Linguistic and computational technigues

in Machine Translation system design

Final report

Wwith descriptions of the systems:
| SYSTRAN
TAUM METEC
TAUM AVIATICN
GETA ARTANE-78
LRC METAL
Wilks' PS
Yale MT to follow)
P.J.Whitelock - K.J.Kilby
Centre for Computational Linguistics
University of Manchester Institute of Science and Technology

P.0.Box 88
Manchester, England

CCL/UMIST report 8472
{replaces 83/3)

Submitted to:
Science and Engineering Research Couﬁcil/
Social Studies Research Council
Joint Committee

Contract no. GR/C 01276

December 1933

Linguistic and computational techniques in MT system design

Final report

Table of contents

Preface i

0. Introduction l

l. Basic considerations of system design 2
1.1 Relationship between SL and TL knowledge 2
1.1.1 1st generation {direct) systems 2

1.1.2 2nd generation {interlingual) systems 2

1.1.3 3rd generation (transfer) systems 4

1.2 Text type considerations 6

1.3 Role of humans 8

2. Linguistic problems in translation 9
2.1 Ambiguity | 9
2.1.1 Structural ambiguity 9

2.1.2 Complex nominals 11

2.1.3 Ambiguities in antecedents of anaphors 12

2.1.4 Word-sense ambiguity _ 12

2.2 Translation equivalents . ie
2.2.1 Lexical equivalents 12

2.2.2 Other linguistic phenomena 13

3. Linguistic representation of text 15
3.1 Intrinsic attributes-dictionary and morphclogy 15

3.2 Phrase structure 16

3.3 Dependency 18

3.4 Case frames 19
3.4.1 Syntactic expectations . 20

3.4.2 Semantic expectations 20

3.5 Generalised frames 21

3.6 Concluding remarks 22

4, Knowledge representation and parsing 23
4,1 Basic concepts 23

4,2 Interpretation schemes 24

4.3 Augmented Transition Networks (ATNs) 25

4.4 Production Systems {(PSs) 27

4.5 Variations on the PBS model 28

4.6 Conflict and ambiguity 29
References 3l

Appendixes ' paginated separately

Preface

This report represents the result of a two year project entitled M"An
In-depth study of linguistic and computational techniques in Machine
Translation", funded by the SERC/SSRC Joint Committee, and carried out
at the Centre for Computational Linguisties, UMIST, Manchester.

The principal aims of the project were threefold:

1. To accumulate documentation pertaining to a diverse range of
MT systems, thus providing a basis for stage 2.

2. To evaluate such documentation, principally by examining
each system in turn from a common viewpoint, attempting to
highliight the strengths and weaknesses of each, and thereby
bridging the gap that exists between:

1) the brief introductory descriptions of such systems to
be found in the Computational Linguistics literature.

ii) detailed documentation aimed principally at grammar
writers, which 1is, of course, uncritical, and alsoc not
readily available,

iii) survey articles intended to introduce the field to
workers in other disciplines, such as library and
information sclence, or to potential users.

3. To exploit the experience gained in a variety of ways:.

a) To produce the present report, defining the scope of MT
systems design, paying particular attention to the roles of
its component disciplines: linguistics, cemputation,
translation theory, Artificial Intelligence.

b} To determine those aspects of system design which offer
the greatest scope for improvement in translation quality,
and thus to define areas of research to which particular
attention should be paid in the future.

¢} As a sound basis for system design efforts in the Centre
itself.

The results of stage 2., detailed descriptions and evaluations of
seven systems, constitute the appendixes of the present report. These
were systems for which the documentation ovtalined covered almost all
aspects of design. The Centre obtained information about other
systems, though either of insufficient detall, or covering only
limited design features, and thus unsuitable for similar treatment.
However, relevant aspects of their design have been incorporated into
the final report.

The seven systems considered in depth address between them a diversity
of approaches to MT, almost their only common feature being that the
ldeas have actually been implemented and tested.

The systems examined are as follows:
A. SYSTRAN

Though of early, and rather primitive, design, SYSTRAN 1s
extremely successful, being the most widely used:of any MT system
to date, Its success is largely due to the great effort that has
been expended in incorporating expert linguistic knowledge into
its procedures. Versions for variocus language pairs exist
(Russsian-English, English-French, French-English, English-
Italian).

B. TAUM METEQ

This system 1is used by the Canadian Meteorological Office for
translation of weather bulletins from English to French., Grammars
for each stage of the translation process are expressed in the
same formalism (Q-systems); METEC constitutes a paradigm case of
simplicity (and generality) in design, which, for the limited
domain of texts it handles, results in particular effectiveness.

C. TAUM AVIATION

This system, designed by the same research team as METEQ, differs
considerably from the latter, and not always for the better.
Whereas Q-systems are a deeclarative formalism {linguistic
knowledge expressed in a form largely independent of
considerations about its application), AVIATION's grammars are
written in a variety of highly procedural formalisms. This seems
to have resulted in some difficulties In incorporating the
knowledge required for translation {of aircraft maintenance
manuals from English to French).

D. GETA ARIANE-78

Like those of AVIATION, ARIANE-78 grammmars are realised in a
variety of 'formalisms according to the phase of translation to
which they are relevant. However, the style of formalism is
somewhat different; a wealth of mechanisms for expression of
linguistic knowledge are provided, and relatively effective
grammmars have bheen written for the transliation of technical texts
between a variety of languages. Many ideas originating from GETA
have been 1incorporated 1into the design of the new European
Communities funded project EUROTRA.

E. LRC METAL

METAL is a small-scale system for translation of
telecommunications manulas from German to English. Based on a
context-free phrase structure analysis of texts, implemented with
a very efficient parsing algorithm, it is both fast and effective,
It 1is not obvious that such a system would be equally appropriate
for other language pairs; however it is an important contribution
in several ways to MT design theory.

P, Wilks PS8

The Preference Semantics system is largely the work of a single
individual, Yorick Wilks, and has no pretensions of being directly
applicable in a practical MT environment. Its importance lies in
the several mechanisms it proposes for dealing with ambiguity in
texts, which constitutes the central problem of MT. These ideas
have been extenslively reconsidered with regard to their
incorporation in the EURQOTRA system.

G. Yale MT

Like Wilks' work, research at Yale is not directly applicable to
practical system design. The main problem is the Yale commitment
to a general theory of language processing in humans, and it 1is
not clear that translation theory can be incorporated in such a
framework. Nevertheless, it is important in that it addresses the
problems of organising real-world Kknowledge for use in
'translation', and is thus worthy of consideration. '

Authors' note

While every care has Dbeen taken, we cannot guarantee that the
information presented 1is correct, or, in those cases where the
documentation is unclear, that we have chosen the correct

interpretation.

Acknowledgements

We would 1like to thank all those people responsible for providing
documentation, the SERC/SSRC Joint Committee for financial support,
and all our colleagues at the Centre for Computational Linguisties for
encouragement and assistance. Without the help of any of these, the
project could not even have been started.

Lingulstic and computational techniques in MT system design

Chapter 0. Introduction

Translation, 1like other intelligent activities, 1s a knowledge-based
process. As in many tasks involving natural language, the Knowledge
required 1is of diverse types and originates from diverse sources.
These types include knowledge about individual words, their
distributional properties and meanings (dictionary knowledge), about
word order and other structural relations between the constituents of
a sentence (syntactic knowledge), about the relations between the
structure of texts and their communicative functions (pragmatic and
stylistic knowledge) and about the relations which may hold Dbetween
the entities and events designated by words and sentences (semantic,
conceptual and ‘'real-world' knowledge).

Thus MT system design combines elements of lexicography, generative
linguistics, computational 1linguistics (i.e. the implementation of
linguistic descriptions as algorithms), LSP (textual studies of
special purpose languages, particularly those of science and
technology) and the Artificial Intelllgence approach to knowledge
representation and organisation, as embodied In a varietly of
Intelligent Knowledge-Based Systems.

Each of these well-established disciplines provides an extensive body

of theoretical results for the MT system designer to exploit. However,
a system design will also be a more or less explicit implementation of
a theory of the translation task. To date, such theories have either
been extremely simplistic and ad ho¢, or have assumed that the
translation task 1s merely the sum of the language understanding and
language generation tasks., If MT quality is to improve, it must be
acknowledged that translation is an expert task, and theories which
make computationally realisable claims about how expert translators
exploit their contrastive knowledge of source and target languages
must be developed.

Chapter 1 of this report discusses the historical development of ideas
about the relationship between scurce and target language knowledge in
MT systems. The <{ypes of texts suitable for MT, and the possible
relationships between human and machine, are then briefly described.

Chapter 2 gives a brief catalogue of the linguistic problems teo which
an® MT system must address itself, incliuding moneolingual ambiguity
resolution and the determination of translation equivalents.

Chapter 3 presents an overview of techniques for representing the
structure of texts, of increasing degree of abstraction from the
surface form. In general, the translation task will require access to
information at various levels of abstraction, so the representation
problem 1is not one of choosing between alternatives, but of
integrating the descriptions of text from different viewpoints.

Chapter 4 describes hew linguistic knowledge may be specified and
interpreted for the purpese of building structural representations of
texts.

Chapter 1, Basic considerations of sgystem design

1.1 Relationship between SL and TL knowledge

1.1.1 1st generation (direct) systems

Translation is a process of substituting a text in one language for an
equivalent text in another, that is, a mapping from source language
(SL) texts to target language (TL) texts. Since there 1is no
independent standard of meaning to which appeal can be made, the
approprlateness of equivalents, and hence the quality of translations,
"can be determined only through the informed discussion of experts"
(Newmark, 198l1). Correspondingly, quality can only be achieved in an
MT system by incorporating expert knowledge <concerning translation
equlvalents.

The assumption is that such knowledge is definable, but it can hardly
be so a pricri. It is thus essential that an MT system provides
facilities for expression of whatever knowledge may be necessary in
such a fashion that it can be refined and extended, that is, tools
which are both powerful and perspilcucus.

Of course, it is not possible to define a mapping extensionally, i.e.
- by enumeration of equivalents, where the domain (the permitted wvalues
of the input) is infinite. Early workers in MT attempted, naively, to
solve this problem by reducing translation te a mapping between finite
sets, i1.e. from SL lexical items (sometimes with additional, limited,
context) to TL lexical items, followed by some rearrangment of the
target text.

The failure of this direct approcach to MT was well-publicised (see
ALPAC, 1966). However, it is arguable that the failure was due as much
to the manner in which these systems were implemented as to their lack
of 1linguistic theory. Consistent with the state of the art in
programming languages at that time, 1linguistic knowledge (e.g. the
description of context relevant for defining equivalents) was coded
directly as programs in the assembly language of the host computer.
This, as well as the lack of theory, made 1t difficult to express the
knowledge needed and hence difficult to refine translation quality.

The direct approach, with its design orientation towards a specific
language pair, and emphasis on a bilingual dictionary as knowledge
source, 1is typified in SYSTRAN, That this is probably the most
accurate general-purpose system available today can be attributed to
the fact that, despite the inherent difficulties, a vast amount of
expert linguistic knowledge has been incorporated in it over a period
of twenty years.

1.1.2 2nd generation (interlingual) systems

Second generation systems, starting in the 1960s, derived much of
their design inspiration from the rapidly developing field of
Generative Linguistics. The treatment of linguistic structure became
more sophisticated (see chapter 3.). Moreover, the declarative nature
of 1linguistic description encouraged the separation of algorithms and
data. That is, the linguist was able to specify linguistic knowledge
{(grammars and dictionaries) in a formalism expressly designed for the
purpose. The program for applying knowledge in this form (regardless
of content), the interpreter, was not the linguist's c¢oncern. This
separation greatly enhances the extensibility of a system, and 1is

Lingulstic and computational techniques in MT system design

Chapter 0. Introduction

Translation, 1like other intelligent activities, 1s a knowledge-based
process. As in many tasks involving natural language, the Kknowledge
required 1is of diverse types and originates from diverse sources.
These types include knowledge about 1individual words, their
distributional properties and meanings (dictionary knowledge), about
word order and other structural relations between the constituents of
a sentence (syntactic knowledge), about the relations between the
structure of texts and their communicative functions (pragmatic and
stylistic knowledge) and about the relations which may hold Dbetween
the entities and events designated by words and sentences (semantlc,
conceptual and 'real-world' knowledge).

Thus MT system design combines elements of lexicography, generative
linguistics, computational 1linguistics (i.e. the implementation of
linguistic descriptions as algorithms), LSP (textual studies of
special purpose languages, particularly those of science and
technology) and the Artificial Intelligence approach to knowledge
representation and organisation, as embodied in a variety of
Intelligent Knowledge-Based Systems,

Each of these well-established disciplines provides an extensive body .
of theoretical results for the MT system designer to exploit. However,
a system design will also be a more or less explicit implementation of
a theory of the translaticon task. To date, such theories have either
been extremely simplistic and ad hoe, or have assumed that the
translation task is merely the sum of the language understanding and
language generation tasks., If MT quality is to improve, it must be
acknowledged that translation is an expert task, and theories which
make computationally realisable claims about how expert translators
exploit their contrastive knowledge of source and target languages
must be developed.

Chapter 1 of this report discusses the historical development of ideas
about the relationship between scurce and target language knowledge in
MT systems. The types of texts suitable for MT, and the possible
relationships between human and machine, are then briefly described.

Chapter 2 gives a brilef catalogue of the linguistic problems to which
an® MT system must address itself, including monolingual ambiguity
resolution and the determination of translation equivalents.

Chapter 3 presents an overview of techniques for representing the
structure of texts, of 1increasing degree of abstraction from the
surface form. In general, the translation task will require access to
information at various levels of abstraction, so the representation
problem 1is not one of choosing between alternatives, but of
integrating the descriptions of text from different viewpoints.

Chapter 4 describes how linguilstic knowledge may be specified and
interpreted for the purpose of building structural representations of
texts,

still a fundamental approach to design,

In thelr approach to the relationship between monolingual and
bilingual knowledge, many second gecneration systems embodied the
'interlingua' philosophy. In its strongest form, this can be
characterised as feollows., Translation is a two stage process. A
structure 1is assigned to a SL text, using knowledge of the source
language only. This structure is a sentence in a universal language,
representing the '‘meaning' of the text. From it can be generated an
equivalent utterance in any TL, without regard for the original source
language.

It 1is this potential for decoupling knowledge about the SL from that
about the TL that is the prime motivation for interlingual MT. In a
multilingual system, all-ways translation between n languages via
interlingua involves 2n modules, 1i.e. analysis and synthesis for each
language. This would appear to compare favourably with the number of
direct systems that would be needed to give the same coverage of
language pairs, n(n-1l).

This apparent advantage is misleading. If a system is to genuinely
decouple the knowledge specific to the languages in the system, the
representation of a text may not specify values for language specific
attributes, since the values of an attribute derive a meaning only
from the other values of the same attribdbute. Given the existence of
category and 1level shifts in translation equivalence (see Catford
1965), such a representation would be obliged to neutralise the
difference ©between lexical categories and even between grammar and
lexicon. Given different partitionings of the conceptual space in
different languages, words would have to be broken into a set of
components sufficient to discriminate between any two or more concepts
represented by different words in any one language. In many cases, the
work involved in analysis would merely be undone in generation for an
SL-TL pair in which a particular shift was inapplicable. More
importantly, the criteria for defining the set of components would be
very difficult to formalise (van Eynde 1983)., In fact, given that
translation is primarily a matter of defining equivalents, to require
that they be defined in terms of a formal system with significantly
different properties from any natural language would appear to add an
unnecessary complication to the task.

Rather than partitioning the work of system development across
independent modules, the interlingua apprecach ensures that the
behaviour of every module 1s critically dependent on that of every
other. Thus extensibility, both in terms of handling new languages,
and incorporating expert, bilingual, knowledge, 1s drastically
curtailed.

In the second generation of MT, the realisation of an interlingual
representation was restricted to the neutralisation of syntactic -
categories; equivalences between (category-less) lexical stems were
handled with a bilingual dictionary. Structure was represented 1in
dependency (Vauquois 1975} or phrase structure {(Lehmann and Stachowitz
1975} trees (see chapter 3), In subsequent system designs, both these
groups later abandoned even this much of the notion of interlingua.
The discarding of SL specific 1information necessitated Dy the
interlingua caused problems 1in TL synthesis, severely. hindering
possible improvement of translation quality.

The interlingua approach to MT is still found in MT systems that could
be considered as of the current generation {(design started post-1970}.

By greatly restricting the class of possible 1input sentences ana
combining this with a text type/ subject area in which conceptual
spaces in the different languages are partitioned very similarly (e.g.
in which mest ditems 1in the text are terms having standardised
equivalents, with few general language items), a full interlingua can
be used.

The TITUS II system (see Barnes 1983), used for storing and
translating textile abstracts, appears genuinely interlingual; it is
not possible to tell from the text representation the language of the
ceriginal text (English, French, German, or Spanish). Syntactic
structures in abstracts are extremely limited, and the system 1lmposes
further restrictions. Each input sentence is manually assigned a code,
determined largely by the prepositions it includes, from which 1s
defined a one-to-one mapping onto the equivalent structures in each of
the system languages. Such a mapping is also defined between other
numerical codes and words or terms in each language. Although useful
for compact storage of abstracts, the TITUS interlingua would be
inadequate for other text types, and its analysis procedure is largely
manual, so it repregsents a dead-end with regard to MT system design.

Another trend in system design that can be considered interlingual 1is
apparent in work on natural language processing at Yale University.
Here the representaticon chesen is cne which allows inferencing using
language independent, 1i.e. so-called real-world, knowledge. However,
the interlingua is no longer a representation of a text, but rather a
knowledge base of great detail, with slots filled in by items from the
text. Analysis is therefore strongly goal-driven, i.e. by knowledge of
what Information must be computed. However, this information is
intended for wuse 1in a variety of tasks, and 1its primarily non-
linguistic, non-textual expression in an interlingua of this character
means that what is needed to compute true translation equivalents may.
already have been lost. The translations produced, while avoiding some
of the cbvious absurdities of more naive approaches, might Dbetter be
called paraphrases.

