the constructions where the prefix is
separated from the verb, there are basically three options
open to us (in fact one might want to use all of these
possibilities to account for the whole range of phenomena
from prefix verbs to idiomatized complements).

1) We could introduce a feature PREF and identify the
values of PREF with governable functions in the semantic
forms of the simple verb. In the V-rule (R11) we intro-
duce the prefix as PRE annotating it by (↑ (↓ PREF)) = ↓,
analogously to the treatment of prepositional objects by
(↑ (↓ PCASE)) = ↓.

(L17) macht: V,
(↑ PRED) = "machen < (SUBJ) (OBJ) (AUF PREF) >"

(L18) auf: PRE, (↑ PREF) = AUF PREF
(↑ PRED) = "auf".

(L19) aufmacht: V',
(↑ PRED) = "machen < (SUBJ) (OBJ) (AUF PREF) >" '
(↑ AUF PREF PRED) = "auf".

(Rll) V' - > [PRE (↑ (v PREF)) = ↓
[ZU (↑ INF) = zu]
[V ↑ = ↓]

-203-

The principles of consistency would then take care of all
the rest. This could be motivated to a certain degree by
the fact that especially with verbs of movement the prefix
binds one argument position, that would otherwise be taken
by an obligatory directional adverbial phrase:

(26)Er ging weg / hinein / nach Hause ...
(27)Er warf das Buch weg / hinein / in den Mülleimer ...

However there is a serious objection to be raised against
this approach: It is certainly not easy to justify that
these prefixes should (always) have the same linguistic
status as SUBJ, OBJ etc., i.e. that prefixes should be
arguments rather than part of the predicate. Especially in
the case of clearly lexicalized forms like 'darstellen',
'übersetzen' it seems rather counterintuitive to assume
an atomic predicate 'stellen' taking a (quite meaningless)
argument 'dar', rather than having an atomic predicate
'darstellen' right away. As mentioned, we do not want to
rule out this approach right from the start and for all
complex verbs, however if we go for it, it might put a
heavy load on (compositional) semantics.

2) To avoid this drawback we could have a lexical rule,
that will generate for every complex entry PREF#VERB an
entry for the verb, which will specify the meaning of the
whole complex as an atomic predicate in its semantic form,
as well as an entry for the prefix, which will specify its
form by means of a FORM-feature:

(L20) stellt: V (↑ PRED) = "darstellen < (SUBJ) (OBJ) >"
(↑ FORM) =c dar

 ...
(L21) dar: PRE, (↑ FORM) = dar.

This solution however requires that simple verb forms that
must not cooccur with a prefix must be assigned a negative
constraint:

(28) *Er liest das Buch dar.

(L22) liest: V, (↑ PRED) = "lesen < (SUBJ) (OBJ) >"
 -(↑ FORM)
 ...

3) The third possibility may look strange at first sight,
but might be the most adequate solution from a linguistic
point of view. If we look at coordinate structures like
(29) they suggest, that it is actually the prefix that
'carries the semantic information' :

(29) Peter macht die Türe auf und das Fenster zu.

If 'macht' in these cases is assigned a predicate
'aufmachen' or 'zumachen' we would have to introduce the
complementary predicate by means of some coordination
rule. However if we allow this we may also get two
predicates ('ansehen' and 'sehen') in cases like (30)
(which in 'my idiolect' is clearly out in a serious, non-
punning context)

(30) Peter sieht die Frau und das Auto an.

The solution we have decided on therefore is to annotate
the PRED-entry at the prefix and conversely a FORM-feature
at the verb besides the respective TENSE and AGR-features:

(L23) dar: PRE, (↑ PRED) = "darstellen < (SUBJ) (OBJ) >"
(↑ FORM) =c stellen.

(L24) stellt: V, {/(↑ PRED) = "stellen < ...>"
/(↑ FORM) = stellen /
(↑TENSE) = present

In case the 'wrong' disjunct were chosen (i.e. if there
were a FORM feature without an appropriate prefix being
present or conversely two PRED's), the f-structures would
be rejected as ill-formed. (Note that this solution does
not involve any additional rule schemata beyond those
required also in the second solution.)