It is obvious that in the general case, translation may require access
to real-world knowledge. However, requiring that a text be represented
as an instantiation of an already present knowledge structure means
that any knowledge in the text which is not predictable from that in
the knowledge base can at best be treated In an ad hoe fashion.
Rather, the c¢lass of possible textual representations must be
characterised by some generative system, that is, in which a finite
knowledge source describes an infinite number of structures. PFailure
te acknowledge this is to deny any possibility of dealing with the
essential creativity of language use.

1.1.3 3rd generation {(transfer) systems

Apart from treatment of highly restricted texts, the interlingual
approach to translation can be Justified only by simplistic appeals to
'‘psychological reality'. The latter seems to refer to a fusion of SL
text 'understanding' and TL text generation capabilities in a single
mind, rather than the psychological reality of an expert <{ranslator
performing his job., It has been demonstrated numerocus times that it is
‘significantly easier to approximate human-level performance in expert
tasks inveolving consciocus application of knowledge than in. those we
are genetically predisposed to do, and do unconsciously. Since human
translation is at least partly conscious, it is worth studying in the
interests of practical MT system design.

The interlingual view that translation inveolves filling in the gaps in
meaning 1in a universal language is an 0ld one. That any linguistic
task involves in some sense the filling in of 'gaps' can hardly be
disputed. Winograd (1983) puts it 1like this:

"The design of an utterance depends critically on the producer's
expectations that the comprehender will make use of knowledge and
intelligent reasoning to find interpretations and fill in the
information that is not explicit”.

The ’'meaning' of an utterance will vary according to the context in
which 1t occurs. In the extreme, according to the semiotic view of
language, "the meaning of a sign consists of all the effects that [1t]
may conceivably have..." (Pierce 193%); "“the meaning of a 1linguistie
form [is] the situation in which the speaker utters it and the
response which it calls forth in the hearer" (Bloomfield, 1933). This
sort of 'meaning' is potentially infinite. The information that needs
to be made explicit in any process of interpretation {mapping from one
system of representation to another) is defined, 1.e. made finite, by
a set of goals specifying what needs to be computed., Though the
computation 1is carried out in terms of the initial system of
representation, the goals themselves are a function of the final
system.

In translation, the aspects of meaning that may be relevant for
defining equivalents in any language also tend towards the 1nfinife.
The determination of equivalents must be driven principally by the
linguistic resources of the TL, which is the reason for the universal
requirement that a translator be primarily a TL expert. The experti's
knowledge of what aspects of the meaning are to be made explicit in
the TL text allows him or her to phrase a finite set of questions
which must be asked of the SL text. That is, translation 1is goal-
driven. Of course, the SL text must initially provide an indication of
what gquestions are likely to be relevant, and it provides a framework
in which they can be answered, but this is not the same as computing
the answers to all possible questions.

This implies that an MT system should incorporate an initial
monolingual analysis of the 3L text, followed by a phase using
bilingual knowledge. Such a system is said to be transfer based. The
representational system which carries textual information between the
two specifies what are variously called normalised, intermediate or
interface structures. This system is sometimes called an interlingua,
perhaps to suggest that 1its form would be suitable for any SL.
Nevertheless, the content of a 'sentence' in it is SL specific, and is
manipulated subsequently by a module employing bilingual knowledge, so
the use of the term is misleading.

[Most significant MT systems of recent design are of the transfer type
(e.g. AVIATION, GETA's ARIANE-78, POLA, SALAT, EUROTRA), so it seems -
an unequivocal aspect of the state of the art in design. The above
discussion of 1interlinguas has been provided in an attempt to
counteract the notion (even among designers of transfer systems) that
the transfer approach is merely a transiticnal stage, necessitated by
insufficient knowledge of the problem, on the way to a 'final
solution' via interlingua. In fact, this notion detracts attention
from the preoblems that do need to be solved, in contrastive
linguistics and 1n the knowledge representation appropriate for the
task of translation.]

Monclingual synthesis in current transfer MT systems 1s generally of

l1ittle significance. If there exist multiple translation equivalents
that cannot be decided between on the basis of bilingual Kknowledge
then synthesis must usually make an arbitrary choice. This may change
as a more sophisticated treatment eof stylistic factors is incorporated
into the system. In any case, synthesis 1s essentially deterministic,
and not, in any interesting sense, the inverse of analysis, a claim
which is often made by advocates of the 'transfer as a poor substitute
for interlingua' phillosophy.

The analysis of a text using SL specific knowledge into an interface
representation of a text (henceforth IR) serves two primary functions.
The first of these is to eliminate monolingual ambiguities (see
chapter 2.) and the second is to convert the text into a form which
makes the definition of translation equivalents as straightforward as
possible (see chapters 2. and 3.).

An Interesting variation of the transfer philosophy involves the use
of 'attached transfer procedures' (see LRC METAL). As each part of the
IR is Dbuilt, the information needed to compute a translation
equivalent in the TL is attached to the structure. Transfer is merely
a matter of traversing the IR and executing the attached procedures.
This reduces the problems of discovering appropriate rules in
transfer, but it also restricts the possibilities of large scale
structural reorganisation of the IL, and is thus only appropriate for
translation between closely related languages.

1.2 Text type considerations

It 1is generally stated that MT is suitable for a limited class of
texts, variously called non-literary or informative. In practice, this
has meant machine instruction manuals, technical articles, text books,
minutes of meetings, etc, This section attempts to Justify the
suitability of such texts for machine treatment from the point of view
of the present state of the art and the type of translation required.

Human translation is subject to conflicting aims. On the one hand,
there 1is the need to capture as much of the 'meaning' of the SL text
as possible, including the connotations of individual words, with the
different resources of the TL, On the other hand, there 1s the
necessity of not straining these resources beyond certain 1limits of
acceptable style.

The relative weight given to these aims depends to an extent on the
purpcse of translation, text type and other factors, Nevertheless,
both are always important, and translators are obliged to define
equivalents at various levels of the text, and, more importantly,
between different levels in SL and TL texts.

Texts suitable for MT are so because they do not present this conflict
of aims to such an extent. Translation, as has been claimed above,
must 1involve computing only the information needed for defining
equivalents, Thus in texts which make reference %o a real-world
fragment common to SL and TL cultures, the quantity of real-world
knowledge that must be considered is minimised. In terms of word-level
equivalents,” such texts may use a good deal of terms for which there
are Iinternationally standardised translations; the MT environment is
ideal for ensuring consistency of such terminology. At the other end
of the scale, stylistic equivalents are clearly deflned by cross-
linguistic conventions applicable to the particular text type,
resulting from the existence of international communities with common

aims.

0f course, the problems of word-level and supra-sentence level
equivalents remain to an extent sufficient to make MT for these text
types far from trivial. What MT does provide is an environment in
which the well-studied phenomena of c¢lause and sentence level
equivalents define a framework for incorporating approcaches to these
other problems. The ease with which transiation gquality can be
evaluated by appropriate experts makes MT highly suitable as a test-
bed for alternative theoretical approachss,

Another aspect of informative texts that makes them particularly
suitable for MT 1s the fundamental applicability of syntactic notions
of well-formedness, It 3is desirable, from a purely monolingual
viewpoint, that such texts are ¢learly written, which presupposes no
gignificant departures from grammatical norms (well-formedness). If an
MT system fails to provide an analysis for a sentence, 1t may be due
to unclear writing rather than an incomplete grammar. If the MT system
is embedded in an environment which provides interaction with the
writer, it may be possible to elicit an alternative of greater
clarity. In fact, 1In some environments, input to a system consists of
texts drafted in a restricted language. Writers, and their employers,
seem satisfied that this promotes genuine improvements in the quality
of the SL texts.

In general, the use of restricted languages is not acceptable, and
interaction with original writers is not possible. Thus the system
must provide a capability of accepting 'ill-formed' input. Although it
must be handled, ill-formedness in informative texts need not be
translated {(cf. literary texts). There is thus nc problem of defining
translation equivalents between types of ungrammaticality, only the
problem of incorporating analysis procedures which degrade gracefully
in the face of ill-formed input.

In informative texts, intentional ambiguity does not play a
significant part. Thus, again, MT in an interactive envirconment has
the potential for 1mproving clarity of SL texts on a purely
monolingual ©basis, by drawing the writers attention to ambiguous
constructions.

Certain MT systems are intended to deal with a very limited, highly
formalised text type, such as the weather reports handled by METEQ. In
cases such as these, the grammar-writing tools available to linguists
may be unsuitable for more general text types., '

In the case of more general-purpose systems, the linguistic knowledge
incorporated in grammars may still be appropriate only for a
restricted subject area {e.q. nuclear physics articles,
telecommunications system manuals). These restrictions reduce the
problems of dictionary compilation, ambiguity in word-senses ete. -
However, the range of syntactic phenomena which must be treated
remains formidable, 350 a restricted system of this type must still
incorporate grammar-writing tools of some generality.

Finally, in systems which aim to translate texts in a varilety of
subject areas, the amount of knowledge incorporated will be vast. In
such systems, the generality, flexibility and perspicuity of the
grammar-writing tools 1s a paramount design aim, since the process of
grammar writing consumes far more human resources than does the
initial design of the system,

1.3 Role of humans

The nature of the relationship between the human and the machine has
been touched upon in the previous section., Here we present a brief
summary of the types of MT available from the translators point of
view,

The sole function of the machine may be to act as a multilingual
terminology bank. Such an arrangement is usually designated Machine-
Aided Translation {(MAT), and is not of relevance to the present
discussion.

The machine may produce a complete translation, though based on =a
fairly superficial syntactic analysis of texts, and hence of quite
limited quality. However, the system may provide sophisticated
interactive dictionary creation routines and text-editing environment
{e.g. WEIDNER), and hence contribute to significant improvements in
translator productivity.

Az a development of this type of system, the nature of the interaction
with the translator may be extended, so that the wuser provides
information during the translation process to resolve ambiguities. The
ALPS system is of this type.

Both these types of system are essentially translators aids, producing
output which needs post-editing by someone familiar with both SL and
TL. A possible direction which future system design could take would
be as a translation aid for monolingual writers. The machine would be
primarily a TL expert, with meta-knowledge about what it needed to
know to produce high-quality output. This meta-knowledge would be used
to drive an interactive interrogation of the writer, expressed in SL
_terms. Obviously, such a system would be very language-~pair specifie,
and much of 1ts knowledge would need to be replaced for it to be
applicable to other language-pairs. Nevertheless, Tfor those pairs
where bilingual human expertise 1s rarest, it could fill an important
gap in the market.

Finally, there exist systems where no human intervention 1in the
translation process is possible; these are run in batch mode and the
raw output generally requires extensive post-editing. However, it is
sometimes possible to replace post-editing by pre-editing in which the
writer uses a controlled language which the machine 1is guaranteed able
to handle. This is the approach adopted by XEROX in preparing texts
for their SYSTRAN system.

Raw translations of unedited texts may also be of value for users,
enabling them to gain a rough idea of the content, and hence to decide
whether 1t 1s worth commissioning a polished translation (by post-
editing or otherwise)

.It is thus true that within the present state of the art, MT does not
offer the possibility of replacing human skills enfirely. Present MT
systems can Dbe considered as tools to improve the productivity and
throughput of the translation process, and to otherwise meet needs
that c¢ould not be met with human resources alone. Even so, the
widespread use of MT is indicative of genulne cost effectiveness.

Chapter 2, Linguistic problems in translation

Problems in translation arise from those phenomena for which there 1isg
no sound theoretical framework, and thus regquire a lot of Kknowledge
{because 1t 1is ad hoc) and/or a lot of processing resources (brute
force algorithms)} to solve.

In this chapter, a tentative distinction is made between problems for
analysis, which can be classed as various types of ambiguity, and
problems for transfer, which are mere diverse (and include what may be
called transfer ambiguities). In addition to the basic appropriateness
of solving them wusing monolingual or ©bilingual knowledge, this
distinction must also be Dbased on the avoidance of unnecessary
computation, which can occur in two, mutually antagonistic, ways.
Analysis may compute information that is never used for determining
equivalents 1in transfer (this is analogous to cne of the problems of
interlingual systems). Alternatively, a computation that is necessary
may be performed more than once in different transfer stages (which in
the 1limiting case would result in a number of direct systems). The
principal advantage of a transfer organisation is that 1t allows a
practical resolution of the trade-off which is embodied in the above.

The relative importance of various linguistic problems, as well as the
partitioning of their solutions across the analysis/transfer boundary,
can only be definitively decided with regard to the languages involved
in the system, the text type, nature of man-machine interaction etc.

2.1 Ambiguity

Even with regard to a single language, 'ambiguity' is a hazy notion.
What 1is potentially ambiguous at one constituent level, e.g. word,
sentence, may be resolved at a higher level, e.g. sentence, text. This
resolution is usually performed unconsciously by humans, 1i.e. without
ever being recognised as such. Nevertheless, the notion of ambiguity
at the sentence level 1is 1indispensible within any current MT
framework. The preferred reading of a sentence may depend on its
context, and it 1is certainly infeasible to attempt to define
translation equivalents between entire texts. In addition, even if a
human finds a sentence unambiguous in isolation, MT based on rules
which capture generalisations may still assign it different readings,
and a different type of rule will be required to discriminate Detween
them.

We enumerate below various sources of ambigujty that can occur 1in
texts, 1llustrating each with an example which is ambiguous out of
context, and glossing the alternative readings. A very similar example
foliows, in which the ambiguity does not arise. This is sometimes due
to the unacceptability of one reading on syntactie grounds. More
often, one reading becomes overwhelmingly more likely on semantic
grounds. Most of the treatment of ambiguity in practical MT systems is
based upon defining these semantic criteria which assist in intra-
sentential resolution. No concerted attempt to deal with residual
ambiguity (requiring a larger context) has been made {(but see Wilks
PS, which attacks the anaphor-antecedent problem).

2.1.1 Structural ambiguity

If a single word may be more than one part of speech (called a
homograph), two or more such words in a single sentence may give rise

to structural ambiguity, e.g.
He saw her shaking hands =

he saw her hands, which were shaking
1 !
'

|
poss.ad] ad}

he saw her shake hands {(with someone)

cbj.pronoun verb

If the ambiguous constituent is subject rather than object, subject-
verb agreement eliminates one or other reading:

her shaking hands were obvious
her shaking hands was obvious

Substituting for ‘'"shaking" may also make one reading overwhelmingly
more likely:

he saw her trembling hands
he saw her holding hands

This sort of ambiguity is most common in 'isolating' languages like
English and Chinese. Other structural ambiguities arise from the
possibility that an element has been deleted, e.g.

(Chinese) wo kan nimen hen gaoxing
lit, I see you very happy =
I see you, you very happy =
I see that you are very happy
I see you, I very happy =
I am very happy to see you

but: Wwo Kan hua hen gaoxing
lit. I see flowers very happy =
I see flowers I very happy =
I am very happy to see flowers

In many languages, a relative clause can be considered as a sentence
containing a 'hole' which corresponds to the head noun. This can give
rise to ambiguity such as:

(German) Die Frau, die die Magd sah .
lit. the woman, that the maid saw =
the woman that the mald saw
the woman that saw the maid

but: dle Frau, die die Blume sah =
the woman that saw the flower

In Japanese, a similar problem arises with verbs that have two
different transitivity patterns, Dbecause the verb may or may not
contain the idea of an unexpressed subject.

(Japanese) Hon o akutta hito
lit. beocok sent man =
the man who sent The book
the man to whom I/you/he ete. sent the book

10

English embedded clauses with verbs having two different transitivity
patterns may also give rise to ambiguity, e.g.

The man I want teo leave =
I want the man to leave
I want to leave the man

Gross structural ambiguities also arise not from different readings of
a constituent, bhut different ways of combining the constituents.

I saw the man in the park with a telescope =
saw with a telescope
man with a telescope
park with a telescope

but: I saw the man in the park with my own eyes =
saw with my own eyes

I saw the man in the park with a blue shirt =
man with a blue shirt

I saw the man in the park with a wall =
park with a wall

Conjoining constituents may result in ellipsis of identical material
in the second conjunct. No general syntactic treatment of this
phenomenom has been proposed, and it is a seriocus problem in MT. In
many cases, the extent {scope) of this ellipsis gives rise to
ambiguity:

0ld men and women =
0ld men and old women (A (N and N))
women {(of all ages) and old men ((A N} and N)

but: 0l1d men and children =
children and old men
? 0ld men and ©ld children

2.1.2 Complex nominals

The relationship between the elements of a complex nominal may be
ambiguous, e.g.

border plants =
plants for the border
plants in the border

while superficially similar complexes may demonstrate completely
different relations between the elements, e.g.

alligator shoes =
shoes made Trom alligators

horse shoes =
shoes made for horses

Problems of scope also occur in complex nominals e.g.
adult toy manufacturers =

manafacturers of toys for adults ({N N) N)
adult manufacturers of toys (N (N N))

11

2.1.3 Ambiguities in antecedents of anaphors

Anaphoric elements, e.g. pronouns, are those which refer back to some
previously mentioned word, phrase or concept - the antecedent., Often,
there are several alternative antecedents, which need not occur in the
same sentence., Syntactic devices (e.g. gender and number agreement,
constraints on Rules of Construal in GB theory (Chomsky 1982)) will
resolve some of these, though others require semantic and even
pragmatic resolution. For example:

she threw the vase at the window and 1t broke =
the vase broke
the window broke

she threw the vase at the wall and it broke =

the vase broke
? the wall broke

2.1.4 Word-sense ambiguity

Multiple senses for a single {(orthographic) word (homonymy) are common
in all languages. For example:

He asked about the board =
he asked about the committes
he asked about the blackboard
he asked about the lodgings

but: He asked the board =
he asked the committee

In this case, the senses are distincet, but not all cases are so clear-
cut. Metaphorical usage allows effectively unlimited extension of
word-sense (polysemy), and the point at which two usages Dbecome
sufficiently distinct to warrant being c¢alled different senses
(homonyms)} cannot be definitively ascertained. In terms of dictionary
entries for MT analysis, it 1s important that only monelingual
eriteria of word-sense differences are considered. Treatment of a word
as ambiguous because it has several potential translations in a given
TL leads to all the problems described in Chapter 1 with regard to
interlingual MT.

2.2 Translation equivalents

2.2.1 Lexical equivalences

As stated in the previous section, the dividing line between lexical
ambiguities and multiple lexical equivalents is far from clear cut.
Some examples which can be unequivocally assigned to the latter group
are the following from English:)

corner = Spanish rincon {inside) esquina {outside)
put = German stellen (upright) legen (lying)
river = French fleuve (main) riviere (tributary)

In any of these cases, the ability to compute the correct . equivalent
would neot be guaranteed. However, various ad hoc techniques can be

12

used. For instance:

"en la esquina”
"“en el rincon"

"on the corner"
"in the corner"

This type of useful, but ad hoc, treatment is ideally located in
transfer.

2.2.2 Other linguistic phenomena

In a given language, only a fraction of the potential 'meaning' of an
utterance conditions 1its 1linguistic realisation. The particular
features which are relevant vary from language to language,
particularly features of time (tense, aspect), modality, and pragmatic
features. It may be possible to compute from the context of an
utterance the values of those features which are not marked
linguistically. Nevertheless, it is essential that this computation is
performed on a need-to-know basis, i.e. language-pair specifically,
both in terms of saving unnecessary (and possibly very costly)
computation, and in terms of defining the computation processes in a
way which corresponds to expert bilingual knowledge. This also avoids
the problem of regarding an utterance as ambigucus, merely because it
is not possible to compute the value of some attribute which is not
marked linguistically in the SL, and hence having to pass multiple
representations from analysis to transfer.

Pragmatic phenomena such as definiteness and thematic structure are
particularly troublesome for translation. The same phenomena may be
realised in different languages (and even within the same language)
using different grammatical resources. Conversely, values from one
grammatical system (e.g. word order, articles, inflections} may
realise different pragmatic phenomena in different languages. These
systems are further complicated by their interaction with syntactic
phenomena, such as the transitivity patterns of verbs, and volce of
sentences. It 1is impossible to characterise pragmatic systems in a
language independent manner because much of the meaning depends on the
linguistic facilities that are available but net used, that 1is, a
value takes its meaning only from the other values in the system.

For instance, definiteness, realised in English by a system eof
articles, is partly a function of word corder in Russian, e.g.

The woman came out of the house
Zenscina vysla iz domu

A woman came out of the house
Iz domu vysla zenscina

whilst in PFinnish, definiteness may be indicated by nominal
inflecgions in some circumstances (in constructions with 'impersonal
verbs'):

Kuuman veden tulisi olla heti valmiina
The hot water ought to be ready soon

Kuumaa vetta tulisi o0lla heti valmiina
Some hot water ought to be ready soon

13 -

and by word order in others:

Hevonen on pihalila
The horse is in the yard

Pihalla on hevonen
There is a horse in the yard

In English, information about theme is carried by a variety of
syntactic devices, such as passivisation. The latter serves other
purposes, such as argument suppression. Definiteness is carried by an
independent system of articles., In Japanese, on the contrary, the
thematic system is based on particles, and there is no marking of
definiteness as such.

Computation of equivalents for the values of such attributes as tense
and modality is subject to the same sorts of complexity as pragmatic
features. Modality information is carried by a variety of linguistic
devices (verb inflections, modal verb systems, as part of the meaning
of 1lexical verbs, ete.). In a given language, a particular value
chosen from one linguistic system may represent various different
modalities according to a2 much wider context.

Intuitively meaningful modality features such as permission,
possibility, moral necessity, legal necessity, 1logical necessity
define a multi-dimensicnal conceptual space. Points of this space are
expressed as values of a linguistic system (such as auxiliary verbs)
in such a way that the space 1is partitioned very differently in
different languages. Determining on which side of & conceptual
boundary a particular use of a linguistic value in the SL text falls
presupposes the definition of the boundary. This is a function of the
TL, and so must be handled in transfer.

14

Chapter 3. Linguistic representation of texts

The nature of the class of text representations which carry
informaticn between analysis and transfer stages i3 a crucial question
of system design.

In order to compare the linguistic content of various systems of
representation we attempt to abstract from the details of their
implementation and from the means whereby they are computed.

In its most general form, the representation of an utterance may be
considered as a set of objects. An object is a set of attribute-value
pairs, each associating some named attribute with some value of that
attribute. Different systems of representation may be characterised by
the nature of the attributes they permit, which are of two principal
types, relational and intrinsiec.

Relational attributes have as values other objects, (e.g. 'to the
right of', subject of', 'constituent of'), and thus serve to impose a
structure on the set of objects. Intrinsic attributes serve to
characterise individual objects. They generally have values taken from
some finite enumeraticn (e.g. 'singular’, 'dual', 'plural';
'definite', 'indefinite', 'unmarked').

The set of objects may be viewed as a directed graph with labelled
vertices and 1labelled directed edges. The 1label on a vertex
corresponds to the intrinsic attributes with their values, and the
labels on the edges proceeding from that vertex to the relational
attributes whose values are the vertices towards which the edges are
directed.

3.1 Intrinsic attributes -dictionary and morphology

The initial text from which a representation is computed consists of
character strings, 1.e. words, separated by spaces. At this stage,
each obJect can be considered to have the single intrinsie attribute
'word', with wvalues taken from the set of all character strings.
Relational values are of the form 'to the right of' or ‘to the left
of'. Morphological analysis and dictionary lookup associate with the
object some further set of intrinslc attributes. It is probable that
one such attribute will be a lexeme or lexical unit, which 1is the
canonical or dictionary form corresponding to a character string.
Conversion to canonical form involves the removal of inflections and
the expression of the information carried by these as values of other
attributes such as 'gender', 'number’.

In certain cases, morphological analysls may map one ‘'word' onto
several lexemes {e.g. compound words in German) or several ‘words'
onto one lexeme (some types of idiom).

The dicticnary will also associate an attribute to each lexeme that
will be wused subsequently to express generalisations about 1its
distribution in sentences, that is, its category. Typical values of
such an attribute are conventional syntactic ones such as 'noun',
'verb', ‘'preposition' etc. Some systems have a more semantic concept
of category. For instance, Wilks PS system treats verbal lexemes as
members of semantic categories such as 'cause', ‘'move' and 'do', and
nominal lexemes under such category headings as 'animate', ‘'potent',
'physical object'. So. called ‘'semantic ATNs' use highly domain-~
specific categories such as 'ship', 'port', 'officer',

15

In the normal c¢ase that categories are syntactic ones, further
attributes may sub-categorise these, either syntacticall (e.g.
transitivity of verbs) or semantically (e.g. animacy of nouns). In Q-
system grammars, such as those used in METEO, syntactiec categories,
syntactiec and semantic sub-categories, and computed morphological
information are not distingushed formally. That is, each possible
value of each attribute is considered as an attribute having a boolean
value = present (indicated by the presence of the name of the
attribute) or absent (indicated by 1its absence). Boolean-valued
attributes are generally called features

A contrast to this basically unstructured organisation of grammatical
information is illustrated by EURCTRA. A hierarchical structure may be
imposed wupon grammatical information by allowing values of one
attribute to act as many-valued attributes in their own right, and
also to define further sets of attributes which become relevant. Such
structuring is made -explicit in declarations to the system, for
example:

CAT is (NOUN, ADJ, DET)

DET is (ARTI, ARTD, POSSPRON)
DET has (NUMBER, GENDER}
NUMBEﬁaég (SING, PLUR)

Here, the 1is declarations specify the range of values that a
particular attribute may take, whilst the has declarations specify the
attributes that are relevant if some other attribute has the value
given on the 1lhs. Note the blurring of the distinction Dbetween
attributes and values.

3.2 Phrase structure

Many MT systems base their representation of the content of an
utterance upon the notion of phrase structure, which represents a
grouping of sentence items into higher-ievel constituents. The legal
structures which constituents may have are defined bDy a context-
free grammar, a series of such rules as:

NP <- ART + ADJ + NOUN
NP <¢<- NOUN

VP <- VERB

VP <- VERB + NP

S <- NP + VP

Symbols such as NP, VP, and S are non-terminal values of ‘'category'.
The symbol <- indicates the relational attribute 'dominates' and the
symbol + the relational attribute 'precedes'., The structure assigned
to a sentence such as:

"the small girl eats meat™
would be: S
NP _
ART ABJ NOUN VERB NP

I
NOUN

the small girl eats meat

16

in which the 'dominates', or 'daughter', relation 1s shown explicitly,
and that of 'precedes', or 'sister', corresponds to the order of the

daughters on the page.

Context-free rules may be augmented to include <conditiongs on the
values of other attributes, for example:

S <= NP + VP

[NUM = x] [NUM = x]
which specifies that for this rule to apply, the values of NUM (i.e.
number) on the NP and VP, which will have been 'inherited' from one of
their daughters, must be the same.

The most Important aspect of this conception of sentence structure is
its emphasis on well-formedness. A sentence is well-formed 1f the
context-free rules assign to it a structure with a root having the
distinguished non-terminal category (here 'S'). If this is not the
case, the sentence is ill-formed, and will be assigned no structure.
The notion that 'deviant’™ utierances should be assigned no structure
{i.e. given no interpretation) has been much criticised; it has often
been pointed out that this is exactly what humans don't do.

Nevertheless, the well-formedness approach is of value in an MT
context for two reasons. First, as mentioned in Chapter 1, it 1is
probably a necessary, though certainly not sufficient, prerequisite of
textual clarity. Secondly, well-formedness rules provide a convenient
means for eliminating those constituent readings that cannot be
incorporated into a higher level structure. For instance, the context-
free rule with augmentation for number agreement given above can Dbe
used to assign appropriate structures to the palir of sentences given
in Chapter 2 (assuming other approprlate rules):

"her shaking hands were obvious"

NP’//’,’S\\\\\VP

[Plural] [Plural]

ART ADJ NQUN COP ADJ
her shaking hands were obvious

"her shaking hands was obvious”

PN
NP VP

I
NOUN VERB NP

NQUN

her'shaking hands was obvious

17

3.3 Dependency

An alternative means of representing linguistic structure 1is the
dependency tree., The constituent structure is realised, not by the
introduction of non-terminal categories, but by the definition of one
item in a constituent, the head, as the most important, to which the
other items are related .by the attribute 'dependent'. Thus the
dependency structure assigned to:

"the small girl eats meat"

would be:
VERB
eats
NOUN NOUN
girl meat
/J
ART ADJ
the small

The dependency representation is of wvalue because it indicates the
possibility of interpreting the single relation 'dependent' as a set
of mere functionally motivated relations. The various dependents of a
constituent may be considered as the fillers of named slots defined by

mrer— .

that constituent. For instance, a particular verb may specify the

functional relations (i.e. slots) 'subject', ‘'object', ‘indirect
object’, which will be filled by nouns. In turn, a noun may define
slots for a 'determiner', several 'modifiers’ and several
'‘qualifiers', to be filled by an article, adjectives and relative

clauses respectively.

Once purely structural relations such as 'daughter' or 'dependent'’
have been replaced with functional cnes like 'subject', sentences with
different word orders but the same functional relations between
constituents may be given a common representation. For instance, the
three sentences:

"John gave the book to Mary"”
"The book was given to Mary by John"
"Mary was given the book by John"

may each be represented thus:

) VERB
give

subject obﬂect indobj

NOUN NOUN NOUN
John book Mary
det
ART
the

Information about the original surface word order may be represented
as values ('active', ‘'passive', ‘'indirect object passive'}) of an
attribute 'voice' asscciated with the verb.

18

Of course, the three sentences above may also Dbe given common
representations as a canonical phrase structure tree (as in the
earliest versions of ‘transformational grammar {Chomsky, 19571})).
However, a direct representation of the relational attributes defined
by a verb seems less arbitrary than expressing them as structural
configurations, such as 'leftmost NP dominated by S' (= subject).

Representations adequate for translation will need to express other
relational attributes, such as that Dbetween anaphors and their
antecedents, and the head nouns of relative clauses and their
canonical position in the sentence from which the clause is derived,
This is often achieved by coindexing, e.g. (ignoring other structure}:

she threw the vase at the window and it broke

i i

where 'i' 1s the value of the attribute 'antecedent of' for "vase",
and also the value of the attribute 'anaphor of' for "it". Similarly:

the man I want to leave t

J J
where 'j' 1is the value of the attribute 'boss of' for the NP "the
man", and the value of the atiribute 'trace of' of the dummy object

llt " .

This device thus serves to represent only one reading of these
ambiguous sentences,

3.4 Case frames

A set of functional relations (slots) associated with an object is
called a frame. The most widespread use of this notion in language
processing Is in the form of a case frame associated with verbs, Each
slot in a case frame specifies a semantically motivated relation
between the action expressed bty the verb and one of the partfticipants
in that action. The relation is one of a small set, titypically about
10, of cases, intended to be appropriate for expressing the case-frame
of any verb.

A typical set of cases might be:

AGENT The animate Iinstigator of the action

PATIENT The entity acted upon

INSTRUMENTAL The entity by which the AGENT effects the action
EXPERIENCER The animate entity experiencing the action

BENEFICIARY The entity benefitting from the action

SCURCE The entity or place from which the action originates or
moves
GOAL The place to which the action 1is directed, or the

entity resulting from the action

19

The case-frame associated wlth a verb-sense will specify the central
arguments, that 1s, case slots which must be filled in the sentence,
and may also indicate other slots which will be optionally filled.
What 1s Important about case is not so much the particular 1list of
cases chosen, but rather the way the case-frame permits expectations
about the linguistic environment of the verb to bte organised. These
expectations are of two principal kinds, syntactlc and semantic.

3.4.1 Syntactic expectations

Syntactlc expectations specify the way(s) in which a slot in the case-~
frame of a particular verb may be realised in a sentence. These
include its position relative to the verb and/or its surface case
{e.g. surface subject, object / nominative, accusative, dative) and
the type of constituent (e.g. noun or noun phrase, prepositicnal
phrase + characteristic preposition, infinitival clause, sentential
clause)., In fact, such expectations may not be specifically associated
with a slot. They may be generated as needed from cther sources, such
as rules which state generalisations about the relationship between
active and passive sentences for a large class of verbs.

3.4.2 Semantic expectations
In general, syntactic c¢lues are not adequate to assign cases
unambiguously. Thus the case-frame must also specify expectations
about the semantic attributes of the slot fillers. 3Se¢, for instance,
the verb "open" might have the following frame:

AGENT: animate

PATIENT: physical object (such as "door", "box", "window")

INSTRUMENT: physical object (such as "key","hairpin")
This frame, in conjunction with the appropriate syntactic
expectations, will permit the assignment ¢f canonical struciures to
the following sentences:

"John openea the door with a key"
open
AGENT PAT 'INST

I
Jehn the door the key

“The key opened the door"
open
AGENT PAT INST
0 the door the key
"the door opened"
open
AGENT PAT TINST

o the door 0

20

Semantic expectations provide a means for various types of
disambliguation, exemplified as follows:

Multiple noun senses:
"he asked the board"

"agk" will specify that what fills the EXPERIENCER role be 'animate',
hence the '"committee" sense, rather than the '"blackboard" or
"lodgings" sense, of "board" will be chosen.

Multiple verdb senses:
"the teleprinter was running”

"run” in the sense of "locomotion" requires an 'animate' AGENT, so the
"operate" sense will be chosen here, 1its expectation for a 'machine-

like' PATIENT being filled by "“teleprinter”.
Ambiguity of extraction site:
"die Frau, dle die Blume sah"

"sehen" expects an 'animate' EXPERIENCER, so the sentence underlying
the relative clause will be read as:

"die Frau sah die Blume", rather than
"die Blume sah die Frau".

Ambiguity of prepositional phrase attachment:
"he hit the boy with a blue shirt"

Here, "with a blue shirt" could be read as the INSTRUMENT of "hit",
but "shirt" would not fulfil the expectation for some rigid physical
object, so it 1s read as a modifier of "the boy".

Ambiguity in antecedents of anaphors:
"she threw the vase at the wall and it broke"

Here, "it" might be read as "the wall"” or "the vase", but the latter
will fulfil the expectation of "break" for a ‘fragile' PATIENT, and so
will be chosen in preference to "the floor".

All these -examples of ambiguity resolution presuppose that the
requisite semantic attributes, e.g. 'animate', ‘machine-like', ‘non-
rigid', 'fragile’ are associated with the appropriate nouns.
Obviously, choosing and assigning a set of such attributes is a non-
trivial task. In addition, if such specific attridutes define absolute.
restrictions on role fillers, it may be impossible to assign readings
to many sentences, It is thus important that expectations are treated
only as preferences {(see Wilks PS system), with the reading of a
sentence which satisfies the most preferences being chosen.

3.5 Generallsed frames

A case-frame is a particular organisation of knowledge intrinsic to a
verb. The instantlation of a case-frame, i.e. the allocation of case-
roles tfo sentence constituents, is a means of representing the

21

structure of an utterance. The case-frame itself 1s sald to represent
a type of concept, 1in thig case the concept of the class of events
whic may be expressed by means of the verb. Its instantiation is a
token of the same concept, that 1s, it denotes a specific event of
that class.

The notion of a frame can be generalised to permit the organisation of
real-world knowledge, 1.e., knowledge which is not directly realised
linguistically in an utterance, for a wide variety of concepts. In
YALE MT, for instance, Scripts represent high-level frames organising
knowledge about typical c¢hains of events.