To incorporate this solution in the S-rule we have to
spell out some of the permissible combinations within V :
As the V rule should always derive a V-constituent if it
is non-finite [fn.8], we have to spell out at least some
of the possible combinations in the clause final position
immediately dominated by S: a) PRE, b) PRE + V, c) V,
d) 0.
The cases b)/c) will be covered by the V'-rule (R10) as it
stands. To capture a) and d) we simply modify the S-rule
(R8) notating an alternative option PRE or an optional V':

(R12) S - > NP* (↑ XCOMP* G) = ↓
[V" (↑ XCOMP) = ↓]
(/[V ↑ = v

- (^ FORM)]
/P ↑ = ↓/).

(The negative constraint on the form feature will prevent
a verb with FORM from being inserted in the clause final
position next to a verb in V-initial position.)

HI. GENERATION

III.1. GENERAL REMARKS ON THE DESIGN

The algorithm for the generator-compiler constructs a
generator for an arbitrary given LFG G. The generator is
simply a recognizer for the set of (well-formed)
f-structures of G. If it accepts an input structure, it
builds up terminal strings as control structures. The set
of control structures constructed for an input structure
is exactly the set of all sentences of the language which
have this structure as f-structure. Thus for each LFG the
algorithm specifies a computable (binary) generability
relation for which it is provable that a terminal string x
is generable from a structure f iff x is derivable in G
with f-structure f [fn.10). A language recognizer defines
the relation between the set of terminal strings and the
set of DAGs over the grammars functional vocabulary which
is the inverse of the corresponding generator.

The generation process is based on the monostratal
conception of derivation for LFGs. The structures of these
monostratal derivations are partial f-structures augmented
by additional information about derived symbols and their
linear order. The concept of monostratal derivation is
strengthened for generation in such a way that derivations
are directed by an input f-structure. This structure-
driven derivation forms a simple top-down recognition
procedure of f-structures which has the properties
enumerated in the first paragraph.

In the rest of this section, monostratal derivation and
the generator construction algorithm will be described
informally. For a more detailed and formally more explicit
description see [17],[18].

-204-

III.2. MONOSTRATAL DERIVATION

For the class of LFGs fulfilling the conditions expressed
by the contemporary version of the theory (cf. besides [9]
especially [10]) it is possible to define an algorithm for
the construction of equivalent monostratal variants.

According to the usual multistratal version (cf. [9]) a
terminal string x is regarded as well-formed iff it
satisfies the following conditions:

i. There is a c-structure for x that can be derived by the
context-free base of the grammar.

ii. There is an f-structure d and a mapping f from the set
of nodes of c to the set of subDAGs of d such that d is
the only minimal f-structure that satisfies the
annotations associated with the c-structure nodes. (The f-
description solution algorithm constructs f and d.)

iii. All constraints in the f-description are satisfied
by d.

iv. d is complete and coherent.

In the Kaplan/Bresnan version a derivation of an annotated
c-structure is a sequence of annotated c-structures,
where, except for the initial structure, each annotated
c-structure results from the application of an annotated
context-free rule to a terminal node of the preceding
structure. A rule introduces an annotated c-structure. The
start structure for the derivation of well-formed strings
is an S-labelled node annotated with 'V. If one applies
the f-description solution algorithm to those annotated
c-structures, it constructs in each successful case the
only minimal partial f-structure and a mapping from the
c-structure nodes to the substructures of the partial
f-structure. The figure below shows as examples the results
of the application of the algorithm to the start entity
and a c-structure introduced by a rule [fn.11]:

The string of such an augmented structure is the set of
all integer labelled edges, [fn.13]

A structure s'a that is directly derivable from a
structure sa

 by a rule ra has to be equal to a structure
which results from sa
(i.) by a replacement with respect to the underlying
string and
(ii.) by an extension with respect to the underlying
f-structure.

A structure s'a
 is directly derivable from a structure sa

by a rule ra iff

I. the lefthand variable of the rule equals a variable of
an integer labelled edge of sa

 .

If we assume that we have derived the structure (sa
)

which is introduced by the rule given above, this
condition is met by the rule

If one represents strings as sequences in the set
theoretical sense the corresponding augmented f-structures
are easily constructable: The occurrences (ordered pairs)
of the string represented by the labelled terminal nodes
of a c-structure tree are attached as additional labelled
edges to the startnodes of those substructures of the
partial f-structure to which the corresponding c-structure
nodes are mapped. For the examples given above one will
obtain the following entities (notationally these con-
structed augmented structures and rules are denotated by
symbols with a lower a-index) [fn.12]

whose lefthand variable equals the variable of the <2,VP>
edge. As the string of the derived DAG has to be the
result of the replacement of (<1,VP>,<2,V>) for the second
occurrence in the string of sa

 (<2,VP>), one has to
construct from sa and the structure introduced by ra new
structures (R(s) , R(p2(ra))) whose integer labelled
edges represent together the result of the replacement
((<1,NP>,<2,VP>,<3,V>,<4,VP'»); i.e.