Such frames allow information not expressed in the text to be inferred
by means of default values for the slots; they may be organised
hierarchically into classes, so that a concept may inherit features
from the classes of which it is a member. Another important feature of
generalised frames is that they permit procedures for determining slot
fillers +to be associated with slots. Broadly speaking, a Knowledge
base which 1is structured as generalised frames presupposes the
following mode of processing: a word 'pulls in' a frame and this
proceeds to drive the processing of the surrocunding textual
environment, As discussed in chapter 1, translation really needs to be
driven by the linguistic resources of the TL, not by non-linguistic
knowledge, and texts are best represented as linguistic objects,
rather than as instantiations of rich extra-textual knowledge
structures, so the generalised frame approach 1s not directly
.applicable to MT. A thesaurus-like structuring of dicticnary entries
provides some of the same facilities as frames, which can be exploited
if necessary, but does not dictate the course of processing and hence
the form in which text is represented.

3.6 Concluding remarks

The notion of levels 1s used to refer to systems of representation
for which there 1is not a one-to-one correspondance between the
relational attributes defined by the systems {(nor, perhaps, between
the objects themselves).

In general, transfer needs access to information about the source text
of wvariocus levels, ranging from surface syntactic objects and
relations to underlying conceptual ones. Which are actually computed
by analysis and passed as part of the IR depends on the usual system
parameters - languages involved, text types, human interaction. Two
principal alternatives are to compute only to a shallow level, and to
compute several levels, representing each in a multilevel IR, such as
that of GETA or EURCTRA.

In the first case, computation of 'deeper' levels may be ftailored to
the particular requirements of the TL in a 'pre-transfer' phase, or
may be performed in transfer on an acd hoc basls as necessary. This
approach is efficient but leads to a large transfer phase, and hence
is best suited to single language-pair systems. Computing multilevel
representations in analysis reduces the size of transfer and is thus
more appropriate to multilingual systems.

22

Chapter 4., Xnowledge representation and parsing

In this <chapter, I discuss the guestion cf how the lingulstic
knowledge which is used to construct representations of text is itself
represented. In translation of all but the most limited text type,
robustness of the system and quality of the output depend on the
presence of large quantities of knowledge. Dictionaries and grammars
are generally created and updated by several people over a long
period, Their form should therefore be dictated by c¢onsiderations such
as the ease with which the appropriate knowledge can be specified in
the formalism, and the ease with which errors in specification can be
located and corrected.

In describing formalisms for representing 1linguistic knowledge, I
address related questions such as determining the applicability of a
particular piece of knowledge (fact) and choosing between several
applicable facts. The facilities provided for the construction of
various forms of text representation (see <chapter 3) are also
introduced.

4.1 Basic concepts

Conceptually, the linguistic knowledge incorporated in an MT analysis
has two components. The first of these defines the language which can
be handled, that 1is, it characterises an infinite set of 1legal
sentences (text strings). If explicit, this knowledge can be applied
by a recogniser which returns success or failure according to whether
the sentence is legal (well-formed, grammatical] or not.

The second component of the knowledge consists of implicit or explicit
structure-building actions, the application of which converts a
recogniser into a parser that assigns some structure or structures to
any legal sentence,

Languages fall into four classes, definable in two equivalent ways: by
the form of rewrite rule needed to specify the legal strings, and by
the type of automaton needed to recognise them. The classes of
languages constitute the Chomsky hierarchy of gower, such that a type
gp
©

n grammar 1s able to characterise languages o e m, for all m>=n.
The following table gives the equivalence rewrite rule and
automaton for each type:

type name permissible form of automaton
rewrite rule
0 general rewrite X <~ ¥ Turing machine
1 context-sensitive xNz <- xyz linear automaton
2 context-free N <-y pushdown automaton
3 regular N <- tM or finite state automaton
N <~ ¢

where M and N
t
X,y and 2z

any non~terminal symbol
any terminal symbol
any string of terminals and non-terminals

All four types are given for completeness, but two are of particular
significance 1in natural language processing., Context-free grammars
have been mentioned in Chapter 3, and are Important for several
reasons., First, context-free power 1s the minimum necessary 'to
characterise natural languages, because of the recursive nature of

23

consteuclions sucihy a3

"fhe cat the dog bit died"”

r such power is sufficient is a major point of dispute in
etical lingulistics today.

Secondly, context~free languages may be parsed very efficiently, since
much research has been devoted to algorithms for parsing programming
languages of this power. Thirdly, the structure assigned to a sentence
by a context-free parse will include a contribution, 1in the form of
one node, from each of the rules that anplied in its construction,
Jence the rules may be recovered from the parse tree. The value of
this is discussed in 4.5

General rewrite grammars, the most powerful, are capable of handling
any construction found in natural languzge. Descriptions of the
relationship between structures in different systems of representation
or at different linguistic levels seem to require such power, though
this may not be true in fact. Parsing with such grammars can presents
certain problems {see 4.4)., Despite this, most language analysers are
of general rewrite power., Often this power Is achieved by taking a
context-free formalism and augmenting it with devices increasing its
powar to that of general rewrite.

L.2 Interpretation schemes

Whatever form it is expressed in, the linguistic knowledge must, in
some sense, act as a program for a machine, either a real one (a von
Meumann computer), or, more often, an abstract ons. A von Neumann
computer 1is made to beshave like an abstract machine by running a
program called an interpreter, e.g. a recogniser or parser, for which
the linguistic knowledge is data. -

The rewrite rule and automata theoretic a
representacion, though formally equivalent,
different types of interpreter,

prcocaches to knowledage
-

D
presuppose significantly

In order to 1illustrate this, let us view any computation as the
progression of the system through a series of states. A state 1is a
total configuration of the data (the <text, and stages in its
representation) and the interpreter. The linguistic knowledge that a
system 1incorporates serves to define possible transitions Dbetwesn
states,

In expressing xnowledge for an automaten, the states which the

interpreter may be in are made explicit. That 1is, facts are expressed
in the form Mif the system iIs 1In state 8i, and certain other
conditions obtain, then the system moves into state 3j, and certain

other acticns are performed"”. The form of the other conditions =and
actions that are permitted define the power of the automaton (see

4.3},

Thus the interpreter embodies a locus of control, which moves from
state to state. Facts are assoclated with states, and are considered
applicable when control arrives at their state, The beshaviour of the
interprefer is intimately bound up with the ¥nowledge that the system
possasses., This permits the grammar writer to finely ezulate the
order 1in wnich facts are considered. Fowever, +this order must be
specified even when it 1s irrelevant, the Independence of facts

(modularity) 1is 1lost, and a single fact may have to be specified
several times if it is to be used several times., These properties are
characteristic of procedural knowledge representation and control

driven computation schemes

If knowledge is expressed in the form of rewrite rules, the states in
which the system may be are not made explicit, Instead, they
correspond to configurations of the data structure. The rewrite rule
is a statement of equivalence between one configuration of the data
structure (e.g. that specified by the lhs) and another configuration
{e.g. that specified by the rhs). Thus the applicability of facts is
determined solely by the existence of similarities in pattern between
the data and the facts. The primary job of the Iinterpreter 1is to
perform this pattern-matching. The specification of knowledge does not
include a specification for how it is used and in what order. Thus the
knowledge 1is modular, a fact may be used in different ways at
different points, and new facts may be more easily added. Such a
knowledge representation scheme is said to be declarative, and 1t
presupposes a pattern-directed computation scheme,

4,3 Augmented Transition Networks (ATNs)

Procedural approaches to knowledge representation are typified by the
ATN (Woods, 1970). The ATN formalism is based on the concept of the
Recursive Transition Network (RTN), a representation for grammars of
context-free power. An RTN is expressed as a set of sub-networks of
states and transitions each corresponding to a non-terminal symbol of
the grammar it realises., For instance the context-free rule:

S <~ NP + VP
would be expressed as a sub-network of an RTN thus:
33 NP VP PGP

0 >Q== >0 ->
51 52 33

(where the 81 are states and the arrows are transition)

which would be linearised as input to the interpreter thus:

S
S1 PUSH NP:
GO TO 82,
S2 DPUSH VP:
GO TO S3,.
S3 POP:.

Here, only a single transiticn is associated with each state, but in
the general case, there may be an unlimited number. Each transition
has a test part and an action part,:separated by ':'. If the test part
succeeds, then the actions are carried out. In an RTN, tests are
limited to the following forms:

PUSH <non-terminal category>’
This transfers control to the first state of the sub-network

corresponding to the named non-terminal category, and succeeds
if this sub-network succeeds.

.25

CAT <terminal category»>

This succeeds if the current word in the input string is of the
category stated

WRD <wordy

This succeeds if the current word in the input string is the
word stated

JUMP
This always succeeds

poP
This always succeeds

The only permissibple aciion is:
GO TO <¢state>

If this 1is assoclated with a CAT or WRD test, then fthe focus of
control is moved over one word in the input string. Transitions with
POP tests are associated with the final state(s) of sub-networks, and
have the implicit action of returning control to the higher level sub-
network from which it came,

Since the form of tests and actions 1s restricted in an RTN, the
syntax of the example was unnecessarily complex. State S1, for
instance, could be expressed:

S1 NP:32,

with greater clarity. The more complex notation is necessary 1if we
wish to permit a greater range of tests and actions, and thus augment
the RTN to an ATN, with Turing Machine power. This is iffiCtEd by
adding memory in the form of registers to the RTN model. ctions may
then assign values {o registers an ests may be made on these values.
The POP test 1is given the side-effect of returning the value of a
register called '*' to the calling sub-network. Thus the value of '*!
when the POP transition of the highest level sub-~network is taken is
the result of the parse of the sentence.

Number agreement between NP and VP would be handled in an ATN as
follows. An action which sets the value of a register to the number of
the NP will be asscciated with the NP transition. The VP transition
will have a test which accesses the register to compare it with the
value of number for the VP, Note how a concise descripftion of the
phencomenon of number agreement has been lost, since it is now
partitioned between different transitions.

By providing the appropriate register setting facilities, the ATN can
be used to build linguistic structures of any level. Once again, the
procedural "nature of the ATN means that it is difficult to observe a
succinet statement of the relationship between structures of different
levels. ‘ .

The ATN formalism commits the grammar writer to several choices of
parsing strategy. Control is initially focused at the first state of
the highest level ' sub-network (which will wusually be that for
'sentence'), and at the leftmost end of the input string. During the
course of processing, c¢ontrol is transferred to the networks of lower

26

level constituents, building a representation of the parse as it goes,
and moving rightwards through the input string. These strategies are
known respectively as top-down (since the parse tree is bullt from the
root downwards) and left-to-right. One problem with such strategies 1is
that an error in the input string will terminate the parse completely
at that point, so that processing of the sentence beyond the error
cannot be used fir fail-safe purposes., More important than such
specific drawbacks, which <c¢can be overcome, is that the Kknowledge
represented 1s inseperable from aspects of the parsing strategy. We
see Dbelow how declarative formalisms do not reguire such a commitment
to particular strategies and thus both free the grammar writer from
concern about them and allow the possibility of interpreting a grammar
in different ways.

4.4 Production systems (PSs)

Computation schemes appropriate for application of knowledge
represented declaratively can often be characterised as Production
Systems (PSs) (see Davis and King, 1977). The basic components of a PS
have been introduced above, that is:

a data base, which is the representation of the text at various
stages in its processing

an unordered set of rewrite rules, which define equivalences
between configurations of the data base, that 1is, defining
transitions between implicit states

an interpreter, which has the functions of: determining applicable
rules on the basis of pattern matching between one side of a rule
and the data base; choosing which of several applicable rules to
apply; and applying the chosen rule.

A PS can be used to realise the application of a context-free grammar
in a straightforward manner, either top-down or bottem-up. In a top-
down parse, the data base will initially consist of the distinguished
symbol (e.g. 'S'). This will be matched against the lhs of a rule such
as:

S <- NP + VP

The entire rule can then be treated as a description of the new state
of the data base, by interpreting the rewrite symbol as a 'dominates’'
relation, i.e.

NP//’S\\\VP

The leaves of this tree will then be matched against the 1lhs's of
further rules, and further structure will be built., Finally the leaves
of the tree will be matched agalnst the words or word categories of
the input string.

In a bottom-up parse, the data base 1is initially constituted from the
input string. Word categories are assigned to the words by matching
agalinst the rhs's of dictionary type rules such as:

N <- dog

27

¢ of the structiure:

tae application or wnicn causes the nuilldin

N

dog

Strines of categzories are successively matched against the rhs's of
further rules, until all sub-trees are finally subsumed under an 'S’
node by the application of a rule with the lhs '3'.

A production system can also be used to apcly rules of general rewrite
power, by interpreting the rewrite symbol zs a substitution of e.g.
the rhs (called the action or image) for the lhs (the pattern or
schema}. Such rules are usually expresss2 as cquivalences between
structures rather than vetween strings, and their application can thus
2ffect the building of structures at any lsvel.

4.5 Variations on the PS model

Larze® monolithic grammars expressed in general rewrite form can give
rise to certaln problems, particularly unintended non-terminating
cycles of rule application. This problem can be circumvented by the
use of tactical labels. These are information planted in the data base
by certain rules designed to 'trigger' or 'block' pattern matching
against certain other rules. However, this 'proceduralisation' of the
PS detracts significantly from the clarity and perspicuity of the
represented Knowledge,

A preferable approach is to provide facilities which allcow the grammar
writer to specify any required ordering between rules and sets of
rules without allowing this to obscure the underlying declarative
representation, Tnhese facilities can take the form of a
control language, defined by a context-Tree grammar with named rules
a8 the terminal symbols (Georgeff, 1982). The non-terminal symbols
represent packets of rules, Such packets may also be provided with
pattern matching conditions on their applicability, Dby assoclating a
structural expectation with each rule packet (as in EUROTRA}. In this
way, & hierarchical structure is imposed on the grammar as a whole.

A context-free surface grammar can alsoc be directly augmented to allow
the constiruction of structures at other linzuistic levels. This can be
done merely by associlating procedures with each rule, that may
arbitrarily reorder the daughters at f{he time that the rule 1is
applied. Thus the surface structure is recognised, Dbut a different
level of structure is actually built, as wiih ATHs.

Another possibility is to explicitly build the context-free surface
structure, but provide a mechanism in the grammar . that allows a
'deeper' tructure to Dbe ‘'‘read off' from 1it. Since the surface
"structure includes a structural contribution from each rule which
built 1t, the rules can be reinstantiated from the structure. In
Lexical-Functional Grammar (Kaplan and Bresnan 1982) this is done as
follows., Each non-terminal in the rhs of a context-free rule 1is
associated with an equation, e.g.

3 - NP + . VP
(T subject) = ¥ T = v

The surface structure is Dbuilt witheout taking account of the
equations, with each node given a unique nurber:

S_(1)
NP (2} VP (3)

The equations are then instantiated in any order, with'l' being bound
to the node on the lhs of the rule, and '¥' to the node above the
equation, giving in this case:

(1 subject) = 2
3 =2

The <equations of all the rules used in the bullding of the structure
are similarly instantiated. This complete set can then be solved for
2ll variables, resulting in a functioral structure independent of, but
complementary to, the surface structure. This additive approach to
computing various levels of representation is of obvious appeal in an
MT context, given the conclusion of chapter 3.

4,6 Conflict and ambiguity

The term conflict is used to denote the situation which may arise
during the course of parsing in which the interpreter is faced with
several applicable rules. In an ATN, several transitions whose tests
succeed may leave a given state. In a P3, the pattern of several rules
may match some configuration of the data tase. Three approaches to
conflict are available,

The normal strategy adopted in an ATN is to treat transitions leaving
a given state as ordered, and t¢ take the first. "If the parse is
subsequently Dblocked, <c¢ontrol Tbvacktracks to an earlier polnt of
conflict and follows the next alternative. This is known as the depth-
first strategy, since a single parse (hopefully the correct one) 1is
produced. A successful parse can also be used to initiate
backtracking, so that all legal parses are eventually discovered,.

The depth-first strategy can also be used in a PS. Alternatively, all
alternatives may be followed in paraliel, in which case the parse is
said to be breadth-first. 1In order to keep track of all alternatives,
a PS can use a chart as a data base. The chart allows the application
of rewrite rules to update the data base by addition rather than
substitution. Thus a structure which correponds to the pattern of a
an applled rule is not lost, and can be matched against other rules.
Thus the PS 1s rendered commutative, 1i.e. insensitive to the order in
which applicable rules are applied., {(see TAUM METEO). The chart can
also De used 1in conjunction with a depth~Tirst strategy to store
constituents that have been correctly parsed, even though this may |
have been during the course of an ultimately unsuccessful parse, In
this usage, it is acting as a well-formed substring table.

third possibility, requiring a significantly different framework for
parsing that 1t 1is not appropriate to discuss here, 1is for 11
decisions to be postponed until the correct alternative can be chosen.

This 1s called deterministic parsing (Marcus, 1380).

The above are principally approaches to the problems of local
syntactic ' ambiguity, and do not address directly the question of
chocsing between alternative successful parses. In some situations, it

29

may be possible to determine the acceptibility of intermediate results
of parsing by passing these to a semantic processor as they are bdbuilt,
Such interleaved semantics 1s most approprlate within a depth-first
framework, since it eliminates wunacceptable paths as early as
possible. However, there is little in the way of concensus or theory
about what such a semantic processor suitable for MT might look like.

For MT purposes, 1t seems more appropriate to produce all structures
which are well-formed, elther depth~-first with forced backtracking or
breadth-first. The structures may then be ranked according to some
metriec, and the highest ranked chosen. This metric could be 'number of
case expectations satisfied', but it Is not clear that a successful
version of such a metric ever been realised in a practical MT system.
Representation of ambiguity, metrics of semantic and contextual
likelihood of readings and strategies for applying them are probably
the most fruitful areas for further MT research.

20

The surface gstructure 1is built without taking account of the
equations, with sach node given a unique nurber:

8_(1)
NP (2) VP (3)

The equations are then instantiated in any order, with'?l' being bound
to the node on the lhs of the rule, and '¥' to the node above the
equation, giving in this case:

(1 subject) = 2
3 =2

The equations of all the rules used in the building of the structure
are similarly instantiated. This complete set can then be solved for
all variables, resulting in a functional structure independent of, but
complementary to, the surface structure. This additive approach to
computing various levels of rspresentation is of obvious appeal in an
MT context, given the conclusion of chapter 3.

4.6 Conflict and ambiguity

The term conflict 1is used to denote the situation which may arise
during the course of parsing in which the interpreter is faced with
several applicable rules. In an ATN, several transitions whose tests
succeed may leave a given state. In a PS8, the pattern of several rules
may match some configuration of the data Zase. Three approaches <o
conflict are available.

The normal strategy adopted in an ATN is to treat transitions leaving
a given state as ordered, and to take the first. "If the parse 1is
subsequently Dblocked, control ©backtracks to an earlier point of
conflict and follows the next alternative. This is xnown as the depth-
first strategy, since a single parse (hopefully the correct one) 18
produced. A successful parse can also be used to initiate
backtracking, so that all legal parses are eventually discovered,

The depth-first strategy can also be used in a PS. Alternatively, all
alternatives may be followed in paralliel, in which case the parse 1is
said to be breadth-first. 1In order to keeo track of all alternatives,
a PS can use a chart as a data base. The chart allows the application
of rewrite rules to update the data base by addition rather than
gubstitution. Thus 2 structure which correponds to the pattern of a
an applied rule is not lost, and can be matchﬁd against other rules,
Thus the PS is rendered commutative, 1i.e. sen51t1ve to the order in
which applicable rules are zpplied. (see mg"m METEO). The chart can
also be wused 1in conjunction with a depth- 1rst strategy to store
constituents that have been correctly paTSLd, even though thnis may .
nave been during the course of an ultimately unsuccessful parss. In
this usage, it is acting as a well-formed substring table.

A third possibility, requiring a significantly difTferent frameworx for
parsing that it 1is not appropriate teo discuss here, 1is for all
decisions to be postponed until the correct alternative can be chosen,
This is called deterministic parsing (Marcus, 1980},

The above are principally approaches to th problems of local
syntactic - ambiguity, and do not address directly the question of
choosing between alternative successful parses. In some situations, it

29

References

ALPAC (1966) National Research Council, Automatic Language Processing
Advisory Committee. ‘'Language and machines: Computers in
translation and linguistics' ©Publication 1416, National
Academy of Sciences, Washington D.C.

Barnes, A.M.N, (1983) 'An investigation into the syntactic structures
of abstracts and the feasibility of an ‘'interlingua' for
their transiation by machine' MSc thesis, Centre for
Computaticonal Linguistiecs, UMIST.

Bloomfield, L. (1933) 'Language', George Allen and Unwin, London.

Catford, J.C. (1965) 'A 1linguistic theory of translation', OUP,
London.

Chomsky, N. (1957) 'Syntactic structures', Mouton, The Hague.

Chomsky, N. (1982) ‘'Lectures on government and binding', Foris,
Dordrecht, Holland.

Davis, R. and King, J. 'An overview of production systems', in Machine
Intelligence 8, eds. E. Elcock and D. Michie, Ellis Horwood,
Chichester, England.

van Eynde, r. (1983) 'Two views on the translation problem',
unpublished EUROTRA trigger paper, Catholic University,
Louvain, Belgium.

Georgeff, M. (1982) 'Procedural control in production systems',
Artificial Intelligence 18.

Kaplan, R. and Bresnan, J. (1982) 'Grammatical representation’, in
'The mental representation of grammatical relations' ed. J.
Bresnan, MIT, Cambridge, Mass.

Lehmann, W.P. and Stachowitz, R. (1975) 'Development of German-English
machine translation system. Final {annual) report', LRC,
Univ, of Texas, Austin.

Marcus, M.P. (1980) 'A theory of syntactic recognition for natural
language', MIT, Cambridge, Mass.

Newmark, P. (1981) 'Approaches to translation', Pergamon, Oxford.

Pierce, C. (1934) quoted in Newmark (1381).

Vauquois, B, (1975) 'La traduction automatique a Grenoble', Dunod,
Paris. ’
Winograd, T. (1983) ‘'Language as a cognitive process. Volume 1:

Syntax', Addison-Wesley, Reading, Mass.

Woods, W.A. (1970) 'Transition network grammars for natural language
analysis', Communications of the ACM, vol 13, no. 10.-

31

Appendix A: SISIHAN

Table of contents

0.
l.

5.

6.

7«

8.
9.

Intreduction
Basic nature of system

Data structure

. Dictionaries

3.1 Types of entry
3.2 Master dicticnaries
3.3 Translation dictionaries
Dictionary lookup and morphological analysis
4.1 LOADTEXT
4,2 MDL (Main Dictionary Lookup)
4.3 Morphological analysis
b4 Not-found-words
4,5 LSLOOKUP
Analysis
5.1 HOMOR
5.2 STRPASSO
5.3 STRPASS1
5.4 STRPASS2
5.5 STRPASS3
5.6 PREP1/STRPASSY
Transfer
6.1 CLSLOOKUP
6.2 PREP2
6.3 LEXICAL
Synthesis
7.1 ESYN
7.2 REARR
Hardware details aﬁd dictionary sizes

Documentation

o W W N P

10
10
10
11
11
12
12
12
12
14
14
16
18
19
19
19
20
20
21
21
22
22
24

SYSTRAN

0. Introduction

Development of SYSTRAN began in the late 1960's, when Péter Toma left
the Georgetown University MT project to produce a system on a
commercial basis. The first operational system, installed by the U.S.
Ailr Force for Russian-English translation and vice versa, was
completed in 1973. In 1975 the CEC bought an English-French version,
which it has since developed further and extended to cover French-
English and English-Itallian. Other language-pairs available or under
development include German-English, German-French, German-Spanish,
English-Portuguese, English-Arabic and English-Persian.

l. Basic¢ nature of system

SYSTRAN can best be characterised under the following headings:

(1) Modularity. The system's modular design is usually claimed as its
main 'second generation' characteristic., Modularity is displayed in
the following features:

- programs are of two main types: system programs, written in
assembler code, are independent of the particular languages
belng treated (e.g. control and utility programs, and those
responsible for dictionary lookup); translation programs,
written partly in a higher-level 'macro~language’, are
dependent on the languages being treated and therefore subject
to variation with each language-pair.

- the translation process is broken down into a number of steps,
with separate program modules being principally designed to
cope with different linguistic phenomena (e.g. homograph
resolution, clause-boundary definition, subJect-predicate
recognition; but see below). A module itself may consist of a
number of distinet routines or sub-modules.

- translation programs fall into three types: 8L specifie,
language-pair specific, and TL specifie. The system therefore
has the nature of a transfer system, with separation, in
principle, between SL analysis and TL synthesis. '

In important respects, however, the system's modularity 1is more
apparent than real. In particular, the linguistic operations performed
by different modules are rarely discrete; rather, the operations of
one module are often taken up again in a later module which wuses
pertinent information computed in the interim. Neither 1is the
distinction Dbetween analysis and transfer as well-defined as in other .
systems which can be called transfer-based. These 1issues will
considered further at appropriate points in what follows.,

(2) Linguistic vs. computational components. SYSTRAN's most
significant ‘'first generation' feature is its failure to observe a
strict separation between linguistic data and the algorithms that act
upon those data. Apart from hampering the extensibility of the system
to additlional languages, this has contributed directly to the problems
outlined in (3) below.]

{3) Linguistic strategy. ‘he difticuity, resuiting Irom \z), OI
updating the system to incorporate developments in linguistic theor{,
has meant that SYSTRAN's 1linguistic strategy remains relatively
primitive in comparison to that of later systems. Little attempt has
been made to found the strategy in any coherent, formal model of
grammar. Rather, an essentlally empirical approach has been taken -
particular translation problems have tended to be dealt with as they
arise by local additions or modifications to the program, without
reference to a broader linguistic framework.

2. Data structure

SYSTRAN wuses a linear data-structure, the sentence analysis area,
created in core memory by the routine GETSENTN, following initial
dictionary lookup. The analysis area may hold a maximum of 105 words,
and consists of 160 bytes of memory per word plus a variable-length
area for homographs. GETSENTN loads into the analysis area each word
of the sentence to be analysed, together with the grammatical
information and translation equivalent(s) assoclated with the word by
dicticonary lookup. In the case of high-frequency words, the word is
simply accompanied by its offset address to the grammatical
information table already held in core memory.

Each byte 1in the byte area associated with a word has a particular
function. In general, the byte number specifies some grammatical
attribute of the word, and the content of the byte is the value of
that attribute drawn from a finite range. However, the attribute coded
for by one byte may be dependent upon the value of another byte, e.g
if byte 1 has the value 'noun', the attribute associated with byte 3
is its surface case; if byte 1 has the value 'verb', byte 3 represents
the tense, mood and voice. Certain bytes are also used to represent a
set of binary features, that is, they are interpreted as bit strings.
All ©byte values are expressed in hexadecimal., Attributes are of two
principal types. The first of these represents information pertaining
to the word alone, either specified in the dictionary or computed
according to its use in the sentence. Examples of such bytes are:

Byte no. Content
1 - Primary part of speech (POS) e.g. finite verb, noun,
adjective, adverb, article.
2 —~ Person and number (of verbs and personal pronouns).
3 - Surfa?e case (of nouns/pronouns}; tense, mood, voice {of
verbs).
4 - Gender and number (of nouns).
5, 9, 10 - Prepositional government. ?
5T - Transitivity and complementatlion patterns of verbs.
11 - Semantic/syntactico-semantic features of nouns (e.g.

human, animate, count/mass, abstract/concrete).

The second type of information is relational, 1i.e. representing
sentence, clause and phrase structure. Bytes of this type thus contain
pointers to the byte areas for e.g. a governed/governing word or a
word in concordance with the current word. For example, bytes 18 and
28 are wused to indicate object relations: byte 18 of the governing
word points to the object-word, while byte 28 of the object-word
polints to the governing word. Such grammatical relations are
established during analysis by the STRPASS and PREP1 routines (see
section 5.).

3. Dictionaries

SYSTRAN's lexical data base (LDB) consists of two bilingual
dictionariess tne stem dictionary of single-word eniries, and the
dictionary of multi-word expressions (ID/LS). These master
dictionaries are held on magnetic tape in a format designed to
Tacilitate creation and updating of entries using the lexical data
control system (LDCS). From them are automatically created a series of
translation dictionaries, held in a more compact format on 1indexed
disc for rlast random access, It is the latter that are consulted
during the actual translation process.

3.1 Types of entry

Distinctions are made between the following types of lexical entry:
Stems

These include abbreviations, punctuation marks and certain numerical
strings as well as stem forms as such and/or full-form words., Where
more than one stem form of an SL word exists, each form 1s listed as a
separate entry, with cross-reference to a designated basic entry
containing common grammatical information. When the SL is English, all
English inflected forms (i.e. full-form words) are so entered,
obviating the need for morphological analysis. For more highly
inflected SL's, a morphological analysis procedure is included in
dictionary lookup, to reduce the multiplicity of full-form entries.

Idioms

An idiom 3is defined for SYSTRAN purposes as an invariable - (i.e.
contiguous and non-inflectable) expression (string of words) whose
meaning differs from the sum of the meanings of its constituent words.
Upon identification of an idiom in the SL text, the TL translation as
given in the dictionary entry is attached to the first word of the
idiom, and the expression is marked as translated. This does not,
however, exclude it from subsequent analysis. Typlcal examples of
English idioms are "by the way", "at all costs”, "on the one hand".

Idiom replaces

These are a special kind of idiom, used whenever it is possible to
assign to the expression a single part of speech. In such cases, the
expression is replaced by one with '.' inserted Dbetween its
constituent words (e.g. ON,ACCOUNT.OF), this replacement form being
specified in the dictionary entry for the original form, The
expression 18 subsequently +treated as a single 'pseudo-word' for
translation purposes, and may feature as part of a larger dictionary-
" defined expression (idiom, LS or CLS). Typical examples of idiom
replaces are compound prepositions and conjunctions - e.g. "on account
of", ™"as far as"; compound verbs - e.g. "give rise to", "carry out"; -
and nominal expressions consisting of a verb modifying a noun - e.g.
"dwell chamber"”, "disengage button" (see Dbelow for further
explanation).

The distinction between idioms and idiom-replaces 1is difficult to
Justify on theoretical grounds. The need for it here seems to be based
on the fact that SYSTRAN dces not incorporate a notion of non-terminal
categories - hence the need for syntactic analysis of syntactically
complex 1idioms. However, there seems no reason why the examples of
idioms (as opposed to idiom replaces) cited above should not be

A=3

treated as lidiom replaces and assigned the category 'adverbdb'.

Limited semantics (LS) expressions

Like idioms, LS expressions constitute a single meaning unit,
unanalysable 1n terms of 1ts constituent word meanings; they differ
from 1idioms in allowing one or more words in the expression to Dbe
inflected, though the expression must be otherwise contiguous. Only
the basic form of the expression is entered in the dictionary. All
other inflected forms are automatically recoverable since LS lookup is
based not on the variant word strings themselves but on invariant
identification codes attached to the words during stem-dictionary
lookup. It follows that each constituent word of an LS expression must
have an entry 1in the stem dictionary in order for LS lookup to be
successful. Hence the requirement that the nominal expressions 1like
"dwell chamber" referred to earlier be treated as idiom replaces - the
verbal component ("dwell"), which functions as a noun for analysis
purposes, would not normally have a noun homograph entry in the stem
dictionary.

L3S entries are 1in fact reserved for nominal expressions only, variable
verbal expressions being encoded as CLS's (see below). This
apparently arbitrary stipulation seems to have been dictated by
circumstances obtaining in the early stages of SYSTRAN's development,
and exemplifies the tendency to give greater weight to the programming
status quo than to linguistic motivation,

Typical examples of LS's are:

"blast furnace” (= French "haut fourneau")
"developing nation" (= French "pays en voie de developpement")
"kitchen garden" (= French "potager").

LS/idioms

These are nominal expressions which must be considered as integral
units for syntactic reasons. They differ from the above entry fypes in
that their constituent words retain their individual meanings - 1.e.
no speclal ‘'idiomatic' meaning is attached to the expression in the
dictionary. Essentially, the LS/idiom facility provides a means of
defining a group of words as a noun phrase 1in order to resolve
possible syntactic ambiguity, e.g. '

- to indicate that an adjective has a strong affinity for a
certain noun. Thus "hydraulic brake" would be encoded as an
LS/idiom to ensure the correct translation of e.g. "hydraulilc
brake fluid" (= ‘'flulid for hydraulic brakes' rather than
*hydraulic fluid for brakes')

- to indicate that a present participle is. functioning as the
head noun in an NP - e.g. "equipment cooling" = 'cooling of
equipment' rather than ‘equipment which is cooling’

~ to 1indicate that a present participle is functioning as an
adjective modifying a noun rather than as a verb taking that
noun as its object - e.g. "attaching bolts" as in "tighten the
engine attaching bolts®. ’

Conditional limited semantics (CLS) expressions

These are a type of LS expression supplemented by rules which 1impose
conditions on instantiation., An important use of such rules is in
dealing with non-contiguous expressions. Unlike LS's, CLS's are not
limited to nominals.

The word by means of which a CLS expression is accessed is called the
principal word (PW). A CLS expression may consist of any number of
rules interspersed with any number of words, except that PW must be to
the left or right of all rules. If PW is to the left, then each rule
in the CLS applies to the word immediately to the left of the rule,
and vice versa.

CLS rules may be divided into two principal types - those which impose
conditions on relations between words (type 1) and those which impose
conditions on the information associated with a single word (type 2).
Both can occur in a single CLS expression.

In the following WORD1 is assumed to be the PW unless otherwise
specified:

Type .1 CLS rules:
1Y WORD1 $C-Bn WORD2

indicates that byte n of WORDl's byte area must point to WORD2
(conversely, if WORD2 is the PW). WORD1l and WORDZ are not required to
be contiguous. For example:

CURRENT 3$C-B26 PRACTICE
(PW)

specifies that Dbyte 26 of PRACTICE must point to CURRENT, 1i.e,
"eurrent" must be an adjectival modifier of "practice". Similarly,

HAVE $C-Bl8 PROVISION $C-B24 FOR
(PW)

indicates that "provision" must be the object of "have" and must
govern "for".

1i) WORD1 $C-Bn $C-SEMCAT

This rule succeeds if the word which 1s pointed at by byte n has the
associated semantic feature represented by SEMCAT. For example:

REMOVE $C-B102 $C-ATTACH
(PW)

specifies that "remove" must have as its object (pointed at by byte—
102), a word sub-categorised by the semantic code ATTACH (e. g. "clamp",
"bOlt n "washer")

i1i) WORD1 $C-Bn,M WORD2
Here, 'M' indicates that the meaning of WORD2 remains unchanged

-(norm?lly CLS's, 1like LS's, cancel the meanings of their component
words).

iv} WunLL pu—DU NUNUE

WORD2 must be one word to the right of WORDl1. Variations on this rule
are:

WORD1 $€-BO,+,x WORD2

WORD2 must be x words to the right of WORD1.
WORD1 $C-BO,~,x WORD2

WORD2 must be x words to the left of WORDI1.