R(p2(ra)) equals the structure introduced by ra

except that the integer labels of the edges are increased
depending on the index of the edge the rule has to be
applied to, and

R(sa)equals sa
 with the exception that i. the edge to

which the rule has to be applied is eliminated in R(sa)
and ii. the labels of the edges which correspond to the
right context of the substituted occurrence in Sa are
increased in R(sa) depending on the length of the string
of the structure introduced by ra .

-205-

The second defining condition
is then:
II. s'a

 equals the minimal
extension of R(sa) which
results from the unification
of R(p2(ra)) with the subDAG
of R(sa) to which the
removed edge was attached.

If one defines the derivability concepts along the usual
way, the language of an LFG is defined as the set of all
terminal strings of those structures that are
- derivable from the start entity
- complete and coherent and
- fulfill all constraints.

III.3. GENERATION AS F-STRUCTURE-DRIVEN
DERIVATION

As mentioned above, the generator constructed for an LFG
accepts the set of f-structures of that LFG. Thus one can
use an arbitrary superset of the set of f-structures as
possible input-set. To exclude right from the start those
structures as possible input which cannot fulfill some
directly decidable necessary conditions for wellformed-
ness, one can restrict the input-set. The following
conditions for DAGs over the functional vocabulary of an
LFG seem to express the most natural restriction:

- nonterminal edges are labelled with complex-valued
features (grammatical functions),

- terminal edges are labelled with atomic-valued features
whose values are in the range respectively assigned
to them (e.g. CASE cannot have the value SG),

- the structure is complete and coherent.

To start the derivation over an input structure in the
sense described above, it is necessary to attach the <1,S>
edge to the startnode of this DAG. The following condit-
ions ensure that a terminal string is derivable iff it has
the input structure as its f-structure:

COHerence: The structure is not expanded by the rule
applications except by additional integer labelled edges .

COMpleteness: Every function and every atomic feature
value pair of the structure (and its substructures) are
introduced by the rule applications. [fn.14]

In order to check the COM-condition we introduce for each
function and each atomic feature value pair a special
existential feature. (e.g. OBJ - > OBJ CASE=NOM - >
CASENOM) Each subDAG of an input structure is thus
expanded by the empty-set-valued existential features for
its atomic feature-value pairs and complex-valued features
(functions). The start structures constructed by this
extension from input structures are denotated by symbols
which are indexed by an additional upper empty-set sign
(to indicate the additional empty-set valued features).
Given for example the following input (f-) structure s for

the sentence with the c-structure tree, given below, the
constructed start entity s is (represented as DAG) the
following structure: (for the sake of clarity it is
slightly simplified).

If the rules are augmented analogously with '+ - valued'
existential features, the control of the COM-condition
becomes a check on the non-emptiness of the existential
feature values of the derived structure. The generator
rules which are constructed from augmented rules are
denotated by symbols with an upper '+' index. The
generator rule constructed from the rule, given above,
together with its (explicitly stated) constraint set is
the following [fn.15]:

-206-

Depending on the method for checking the COM-condition
different ways to define the concept of direct
generability are possible. Below we give the simplest (and
least efficient) possibility. It simply amounts to
ignoring the check during the derivation and integrating
it as postponed filter in the definiens of generability
[fn.16].

A structure s'a is directly generable from a structure
sa

 by a generator rule ra+ iff
I. The lefthand variable of the rule equals a variable of
an integer labelled edge of sa .
II. The substructure to which this edge is attached to is
an extension of the functional structure underlying the
structure introduced by the rule.

The underlying structure results from cutting off all
integer labelled edges from the structure introduced by
r a(!). This condition ensures the COHerence.

III. The substructure to which this edge is attached,
satisfies all constraints expressed by the rule.

Since the structures of a generation process are complete-
ly specified with respect to the underlying functional
structure it is possible to check the constraints
expressed by the rules in tandem with the generation.

IV. s'a
 equals the minimal extension of R(sa) which

results from the unification of R(p2(ra+)) with the
subDAG of R(sa) to which the removed edge was attached.

The S-rule is applicable to the start edge of s
s (I.),

because s is an extension of the partial f-structure
underlying "the structure introduced by the rule (II.;
indicated by bold edges) and s satisfies the constraint
set of the rule (III.). The new DAG in this case simply
equals the unification of the structure introduced by the
rule with sø

a after having removed the start edge of sø
a .

To define the generability relation, we have to take into
account that COMpleteness is ensured iff no attribute of
the derived structure and its substructures is empty-set-
valued.

A terminal string x is generable from a structure f iff x
is the string of a structure d, which is generable from
the start structure fø

a , and the feature values of each
substructure of d are anon-empty.

A structure with a terminal string meeting the COM-
condition which is derived from sø

a is then [fn.17]

FOOTNOTES

[*] This paper is based on research sponsored by the
BUNDESMINISTER FÜR FORSCHUNG UND TECHNOLOGIE
(BMFT), grant no. 1013207 0.

For helpful discussion and criticism we would like to
thank Ulrich BLOCK, Gosse BOUMA, Werner FREY, Stefan
MOMMA and Stanley PETERS.

[fn.l] In case this hypothesis should be falsified, there
are algorithms to construct from f-structures semantic
representations (DRSs) that could be used as additional
source for the transfer, (cf. [5], [15])

[fn.2] For a more detailed description of the compiler
see [3], [4].

[fn.3] For more detailed descriptions and discussions see
[6], [7], [13], [14].

-207-

The application of the constructed NP generation rule (cf.
c-structure above)

to the <1,NP> edge results in the following structure:

[fn.4] We prefer C over Comp in this case to avoid any
confusion with the function name COMP. C may actually
still be a rather misleading name, suggesting that this
position always has to contain a complementizer or con-
junction. Unfortunately German is a rather exotic language
in this respect, exhibiting a complementary distribution
of the finite verb and genuine complementizers in this
position. Other names have been suggested like CONFL com-
prising COMP and INFL, however as this notational idiosyn-
crasy has little consequences on the actual f-structures
we will just stick to C for the moment, i.e. it should be
kept in mind that we do not consider C as a lexical cate-
gory but rather as a structural position.

[fn.5] The format of the rules given below follows
basically the notation in [2] with some minor differences:
(/ a / b /.../} indicates a disjunction of (sets of)
functional schemata a, b, . . . ; square brackets [] are used
to notate optionality of a constituent.

[fn.6] We carefully note, but ignore for the moment, that
genitive phrases in prespecifying position do not always
fulfill a POSSessive function. It should also be mentioned
that POSS is a function that has to be covered by the
extended coherence condition.

[fn.7] V in fact should be seen as a way of expressing
that verbs may be complex lexical categories. Another way
of expressing this, would be to treat all verbforms as V
and the complex verbs as being built up by a Pref + sub-
lexical category V-l,

[fn.8] Of course one could take an entirely different
approach and try to derive all prefix verbs on the
syntactic level. There are several arguments against this:
T. HOEHLE has pointed out that there are some complex
forms like 'urauffuehren', 'auferstehen' which clearly
follow the pattern of separable prefix verbs, but are very
resistant to being broken up into PREF and V: They are
perfectly fine when inserted in a clause final position,
but won't agree to an analysis into PREF and V which would
be the prerequisite for a verb-initial construction:

(1)als sie das Drama urauffuehrten, ...
(2)weil sie das Drama uraufzufuehren haben, .. .
(3)?/*Sie fuehrten das Drama urauf
(4)*Sie auffuehrten das Drama ur

Similarly (cf [8]) it seems, that non-finite prefix verbs
behave as if they were one single constituent on the
syntactic level. Although the 'Vorfeld' position in V-
second clauses may be taken by simple non-finite verbs,
this verb must not be fronted, if it leaves a prefix
behind:

(5)Küssen will er die Studentin.
(6)Darstellen will er das Problem.
(7)*Stellen will er das Problem dar.
(8)*Dar will er das Problem stellen.

[fn.9] This is mainly due to our treatment of
extraposition, which we do not want to elaborate upon
here.

[fn.10] The provability of this statement implies that we
departed from a strong adequacy condition for the
generator. Thus the structural transfer can be built up
more universally, i.e. for classes of languages rather
than for a given target language. Suppose one has (for
example) structural transfer rules to capture
morphological as well as periphrastical tenses, then a
wrong choice among the transfer rules causes backtracking
since the input structure of the generator is not well-
formed.