Type 2 CLS rules:
i) WORD1 $C-Bn,E,YY
Byte n of WORD1l must be equal to YY (hex.). For example:

PRESSURE DROP $C-B1,E,10
(PW)

specifies that "drop" must be a noun (i.e. byte 1 = 10). The equality
condition may be replaced by an inequality, thus:

WORD1 $C-Bn,NE,YY

i1) WORD1 $C-Bn,0,YY

This form of rule is used when the value of byte n is interpretable as
a bit string (array of booleans). For the rule to succeed, all those
bits which are set in YY must also be set in byte n, -If XX represents
the value of byte n, then the condition for success 1s YY & XX = YY.

The corresponding rule which tests for certain bit positions being
¢lear 1s:

WORD1 $C—Bn,Z,YY
The condition for success is YY & XX = O,

The rule which tests for the presence of any of a number of set Dbits
is:

WORD1 $C-Bn,NZ,YY
The condition for success is YY & XX # O.

§.2 Master dictionaries

The master stem and ID/LS dictionaries of the LDB are maintained in
variable-length record format, each entry consisting of six records.
The following is a description of the main types of information
contained in an entry; in keeping with SYSTRAN practice, records are
labelled according to the lines of the coding sheets used in preparing
entries.

'-' line

This contains the stem or expression 1itself, along with codes

A-56

indicating capitalisation requirements, the type of entry (stem,
idiom, LS or CLS), and PW in the case of LS and CLS's. It also
containg various control codes - e.g. dictionary code number (DC)
distinguishing between different entries for a homograph.

A=1ine

For stem entries, this contains codes used in the automatic generation
of additional word forms - especially impeortant for English where each
inflected form of a word 1ls given a separate entry. If an English noun
or verb participates in a regular inflectional paradigm, this paradigm
is 1indicated by an A-line code, which is then used to create all
additional entries for the paradigm.

For 1diom replaces, the form which replaces the original text string
is given - e.g. "as soon as" will appear in the A-line as $R-
AS.SOON.AS.

B-line
Contains codes indicating:

- primary part of speech (P0OS) - e.g. Iinfinitive, finite verbd,
auxiliary, noun, adjective, pronoun, adverb etc.

- secondary part of speech (BPQ) - e.g. common noun, proper noun,
definite article, indefinite article, possessive pronoun,
demonstrative pronoun, interrogative pronoun etc.

- gender

- number (nouns, pronouns, adjectives)

- case {used in English for possessive/objective pronouns)

- capitalisation

- high frequency word or expression

.~ homograph type (see section 6.1)

- person and number {verbs)

- tense.

A CLS priority code may also be included, to impose a priority
ordering on conflicting CLS expressions - i.e. expressions which
contain different rules and have different TL translations, but which
may in certain instances apply to the same string.

C-line

Contains detajled syntactic or syntactico-semantic codes, 1including
information as to the contextual properties {(govermment, modification)
of the entry. Any number of codes from a predefined set may be listed,
separated from each other by commas. The following 1s a sample of the
codes used for English verbs and nouns:

1) Prepositional government code (PREPR)., A word may be coded as .
governing one or more of 24 common prepositions, é.g.

AT -
(TO, ABOUT)

arrive: PREPR =
talk : PREPR =
2) Verb codes. -

TRAN - always transitive (e.g. "detest")

UTRAN - usually transitive (e.g. "exchange")
UINT - usually intransitive (e.g. "fly")

AINT - always intransitive (e.g. "occur”)

I0BJ - can govern indirect object (e.g. "give")

A=T

GI ~ can govern infinitive without intervening object (e.g. "want")
GOI - can govern direct object + infinitive (e.g. "ask")

GO0 - can govern two direct objects (e.g. “"elect")

NCO -~ can take a noun clause as direct object (e.g. "know")

INSUB - normally takes inanimate subject (e.g. "occur™)

ANSUB - normally takes animate subject (e.g. "see")

HUSUB - normally takes human subject (e.g. "applaud")

(similar codes exist for obJects)
MOTN -~ verb of motion or direction

NMR -~ present participle seldom functions as adjectival modifier
(e.g. "hit")

3) Noun codes.

HU - human

AN animate

AMB - animate/inanimate ambiguity

QUAN quantity or measure

ABS abstract

CON ~ concrete

CT - count

MS - mass

GI - can govern infinitive (e.g. "the attempt to...")
TP - time period

GRP - collective noun

NAP -~ can be followed by a noun clause in apposition (e.g.
"the proof that...")

GG - noun + preposition frequently governs gerund (e.g. '"the method
of working")

D=-line

Reserved for codes representing semantic markers of wvarious kinds.
Some U450 such codes have been defined for the system, originally
designed to provide information about subject fields. 1In practice,
only a fraction of these have been used in applications to date. They
include:

- generalised markers, e.g.
_ PRCEN - 'generalised process'

PRPHY - ‘'physical property'
MATER - 'material’

CONTNR - 'container’

PROF -~ 'profession'

-~ gsemi-specific markers, e.g.
CHCOM - ‘'chemical compound’
CHEIM - 'chemical element'
FPROD - 'food product'
FINAN - 'finance'’
GEOLOC ~ 'geographical location®

- specific markers, e.g.
MONTH
CITY
COUNTR - ‘'country'

Note that no attempt has been made to integrate these and other
semantic features (e.g. HUman, ANimate, specified in the C-line) into
any sort of hierarchy - the distinctions (if any) between general,

specific and semi-specific markers have n¢e functional value in the
system. ’

A-38

The decision to incorporate particular markers 1s maae empliicalsiy,
depending on their usefulness in resolving specific problems of
analysis or translation. In analysis, thelir main function lies in
disambiguating enumerations (see section 5.5). In transfer, semantic
markers may be used to guide selection of the correct TL item. For
example, "employ" would be translated as "employer™ rather than
"utiliser" whenever 1its object is designated as PROF. Also, certain
markers may trigger more complex lexlical routines during transfer. For
example, COUNTR calls a routine ensuring appropriate translation and
insertion of prepositions in e.g.

"in Belgium and Luxemburg” - "en Belgique et en Luxembourg"
E-line

This 1s the first bilingual section of the entry. It encodes the
appropriate translation of any preposition(s) governed by or governing
the item, where this translation differs from that given in the
dictionary entry for the preposition itself. For example, "cover with"
translates into Prench as "couvrir de"; hence the E line for "cover"
will include:

WITH = (B = 12)

. where 'B' ('Before') denotes that the main item, "cover", precedes the
preposition, and '12' 1s the number of the preposition "de" as it
appears in the TL preposition table, When the item is itself governed
by a preceding preposition, as with "in French", this is indicated by
'A' ('After') instead of 'B'. Two or more prepositional codings for
the item are separated by commas, thus:

WITH = (B = 6), TO = (A = 1)
F-line

Contains TL translation{(s) together with morphological, syntactic and
other specialised information required in TL synthesis.

The need to enter multiple translations for a given SL stem 1is reduced
in SYSTRAN by:

- according separate dictionary entries to SL homographs

- the use of separate idiom, LS or CLS entries to distinguish
between different meanings of an SL word in different
sentential contexts

- the application, during transfer, of lexical routines which
themselves provide the appropriate translation of any SL word
for which they are called.

However, where polysemy is related to the more general extra-
sentential c¢ontext, it may be dealt with by entering .multiple
translations, distinguished by means of Topical Glossary (TG) codes.
These c¢odes are used to select the appropriate translation on the
basis of text type/subject fields, explicitly pre-specified when the
text 1is Input to the system. The CEC English-French system includes

some twenty or so TG codes, e.g.

Q0 - general

1 - physics

2 ~ electronics

3 - computers, data-processing
ete.

TG codes have in fact been 1little used in CEC versions, because of
their inflexibility - #.g. at present the system has no way of
recognising changes in subjJect fields within a particular text.

3.3 Translation dictionaries

The 1lexical data represented in the LDB master dictionaries are
reorganised into various disc files according to the needs of
dictionary 1lookup at different stages of translation. These files,
constituting the translation dictionaries, are:

HFWD - high frequency word table

BFIT - high frequency information table

RID - source idiom table

EID - target idiom table

LDICT - long stem dictionary (>7 characters)
MDICT - medium stem dictionary (4-7 characters)
SDICT - short stem dictionary (1-3 characters)
GDICT -~ grammar dictionary

LSDICT - LS/CLS dictlonary

XLSDICT ~ LS/CLS dictionary index

The HFWD contains high frequency elements accounting for about 30% of
text ‘'words' e.g. punctuation marks and function words. It also
.eontains the first 15 characters of idioms, with offset address to the
RID. Each word in the HFWD has attached to it an offset address to
HFIT, containing grammar and translation information for that word.
During . analysis, the entire HFIT is kept in memory for raplid access
via the offset addresses.

The RID contains the continuation of idioms (in excess of 15
_characters), together with offset addresses to the HFWD and to the EID
where TL translations for each idiom are stored.

Low frequency stems are divided between LDICT, MDICT and SDICT,
according tQ 1length of stem. Included in each entry are an offset
address to GDICT, for corresponding grammar and translation
information, and an offset address to XLSDICT if the stem can function
as principal word of an LS expression.

4. Dictionary lookup and morphological analysis

4,1 LOADTEXT

For the first stage of dictlonary lookup, the text is loaded into the
high speed core memory by the program LOADTEXT. Each word of the text
1s 1isoplated into a separate text-processing record and given a text
sequence number. At the same time LOADTEXT sets up in core memory the
high frequency word and idiom tables (HFWD, HFIT, RID, -EID) and a
table (LEXTBL) of words requiring special translation routines (see
section 6.3). _ '

A - 10

Fach text word is then checked against:

- LEXTBL - a match causes an offset address to the corresponding
routine to be attached to the word

~ HFWD (in a binary search) - a match causes an offset address to
the corresponding grammar Information in HFIT to be attached to
the word.

If the string matched on HFWD 1s the first part of an idiom, the
continuation of the idiom is looked up in RID using the offset address
attached to the HFWD entry. If the idiom continuation is also matched,
the TL meaning is accessed from EID and attached to the first text
word of the idiom, subsequent words being marked as translated.

In the case of idiom replaces, the SL expression is replaced by the
'dummy word' designated in the RID entry, so preventing the component
words of the expression from undergoing individual lookup in the stem
dictionary. For idioms as such (in the SYSTRAN sense)}, dictionary
loockup and translation at this stage does not prevent subsequent
lookup of component words in the stem dictionary, which may provide
crucial grammatical information. The same is true of LS/idioms, which
are ‘'frozen' at this stage - in thelr case, subsequent stem lookup
also provides the TL translation of component words.

In addition, LOADTEXT includes a special routine to deal with
hyphenated words. These are broken down into their components which
are individually 1looked up, to be ultimately reassembled in an
equivalent TL form. e

Finally, LOADTEXT invokes a routine {(SORT 1) which sorts all 1low
frequency words intc an appropriate alphabetical sequence, ready for
the next stage of dictionary consultation.

4,2 MDL

The program MDL (Main Dictionary Lookup) attempts to match the entries
on the low frequency word list output by LOADTEXT against the low
frequency dictionaries (LDICT, MDICT, SDICT). These dictionaries are
organised so that the longest match is obtained. Any unmatched portion
of the text word is checked to ensure it is a valid affix for the
paradigmatic type of the stem (see 4.3). These remarks do not apply in
the case of English, where all paradigmatic forms are entered directly
in the dictionary. .
On finding a match, the corresponding grammar information is accessed
from GDICT and copied into the processing record for the matched word.
TL meanings are also copied, with MDL using the Toplical Glossary codes
where applicable to select approprlate translations, When a homograph
is encountered, all information relating to each usage 1s copied, for .
later use by the homograph resclution routine at the Ybeginning of
syntactic analysis.

After all the words have been processed, the text is restored to its
original word order by the routine SORT 2, using the sequence numbers
assigned by LOADTEXT.

4.3 Morphological analysis

As noted earlier, SYSTRAN translation from English does not involve
morphological analysis, - dictionary entries being full-form words. For

A - 11

other SLs, e.g. French, morphological analysis 1is Zincluded.

In French analysis, MDL calls two morphology programs SYSNCUN and
SYSVERB, which make it possible to recognise all inflected forms of
nouns/adjectives (SYSNOUN)} and verbs (SYSVERB) during dictionary
lookup of basic stems. Both programs consist essentially of tables of
inflectional endings accompanied by the grammatical information which
each ending contributes - e.g. number and gender for nouns and
adjectives, person and tense for verbs. On finding a potential stem
match on initial characters of a text word, the PST code located in
the stem entry 1s used to access the list of possible endings for that
stem; the remaining characters of the text word are checked against
this list and, in the event of a match, grammatical information from
the ending is attached to the text word along with information from
the stem itself, Because of the search algorithm used by MDL, the
first wvalid stem + ending combination encountered will be the one
which gives a longest match on the stem (as compared with other valid
combinations for the same word). It is not clear from the
documentation whether or not the search continues for other wvalid
combinations.

4.4 Not-found-words

If dictionary lookup falls for any particular text word, the routine
NFWRTN (not-found-word routine) is invoked. The word is first tested
for the possibility of its being a number (numeric or alphanumeric,
ordinal or cardinal); if it is, appropriate grammar and translation
codes are attached. If not, the word 1s processed agalnst a word-
ending table 1in order to extract as much grammatical information as
possible., A word for which no such information can be obtalned 1is
indicated as such by a POS value of EO.

4.5 LSLOOKUP

If a word is the PW of any LS, this information will be indicated in
the appropriate byte of the byte area as a result of stem dictionary
lookup. LSLOOKUP accesses the LS dictionary for each word so marked,
and determines whether any of the LS's are in fact present - in the
text, updating the information in the analysis area accordingly.

In some versions of SYSTRAN, this routine occurs after homograph
resolution, though it would seem to be more appropriate at this point.

5. Analysis

After dictionary lookup has been completed, control is passed to the
program INITCALL, which charges and executes the various translation
modules, beginning with GETSENTN (see section 2). Once a sentence has
been loaded 1into the analysls area, it is analysed by each of the
following modules in turn.

5.1 HOMOR

This module attempts to resolve homograph ambiguity, using the
information assigned during dictionary lookup. In SYSTRAN, a word is
treated as a homograph if it can function as more than one part of
speech (POS)., TFor each SL, a set of homograph types is defined and
encoded, each type representing a possible POS combination in which a
given homograph may participate. For English, some 83 homograph types

A - 12

have been identified - e.g.

001 verb / infinitive (e.g. "go", "have")

006 verb / infinitive / past-participle / adjective (e.g. "read")

027 auxiliary / noun (e.g. "might")

039 noun / adjective / adverb / preposition (e.g. "outside”, "past")

041 relative pronoun / interrogative pronoun / interrogative adjective
(e.g. "which", "what")

061 adverb / preposition / subordinate conjunction (e.g. "since",
"before")

All homographs are assigned the appropriate type-code when entered in
the dictionary. The different parts of speech for each homograph are
given separate entries, linked by offset addresses, On creation of the
sentence analysis area by GETSENTN, only one (the most common) POS
entry 1is loaded into the analysis area. 1In the byte area for this
word, byte 137 indicates the homograph type and byte 55 contains a
sequence number giving access to the other POS entries, which are
stored in a special variable-length area following the analysis area.
If the POS initially stored in the analysis area is determined by the
homograph routine to be the incorrect one, the routine replaces 1it
with the the correct POS taken, along with its 160 bytes of
information, from the variable-length homograph area.

HOMOR includes the following sub-programs:
LEXFF

Exempts from consideration any homograph POSs marked in the dictlionary
as 'FF' (semantically ambiguous). These will be processed at a later
stage by special lexical routines (see section 6.3).

HM PASS 1

Identifies any homographs participating in an LS expression, and
selects POS accordingly. The fact that no word in an LS expression can
function as a verb reduces selection possibilities, and the
homograph's position in the expression may give further clues as to
its POS. This routine also searches for not-found-words (POS = EO) and
identifies them as nouns if preceded by an article, preposition or
number.

HM PASS 2

Treats remaining homographs by* calling the resolution routine
corresponding to the homograph code in each case. These routines may
examine the surrounding environment as far to the left or right as
necessary for successful resolution. As the pass is from left to
right, resolution is based as far as possible on words to the left of
the homograph, since any other homographs appearing there will have _
already ©been treated. In completely ambiguous cases - e.g. where
resolutions of two or more homographs are mutually dependent -~ the POS
originally entered in the analysis area is selected by default.

It 1is important to bear in mind that the routines only have access to
basic grammatical information derived directly from the dictionaries.
Other information, about e.g. clause boundaries and syntactic
function, 1s established by subsequent analysis modules and is
therefore unavailable to HOMOR. This necessarily limits the efficacy
of the resolution routines, and means that their results are subject
to later revision by other modules. This in turn 1is not only

A - 13

uneconomical, but also Jeopardises the claim to genuine modularity
since, 1in effect, other modules with other professed zims are obliged
to take on a function intended for HOMOR.

Certain more recent SYSTRAN versions are reported to have HOMOR
following LSLOOKUP (see next section). This resequencing makes HOMOR's
task somewhat easier by eliminating components of LS expressions from
consideration (recall that LS expressions may only contain nouns).
However, it does not substantially affect the criticlisms Jjust made.

5.2 STRPASSO

The purpose of this module is to:

- establish clause boundaries within the sentence, marking
them with a sub-sentence unit marker (SSU)} placed at the
last word of each clause

- set up pointers on either side of an embedded clause or
parenthetical phrase so that these units may be skipped
during subsequent analysis of the main clause

- assign to byte 140 of each word a value indicating the type of
clause to which it belongs.

Eleven types of subordinate clause are recognised for English, 1i.e.
relative, noun, interrogative, restrictive, time, generalisation,
comparative, causal, purpose, conditional and concessive clauses. Each
potential clause opener (which may be an idiom replace} is encoded in
the dictionary for the type of clause it may introduce, and it 1s this
code that is assigned by the program to¢ the other words of the clause.

STRPASSO operates by examining each item of the sentence in turn,
calling different subroutines depending on whether the item 1is a
relative pronoun, subordinate conjunction, c¢onjunctive adverb, semi-
colon, colon, parenthesis, dash or comma. The subroutines scan the
environment as far to the left or right as necessary, checking for the
presence of other items (e.g. ~finite verb, punctuation) serving to
define particular clause types.

5.3 STRPASS1

The main aim of this module is to establish the ‘primary syntactic
relations' -~ 1i.e. relations of government and modification - between
words of the sentence. These relations are indicated by setting
pointers ©between participating words, using the pairs of bytes
reserved in the byte areas for this purpose. The following sets of
rela?ions are determined for English (numbers refer to the bytes
used):

16-26
adjectival modifier - noun
adverb - adjective or adverdb

17~-27 .
participle or adjective (following the noun) - noun
infinitive (following the noun} - noun

18-28
verb - direct object
preposition - object of preposition

A - 14

19-29
verb - indirect object
verb - adjectival complement (in verb + object + adj. complement

sequence, e.g. "He painted the ball red")
verb - second object complement (double object)

20-30
noun - noun modifier
noun -~ possessive noun modifier

21-31
verb - infinitve
verb - present participle

22-32
antecedent - relative pronoun

23-33

adverd - verbdb

96-77

linking verb - predicate {(noun or adjective)

118-119
noun - number in apposition

In each case, two pointers are set up, from the the modifying or
governing word to the modified or governed word and vice versa. Where
more than one modifier is present, the second pointer points to the
outermost modifier in the sequence -~ e.g.

| 126
the big fat man
16} 16} 16} '
1

“l

i

| |
]

!

-

Note that relations are not estéblished across ¢oordinating
conjunctions (e.g. "and", "or", comma)} - this is left to a separate
module, STRPASS2 (see below). '

STRPASS]1 operates in a left to right pass, examining one word at a
time and skipping over embedded clauses, which are scanned after the
main clause. | Syntactic relations are identified Dby specilalised
routines corresponding to particular POSs encountered during the scan.
PO0Ss already encountered are remembered by setting switches and saving
word addresses, the appropriate switch being turned off whenever no
more relations with a given word are applicable, or when an
enumerative operator is encountered.

In addition, the module alsc performs the following:

- = marking, by different bit combinations in byte 12, all words
functioning as nouns, adjectival modifiers, finite verbs and
pronouns. . These are more general .categories than the
corresponding P0OSs, which they subsume. For example ‘finite
verb' here covers the P0Ss:

04 finite verb (non-auxiliary)

08 ‘auxiliary verb (except those below)
40 finite form of "be"

54 finite form of "have".

A- 15

-~ copying information on tense, person and number from non-modal
auxiliaries to the main verb, changing the ccde of the mailn
verb to 'finite’.

~ setting negative particles as 'translated', and the appropriate
word as negated,

- setting comparative and superlative adverbs as 'translated’',
and marking the following adjective or adverb as comparative or
superlative.

- changing the POS of a word, where necessary, on the basis of
information contained in an LS expression. 27777

5.4 STRPASS2

This module extends syntactic relations over enumerative sequences,
i.e. sequences of sub-clausal items connected by enumerative
operators. It establishes relations between the units themselves, and
between them and other sentence elements, overruling where necessary
relations established by STRPASSI.

The program makes a single 1left to right pass, searching for
enumerative operators which have not already been identified by
STRPASS0O as clause separators, On locating such an operator, the POS
of the words immediately to its left and right are examined to
determine invocation of the appropriate specialised sub-routine - NENO
(nouns), ADJENO (adjectives)}, ADVENO (adverbs), PRENO (prepositions),
VENO (finite verbs), INFENO (infinitives) and PTENO (participles).

If the two words have the same POS, selection of the appropriate
routine is straightforward. If they have different POSs, the program
attempts to resolve the discrepancy before a routine can be invoked.
In doing so, the POS of the word to the left of the operator is taken
as a major guideline. For example, in the sentence:

"The camera and other necessary equipment will Dbe available"
NOUN ADJ

the fact that "camera®" is a noun will cause the program to reject the
adjective "other™ as the potential second unit in the enumeration, and
to select instead the noun which it modifies, "equipment". The routine
NENO can then be invoked.

The purpose of the routines is to make further checks to <correctly
determine the enumerative sequence, and to link the enumerated words
by means of pointers, using bytes 47 and 48 to point forward and
backward, respectively. The kind of checks necessary may be
illustrated by the particularly problematic case of noun enumerations
in English. A major problem here 1is presented by sequences of the
type: '
NOUN1 and NOUNZ2 NOUN3

which are potentially ambiguous: NOUN1 and NOUNZ2 may linked
enumeratively as Jjoint modifiers .of NOUN3; or NOUN2 may alone modify
NOUN3, with NQUN1l and NOUN3 linked enumeratively as joint heads of the
coordinate NP. The rules (or, more aptly, heuristics) applied to
resolve the ambiguity include the following: '

A'- 16

a} If NOUN1l is itself modified by an adjective or noun, it is assumed
to stand in enumeration with NOUN3, e.g.

"This study concerns physical ﬁi?ness and body agiiéty“
T i

Otherwise, it 1s linked with NOUN2 as modifying NOUN3, e.g.

"This study concerns ilcohol and tobagco effects on the body"
7. P4

b} Where a finite verb occurs to the right of an enumerative seguence,
its number may indicate the correct solution, e.g.

"Smog and pollution control are pressing issues”
b7} | 48

;STog and pol}Egion control is under consideration®
T '

¢} Where two of the nouns share the same semantic markers, they can be
assumed to stand 1In enumeration with each other. For example,
"production” and "sterilisation" would have both been assigned the
marker PRGEN ('general process’}, leading to a correct solution in the
sentence:

"Production and sterilisation plants were installed”

bt |48

Similarly, the marker FPFROD ('food product') assigned to "fruit" and
"vegetables" resoclves the ambiguity in:

"iruit and vegengle markets did well last year"
7 ; .

The strategy by which the gbove are applied is not clear.

After the 47-48 pointers have been set, the main program moves to its
second task of finalising syntactic relations between enumerated words
and the rest of their environment. This is necessitated by the fact
that STRPASS1 did not attempt to establish relations, enumerative or
otherwise, across enumerative operators. In some cases, however,
STRPASS]1 will have correctly identifled the relation between the first
word in the enumeration and its preceding environment, requiring only
a straightforward extension of that relation to succeeding words. 1In
the following example, STRPASS1 has marked the 18-28 (verb - direct
object) relation between "demands" and "speed", and the 47-48 pointers
have been set by NENO:

BTV T TTL48
"This project demands speed and accuracy"”
18} | 28

All that remains is to change byte 18 of "demands" to point to the
outermost enumerated word, "accuracy", and set up the corresponding
pointer in the reverse direction, viz.:

L
"This project demands speed and accuracy"
1 EE {28 128
. - 1
| I

A - 17

In other cases, SUHPASSZ wWili De requlrea w0 [eCllly LICullece
analyses resulting from STRPASS1. In the following example, STRPASS]
has correctly identified the 20-30 (noun - noun modifier) relation
between "prices" and "fuel", but on encountering "aznd" ceased to
search for further relaticns between "prices” and words to the left of
"and". It has therefore analysed "food" as being the object of
"about:

b7l T 148
“The nation 1s concerned about food and fuel prices“
18} 128 300 120

Having correctly established the 47-48 relation, STRPASS2 will now
recognise "prices" as the head noun of the phrase and thus as the true
object of "about", and will reset the pointers accordingly:

W77 148
“The nation is concerned about food and fuel prices“
18} 30§ 300 | '20 28
, —

| f

Again, precise details of the algorithms involved are unavailable.
However, such examples give further indication of how SYSTRAN's linear .
approach leads to 'short-sighted' decisions being made in the earlier
stages of analysis, which then have t0 be undone in later modules by
highly specific corrective routines, A more coherent phrasal analysis,
even if it required backtracking, would at least reduce the need for
separate rules and routines having the sole purpose of rectifying
earlier analysis errors, and so avoid much of the opacity of SYSTRAN's
operation,

5.5 STRPASS3

This module identifies the subject and predicate of each clause and
sets pointers to mark the relation. The task 1is relatively
straightforward given the successful accomplishment of the previous
passes. Verbs marked as finite by STRPASS1 are potential predicates,
and nouns or pronouns not marked as objects (of verbs/prepositions)
nor as modifiers are potential subJects.

The program begins by singling out each clause for treatment, setting
pointers to the first word of the clause and to either the last word
of the clause or the word before an embedded c¢lause, using clause
boundary information' from STRPASSO. It then calls the subroutine PLOOP
which scans the clause left to right for a predicate - i.e. (in
English) a finite verb not immediately preceded by "as". The location
of this verb 18 registered in byte 108 of the first word of the
clause, and a check is made to see if STRPASS2 has marked the verb as
one of an enumerative sequence. If so, the verbs in enumeration are
linked Dby pointers in bytes 109 and 110 to indicate the presence of a
multiple predicate.

The subject search routine SLOOP is then invoked. This begins by
checking if the sentence ends with a question mark, indicating that a
search to the right of the predicate is in order; if not, the subject
is sought to the left of the predicate. Scanning left to right, the
routine examines all words which have been marked by STRPASSl as
functioning as nouns. If such a word is found that has not also been
marked as an object of any kind nor as a modifier of a second noun,
that word is identified as the subject. Failing this, a search 1is made

A~ 18

ror other possible subject elements - i,e. a noun clause, intrinitive,
present participle or (in English) the word "there". If no subject can
be identified, the predicate is marked as imperative.

On identifying a subject, pointers are set up between it and the
predicate, using bytes 108 and 111, and from the subject to the first
word of the clause., Finally, byte 47 of the subject word is checked to
see if it functions in an enumeration, in which case multiple-subject
pointers are established.

It will Dbe seen from the above description that STRPASS3 appears to
rely heavily on the results of the previous passes, especially of
STRPASS1. It 1is not clear to what extent, if any, morphological
agreement is used to independently verify subject-predicate relations.

5.6 PREP1/STRPASSY

PREP1l (English SL) is responsible for identifying the relation between
a preposition and its governor, and for marking the relation by means
of pointers 1in bytes 24 (governor to preposition) and 35 (preposition
to governor). The program scans the sentence right to 1left for
prepositions and, for each one encountered, searches to its left for a
word whose prepositional government code (PREPR) specifies this
preposition., If no such word is found before the current clause
boundary is met, the program scans to the right for a2 main verd that
may be the governor,

STRPASSY, as included in more recent versions of SYSTRAN (e.g. CEC
French-English), subsumes the function of PREPPGMl and in addition:

— identifies 1logical relationships between e.g. a predicate and
its arguments '

- resolves any ambiguity as to gender and/or number of SL words.

6. Transfer

Certain of the more recent descriptions of SYSTRAN (e.g. van Slype and
Pigott, 1979) identify the modules described below as constituting a
'transfer phase'. They are indeed language-palr specific in that, in
general, they involve selection of TL structures and/or lexical items
on the basis of surface characteristics of the SL text. However, the
same can be sald of the 'analysis' module LSLOOKUP, especlally since
it assigns TL equivalents to L3/idiom expressidns, which are far less
cpaque in terms of the SL than 'true' idioms. Hence the distinction
between analysis and transfer is less clear-cut in SYSTRAN than in
other systems that rely less heavily on dictionary translation of
entire expressions.

6.1 CLSLOOKUP

This module operates in the same way as LSLOOKUP, sharing the same
routines for ldentifying relevant expressions in the SL sentence (via
the PW) and for assigning particular TL meanings to compenent words.
In addition it includes specialised sub-routines for interpreting and
applying CLS dictionary rules. These rules are described in section
3.1 above; as explained there, they impose conditions on the selection
of particular TL meanings for certain SL words or expressions. The
conditions 1involve reference to syntactic relations marked via byte-
area pointers - hence ' the need to order CLSLOOKUP after the main

A =~ i9

analysis modules have established these relations. For example, 1he
selection of ‘"employer" rather than "utiliser®™ for the English
"employ" 1s effected by a CLS entry embodying a condition on the
presence of a direct object (active sentence) with the semantic marker
PROF ('profession'). If included, the assignment of lcgical relations
by STRPASS4 obviates the need for different active/passive versions of
the rule.

It is possible for conflicts to arise between different CLS rules or
between a CLS rule and an LS assignment, where these involve the same
text item(s). In the former case, conflict is resolved by priority
codes included where necessary in CLS dictionary entries. In the
latter case, priority is given to translations already assigned by
LSLOOKUP.

6.2 PREP?

This module selects the appropriate translation for each SL
preposition that has not already been marked as translated by
CLSLOOKUP,

Where applicable, the selection 1is determined by preposition-
translation codes attached to the governor or object of the
preposition from the E-line section of the dictionary entry for these
words {see section 3.2). Por each non-translated preposition
encountered, 1its governor and/or object is located (via the pointers
set by STRPASS]1 and PREP1/STRPASSY) and checked for the presence of
any such code applying to the preposition in question. If found, the
specified TL preposition 1s retrieved from the TL preposition table
and attached as the approprilate translation to the SL preposition.

Where no. such code is present, the translation specified in the
dictionary entry for the preposition itself is selected by default.

6.3 LEXICAL

A number of highly specialised lexical routines may be invoked at this
stage to deal with words (and constructions containing them) which
present particular problems for translation. Routines are written for
individual words and for semantic or syntactic categories of words.
Word-specific routines are accessed via offset addresses, attached to
the text word by LOADTEXT from the file LEXTBL. Category-specific
routines are listed in a separate file LEXLIST, consulted directly by
the main LEXICAL program. The program Qperates in left to right pass,
examining the byte area of each word for either an offset address to a
routine or a syntactic/semantic category code matching on LEXLIST. The
corresponding routine is then applied.

There 1is virtually no limit, apart from programming constraints and
the general nature of the SYSTRAN data structure, on the operations
that may be performed by lexical routines. They may specify target
translations for words and constructions; insert, delete, and reorder
elements to conform with TL structure; c¢hange SL ¢r TL grammar codes;
and attach special markers to influence TL synthesis procedures. The
following examples, from the English-French system version 1, give an
indication of their use :

APPLYR - this routine marks the verd as reflexive when "necessary,
e.g. 1In *"this applies te all methods" but not in M"apply
heat to X",

A=~ 20

CITYRTN - assigns to all words encoded with the serantic category
CITY a special marker preventing article-insertion; when
governed by "in" or "at", selects the translation "a".

EXPECTR - determines the appropriate translation of constructions
involving "“expect", e.g.
"He is expected to come" - "On s'attend a ce qu'il vienne"
"He expects to come" - "Il s'attend a ce qu'il vienne®.

GOIVERBR - determines the appropriate translation of constructions
involving certain verbs coded as GOI (‘'may govern
infinitive'}, e.g.

"They required him to vote" cf.
"They required the ballot to vote®

ITR - determines whether "it" is impersonal (to be translated as
"il" or "ce") or anaphoric. In the latter cazse, the routilne
finds the antecedent (it is not clear how) and translates
"it" as "il" or "elle" accordingly.

WHICHR - for all relative pronouns: determines number, gender,
animate and concrete features of antecedent and copies this
information into the relative pronoun.

Further details of the operation of individual routines are
unavailable. However, given the relatively superficial nature of
SYSTRAN's structural analysis, it is clear that many of the routines
must themselves incorporate very ad hoc analytical procedures in order
to achieve their results (ITR and a handful of other routines dealing
with anaphoric reference are a case in peint). It is presumably this
eriticism that has motivated the introduction and extension of CLS
rules to cover much of what was originally the domain of 1lexical
routines. (Unofficial reports suggest that this has recently been
taken further, with the introduction of a new type of CLS rule capable
of changing grammatical codes in the byte area; no details of these
have so far been received)}. However, although CLS rules as described
in section 3.1 are subject to more formal constraints than lexical
routines, they are even less general since they can be invoked only by
specific words rather than word categories.

7. Synthesis

The synthesis phase consists of the following two modules:
7.1 ESYN

This program makes a left to right pass through the sentence,
translating each item on the basis of:

-~ the appropriate TL stem (or full form) selected by previous_
modules

- synthesis routines specific to certain parts of speech.
The French module contains 16 synthesis routines,- e.g. for verbs,
nouns, pronouns, adjectives, adverbs, articles, comparative
conjunctions etc. As an example, the verb routine VERBR includes:

- determination of peréon, number, gender, tense and mood

A - 21 .

= 1nsertion 0I negatlive particles

- choice of auxiliary (etre/avoir)
- determination of participle agreement

- ending affixation, wusing a table of regular and irregular
paradigms.

7.2 REARR

This imposes the correct TL word order where different from SL. The
program makes a right to left pass, calling appropriate rearrangement
routines for particular POSs and syntactic relations, e.g. noun -
adjective, noun - noun modifier, verb - adverb etc,

The French module also includes two additional routines, called after
all reordering has been completed. The first of these 1s invoked for
all words marked APOS, indicating that their final vowel is to be
elided before a word beginning with a2 vowel or mute 'h’'; the routine
deletes the final vowel and inserts an apostrophe, where appropriate.
The second routine anticipates the possibility that the subject of the
following (as yet 'unseen') sentence may be the pronoun "it". The
program scans the current sentence for a potentlial antecedent and
saves 1its gender for later use in translating the pronoun should it
occur. (No provision appears to be made for non-subject "it" or for
other pronouns with extra-sentential antecedents). The criteria used
in selecting the potential antecedent are not documented; however,
since this routine follows the rearrangement routines rather than
being included under e.g. LEXICAL, it presumably depends on TL word
order, and possibly does little more than select the last nominal to
have a non-human reference. Note that this routine represents the only
attempt in SYSTRAN to take analysis beyond the sentence level.

8.0 Hardware details and dictionary sizes

The original system was designed to run on IBM 360 and 370 series
machines, with a core memory of 400 Kbytes and slow memory of about 3
Mbytes. The CEC English-French version runs on an+IBM 370/145 under
0S/Vl, on an IBM 370/158 under 0S8/VSl, and on a Siemens 7740. Texts
for translation are prepared on punch cards or magnetic tape, or
keypunched directly.