[fn.ll] The examples are from the grammar presented in
[11].

[fn.12] The augmented rules are actually triples
consisting of a variable, an augmented structure and a set
of constraints. The treatment of the constraints will be
dealt with only with respect to generation. The treatment
of sets is omitted here for the sake of simplicity.

[fn.13] Since even in a graph theoretical reconstruction
the atomic feature-values and symbols of the vocabulary
have not to be represented as labelled terminal nodes, the
feature and integer labelled edges are (together with
their values) conceived as ordered pairs.

[fn.14] As these conditions are in some sense extended
completeness and coherence conditions, normally expressed
by a predicate's subcategorization frame, they are named
identically here.

[fn.15] There are several possibilities to encode the
constraints in such a way that the third rule component
becomes superfluous. Since this rather complicates an
informal description of the basic principles, we dispense
with this here (cf. [18]).

[fn.16] For more efficient methods cf [18].

[fn.17] If two paths of the input f-structure converge on
the same node

they have to be generated in exactly the same way by (a
control schema) of a rule. This is a consequence of the
fact, that on such paths only functions can occur, whose
f-structures contain PRED features. If the generation
rules produced these paths leading to different nodes and
if the nodes were identified by the unification with the
input structure, then the generation would fail as soon as
the PRED's for the f-structures designated by the two
paths are generated, because two instances of the feature
PRED are not unifiable.

-208-

BIBLIOGRAPHY

[1] BRESNAN, J. (1982a), Control and Complementation. In:
[2] 282-390

[2] BRESNAN, J. (ed.) (1982b), The Mental Representation
of Grammatical Relations. Cambridge, Mass.

[3] EISELE, A. (1985), A Lexical Functional Grammar
System in Prolog, in: LDV-Forum 2/85.

[4] EISELE, A. / J. DOERRE (1986), A Lexical functional
Grammar System in Prolog, in: Proceedings of COLING
86

[5] FREY, W. (1985) Syntax and Semantics of Noun Phrases.
In: J. LAUBSCH (ed.), Proceedings of GWAI 1984.
Berlin/Heidelberg

[6] HAIDER, H. (1984), Topic, Focus and V-Second. In:
GAGL 25

[7] HAIDER, H. (1986), Verb second in German. In: HAIDER,
H. / PRINZHORN, M. (eds.), Verb Second. Dordrecht.

[8] HOEHLE, T. (1985), On Composition and Derivation, in:
J. TOMAN (ed.), Studies in German Grammar. Dordrecht,
319-376

[9] KAPLAN, R. / J.BRESNAN (1982), Lexical Functional
Grammar. A Formal System for Grammatical Representat-
ion. In: [2] 173-281

[10] KAPLAN, R. /A. ZAENEN (1985). Functional Uncertainty
in LFG. Ms. Stanford

[11] NETTER, K. (1986a), Getting Things Out of Order, in:
Proceedings of COLING 86

[12] NETTER, K. (1986b), Auxiliarkomplex und Wortstellung
im Deutschen. To appear in: U. KLENK / P. SCHERBER /
M. THALLER (eds.), Akten der GLDV - Jahrestagung
(= Linguistische Datenverarbeitung Vol. 6). Hildes-
heim

[13] REIS, M. (1980), On Justifying Topological Frames.
In: DRLAV, Revue de linguistic, no. 22/23, 59-95

[14] REIS, M. (1985), Satzeinleitende Strukturen im
Deutschen. Über COMP, Haupt- und Nebensätze, w-Bewe-
gung und die Doppelkopfanalyse. In: W. ABRAHAM (ed.)
Erklärende Syntax des Deutschen. Tübingen, 271-313

[15] REYLE, U. (1985), Grammatical Functions, Discourse
Referents and Quantification. Proceedings of IJCAI 85

[16] WEDEKIND, J. (1986a), Ein Vorschlag zur nicht-kon-
figurationalen Kodierung grammatischer Funktionen
in der LFG. in: Forum angewandte Linguistik, vol. 14,
Tuebingen

[17] WEDEKIND, J. (1986b), A Concept of Derivation for
LFG. in: Proceedings of COLING 86

[18] WEDEKIND, J. (1986c), Derivation and Generation in
LFG. Ms. Stuttgart

-209-