The raw translation speed of the CEC system is 2000 words per cpu
minute on the 370/145 and 6000 on the 370/158. The total cost of
finished translations per word is estimated as follows:

Stage Price (Belgian Francs)
Data capture 100
Machine translation 35
Post-editing 300
' Typing 40
TOTAL 475

The above post-editing cost 1s for a translator working in a large

A - 22

institution, and 1is significantly lower 10Or Iree-lance WwOrs. ouiiie
post-editors usually work on hard-copy output, which is subsequently
re-typed, there would appear to be large savings available were the
system to be more integrated with the translation process, with
documents produced originally in machine-readable form and each

translator/post-editor working with a dedicated word-processor.

The cost of creating new dictionary entries has been estimated at
$2.5. As of 1979, the following versions of SYSTRAN were being used or
developed, with the dictionary slzes shown:

Language pair Dictionary size Subject area
Russian-English 1 500 000 20 scientific areas
English~-French 72 000 Engineering,
automobile technology
English-Spanish 6 000 Reprography
English-French {(CEC) 70 000 Agriculture,
economics etec.
English-Italian (CEC) 70 000 Agriculture,
economics etc.
French-English (CEC) 4o 000 Engineering etc.
German~-English/ 15 000 Automobile technology
French/Spanish
English-Arabic/
Portuguese 20 000 Technology

(pilot system)

A =-23

9. Documentation

Guazzo, J. 'A short description of SYSTRAN', CEC-TH24B3-AS5.

Haller and Guazzo-Jansen 'SYSTRAN: second quarterly report', TH244A,
CETIL/194/80, 31 May 1980.

Masterman, M., and Smith, R.J. 'The automatic annctation of SYSTRAN',
Final report, TH-29, Cambridge lLanguage Research Unit.

Pahl, T. 'SYSTRAN: second quarterly report', TH24B, CETIL/198/80, 4
June 1980,

Pigott, I. 'How does SYSTRAN translate?' presented to Natural Language
Translation Specialist Group of the British Computer Society,
23 April 1980.

van Slype, G. 'Le systeme SYSTRAN', CEC, Etat de la question sur les
activites multilingues en matiere d'information scientifique
et technique, Note de travail no. 6.1. 25 March 1976.

van Slype, G. and Pigott, 1I. 'Description du systems de traduction
automatique SYSTRAN de la Commission des Communautes
Europeenes', Documentaliste, vol 16, no. 4, July-Aug 1979.

Toma, P., Kozlik, L.A., and Perrin, D.G. 'SYSTRAN machine translation
system', Latsec Inc., La Jolla, California.

World Translation Corporation. Documentation of English-French system
supplied to CEC, version 1.0.

World Translation. Corporation of Canada 'An introduction to the
SYSTRAN IT computer dictionary, WTCC, Ottawa.

A - 24

Appendix B: TAUM METEO

Table of contents

C.
1.
2.

3.

9.

10.

Introduction
Basic nature of system
Data structure
Dictionary entries and grammatical rules
3;1 Variables
3.2 Conditions
3.3 Strihg handling
Rule compilaticn
The chart traversal algorithm
Evaluation of Q-systems
Organisation of rules into grammars
Linguistic content of grammars
8.1 Syntactic categories
8.2 Semantic sub-categorisation
8.3 Syntagms
Software and hardware envircnment

Reference and documentation

O O B Wb e e

L I = B = B W
L% B o 1 N i e =

TAUM METEO

Q0. Introduction

METEO is an MT system used for the translation of weather reports from
English to French. It was commissioned by the Canadian government from
TAUM (Traduction Automatique de l'Universite de Montreal) in 1974, and
became operational in 1976. The computational features of METEO,
including the formalism for writing the grammars, are closely based on
those of the Montreal MT prototype of 1971; the linguistic component
of the system, that is, the content of the grammars, defines a
language whose syntax and lexicon are heavily constrained according to
the standard practice of meteorological dulletins.

1. Basic nature of system

It 1is a difficult matter to locate METEO at a precise point on the
spectrum of strategies for MPF, i.e. direct - transfer -~ interlingual.
On the one hand, the process of translation is highly language-pair
specific, with target language lexical items being inserted prior to
analysgis, and no specific stage which could be termed 'transfer'. On
the other hand, the operations of analysis and synthesis are
notlonally separated; the structure which mediates between the two

could be considered a syntactic interlingua, representing an
abstraction of structural features from the limited syntax source and
target languages, and using target language lexical items as a matter
of convenience (i.e. a limited subset of French vocabulary 1is the
lexicon of this interlingua).

2. Data structure

The data structure used in the METEQO system comprises two components.
The first of these is the tree, which 1is the representation of any
well-formed constituent at any stage of the translation process. The
nodes of the tree are labelled by character strings {etiquettes). A
legal etiquette is any character, followed by any number (including
none) of alphanumeric characters; an etiquette may correspond to a
terminal, non-terminal, or feature of the grammar, though these
functions are not distinguished formally. The root of a tree wlll
normally be labelled with the non-terminal category of which the <tree
is a (well-formed) example. The forest of trees corresponding to a
single tree with the root absent is termed a list. The members of a
list (the daughters of the root) are separated by commas. Thus the
tree:

MET
|
1 I
1 £
C T
I
1 ;
ADJ CMOD
1
i R
i P N
; ; | .
SUNNY - WITH SHOWERS TODAY

B =1

would be represented:
MET(C (ADJ(SUNNY),CMOD{P(WITH),N{(SHOWERS))),T(TODAY))

where:

P(WITH),N(SHOWERS)

ADJ(SUNNY) ,CMOD(....)

C(....),T(TODAY)
are lists.
The other component of the data structure is a cycle-free directed
graph, with unique entry and exit vertices, whose edges are labelled
by trees as described above., The two components together constitute a
chart. The chart is a convenient device for representing the results
of a bottom-up parsing algorithm which finds all possible analyses of
a sentence.

The chart 1is initially constituted from the text as an unbranching
graph, where each edge is labelled with a single lexical etiquette
{i.e. a degenerate tree). Thus the text:

"sunny with showers today."
willl give rise to the graph:

SUNNY WITH SHOWERS TODAY .
Q¢ O< (24 Q<¢- -0< 4]

(The arrows point from right to left, since this is the direction 'in
which the chart is actually traversed.) .

In the text writing formalism, the entry vertex of a graph 1is
designated Dby '-01-' , the exit vertex by '-02-', and all other
unbranching vertices by '+'. Thus the chart above would be written:

~-01~- SUNNY + WITH + SHOWERS + TODAY + . ~02-

A series of edges labelled with trees, such as the above is called a
chaine, or, in English, path.

As parsing progresses, new edges (and new vertices) will be added to
the chart. An edge spanning two vertices will indicate the existence
of a well-formed constituent comprising those 1lexical items which
label the original path between those two nodes. Two or more edges
spanning the same pair of vertices indicate alternative parses; the
structures assigned by these parses are given by the trees which label
the edges. An edge spanning from entry to exit vertices indicates a
parsing of the entire sentence.

Branching vertices, in intermediate representaﬁions of the text, are
designated by integers, thus:

-03- VERB(TAILK) -0O4-
-03- NOUN(TALK) -04-

indicates alternative readings for TALK. These edges will each be part
of one or more paths, but a single path may not include both.

B=-2

3. Diectionary entries and grammatical rules

The dictionary entries and grammatical rules of METEQO are expressed 1in
a formalism known as a Q-system. A Q-system is a gerferalised path
transducer, that is, each rule specifies the transduction of one path,
or concatenation of tree structures, into another. Since a path cannot
include alternative branches, all vertices indicated in a rule have
the form '+', A Q-system rule has the fellowling components:

- an lhs, or pattern, specifying a path to be found in the chart
- an rhs, or action, specifying a path to be added to the chart

- an optional condition, which must evaluate 'true' for the rule
to be applied, i.e., for the rhs to be added. That is:

<Q-system rule> ::=
<pattern» == <action>
/ <condition> .

In principle rules are invertible - if a grammar (i.e. a collection of
rules} 1is preceded by the reserved word -~-INV-, the rhs of each rule
acts as the pattern and the lhs as the action. In what follows, the
uninverted correspondances are assumed.

The following 1s a Q-system rule:
‘AN + ADDITIONAL == CIRC(INV(ADDITIONALLY),/,*DEG).

When applied to a graph containing the path specified by the lhs, this
rule will create a new edge spanning the same vertices as this path,
and will label the edge with the tree specified on the rhs.

The etiquette slash ('/') (not to be confused with the slash
introducing a condition) indicates that the right sisters of the node
thus labelled may be construed as features on its left sister node,
though, as stated above, the rule interpreter does not -disecriminate
between these different types of etiquette. i

An example of a rule in which the rhs is a path comprising more than
one edge (and hence will cause the addition of a new vertex to the

graph) is the following, which effects the morphological decomposition
of an irregular word form:

WORSE == ADJ(BAD,/) + *(ER). .

3.1 Variables

It is obvious that in order for such a grammar to capture significant
generalisations about language, there must be a facility for partially
specifying structures (i.e. for specifying classes of structures). Tc -
achieve this, a Q-system rule may include what the documentation calls
‘paramStres', but which are best termed variables, A variable of a
given type appearing in the lhs of a rule will match any structure of
the same type appearing in the data base. A variable appearing in the
rhs must also appear in the lhs, and will cause the building of the
structure agalnst which it was matched., Thus for a rule to be
invertable, nc variable must appear on one side only. '

A varlable 1is a letter Tfollowed by '*' and an optional digit.
Variables may Dbe of type etlquette, tree or 1list; the type 1is

B <3

indicated by the first letter of the variable name, thus:

letter type
AL TR etiquette
'I'L..'NY tree
‘gr. ' 2 list

The use of variables may be 1lllustrated by the following rule, which
will reccgnise the concatenation of any ADJ with the morpheme ER, and
generate a tree including a feature indicating comparison of that ADJ:

ADJ(A*,/,U*) + *(ER) == ADJ{A%*,/,U* INV(MORE)).

This = rule will apply to the structure which was used to rewrite WORSE
above (i.e. A¥* = BAD, and U* = -NUL-, the empty list) as well as any
other structure of the appropriate form, e.g., originating from an
adjective with a regular morphoclogy.

3.2 Conditions

A variable may match against an infinite number of patterns. In order
to constrain the number of patterns to the members of a finite set,
a rule may include a condition. This is a boolean function defined on
the variables of the lhs, and must evaluate 'true' for the rule to be
applicable.

A condition is constructed using relational operators. There are four
of these. Two, = and #, are operators on lists, with the obvious
semantics. The other two, -DANS- and -HORS-, are operators on sets of
trees (which are syntactically identical to lists) and correspond to
inclusion and exclusion., The documentation defines them as follows:

let a and b be any etiquettes
let 1 and J be any ftrees
let u and v be any lists

Then:

-NUL~- -DANS- u
u -DANS- -NUL-
1,u -DANS- v

i -DANS- j,v
a{u) -DANS- b{v)

i -DANS~- v et u -DANS~ v
i -DANS- j ou 1 -DANS- v
& = b et u =DANS- v

fndolulngn

=NUL= -HORS- u = 'false’
u -HORS- -NUL- = ‘'false'
i,u ~HORS- v = 1 ~HORS- v et {(u -HORS- v ou u = =NUL-)
1 -HORS- J,v = 1 -HORS- j et (i -HORS- v §§ J = -NUL-)

a(u} -HORS- b(v)= a # b ou u —HORS- v

The boolean terms (primaries) obtained by means of these relational
-gperators may be built up into more complex conditions wusing the
logical operators -ET-, ~0U- and -NON-. To exemplify the use of
conditions, consider the following rule which might be found in a
grammar for treating the English possessive form - 's :

NP(U*) + 'S + A*{V*) == NP(U*) + *S + ART(DEF) + A*(V*) /[
A* -DANS- ADJ,N,QUANT -ET- I,YOU,HE,SHE,IT,THEY -HORS- U%,

If two rules have a component (lhs, rhs, or conditien) in commeon, they

B -4

may be written adjacently, with the common component of the second
replaced by '=-=' ., This is used to economize on storage, and, in the
case of identical lhs's, to improve the efficlency of pattern matching

against paths in the data structure.

3.3 String handling

In order to process individual characters of an etiquette (as in a
morphological analysis or synthesis), the latter must first be
converted from a string to a list. This is achleved by means of the
disintegration operator '$$’'. For instance, the rule:

A* == MOT($3A*).

applied to an edge labelled SHOWERS would produce a new arc 1labelled
with the tree:

MOT(S,H,0,W,E,R,S)
This kind of structure could then figure in a rule such as:
MOT(U*,8) == MOT(U*) + S.
The '$$' operator 1s reversible, so if it appears on the lhs of a rule

it will effect the reverse transduction from list to etiquette.

4, Rule compilation

The Q-system rules are checked for correct syntax and compiled into an
internal representation by a program written in FORTRAN. The original
compiler was written in ALGOL-60, but this was found to be too
inefficient. ’ '

A node of the tree is a triple of the form (where? means ‘'pointer
to'):

T 'left daughter'

T 'left sister' in lhs path CR
T 'right sister' in rhs path or 1list

etiquette

Rules are accessed by means of 'debreg',” an array of pointers,
'debreg' 1s indexed by means of a hash function on the value of the
root of the rightmost tree of the lhs of the rule, when that root is
an etiquette., Rules which hash to the same index of 'debreg' form a
linked 1ist (through the 'next rule' field in the rule header, see
below}. All those rules which have as the rightmost constituent of
their left hand side a variable, or a tree whose root is a variable,
form another linked 1list.

For each rule, there is a header of six elements with the following
functions:

next rule
lhs
rule with identical 1lhs

condition

-~ = =

rhs
rule number

This header is accessed from 'debreg' or from the previous rule iIn a
list. It 1is also accessible from the 'left sister' field of the
leftmost tree of the lhs, s¢ that when a pattern match (which ends at
the 1left of a path) is found during parsing, the rhs and condition
parts of the rule may be accessed.

5. The chart traversal algorithm

The rule interpreter, also written in FORTRAN, accepts the compiler
output and a text formatted as described above (section 2.)}. The chart
is constructed from the text as triples of the same form as the
grammar rules, chart edges being analogous to tree nodes. However, the
chart must include a facility for representing alternative paths (in
addition to the 'left sister' and 'left daughter' properties}. Thus
the root nodes of trees labelling chart edges are actually quadruples.
The fourth field contains a pointer to the next edge in the edge set
of the right hand vertex. Of course, in the degenerate chart initially’
constituted from the input text, this 'nextedge' field will always
contain the special value 'nil'. A more complex chart will be created
during parsing, and this may form the input to subsequent Q-systems.

Thus a chart of the form:

e e . o

t=

may be represented with the structure:

left left
nextedge daughter sister etiquette
i nil ! D
l |
!]
L}
#
1 nil ! c
1] I
i I 1
| | — i
i : 1
* Y
i nil nil nil | P —
| | ,
! i |
) i]
] * :
nil nil nil E |
| !
! |
¥ 1
nil nil B |
E
!

The task of the interpreter is to traverse the chart in such a way
that each and every path through 1t is matched once against the rule
base, even though new paths may be added during the course of
traversal, Because vertexes are not represented explicitly, it should
be understood that when the algorithm is referred to as being focused
at a particular vertex, 1t means that what 1s being considered is the
rightmost edge of a particular path proceeding from that vertex. The
remaining edges from "~ that vertex are accessible by following the
pointer in the ’'nextedge' field of that edge's quadruple.

The rule application algorithm has two principal components. The first
{TRAVERSE) is a procedure which enumerates the rightmost edge of each
path, and the second (PATTERN~MATCH) uses the root of this edge's
label to access the linked list of rules via 'debreg', attempting to
match the 1lhs of these rules against all paths proceeding leftwards
from each such edge.

TRAVERSE has the following form {(in informal ALGOL-like notation):

procedure TRAVERSE (x:1 edge)
var c:1 edge;
begin
if x <> nil then
if UNMARKED (x} then
begin
¢ = X3
repeat
TRAVERSE (c.leftsister)
MARK (c¢);
PATTERN-MATCH (¢, possible-rules);
t= ¢.nextedge
until ¢ = nil
end
end;

TRAVERSE 1is called 1initially with the first edge of the rightmost
vertex. The 'leftsister' pointers are followed recursively until the
leftmost vertex is reached., As the recursion unwinds, PATTERN-MATCH is
called for the set of paths starting with the current edge, and this
edge 1s marked as visited. New paths which are created are added to
the edge set of the current vertex, TRAVERSE then 1terates through
this edgeset, each time recursing along a path until a marked edge is
encountered. This algorithm is very similar to that of Kay [see
Kaplan,1973]. The Q-system traversal algorithm adds paths while moving
its focus from left to right, though the pattern matcher examines
paths of increasing length starting from their rightmost edge. The
algorithm 1is totally combinatorial, 1in that the result of applylng a
grammar which is guaranteed to terminate is independent of the order
in which the rules of the grammar are applied. However, it is easy to
write grammars which will never terminate, and the system makes no
checks for this.

When applled to the example chart given above, TRAVERSE will enumerate
rightmost edges of paths in the following sequence:

A C E D B

PATTERN-MATCH will thus attempt to match each possible applicable rule
against paths in the following order:

A C AC E D CD ACD ED B AB

New paths resulting from successful rule application have not been
included in this 1list. They are added as follows. PATTERN-MATCH
maintains a stack of edges, such that at any time, the edges on the
stack correspond to a path (leftmost on top, rightmost on bYbottom).
When a path corresponding to a rule lhs is found, the rhs path 1s
built. The 'leftsister' pointer of the leftmost edge specified in the
rhs 1is set equal to the 'leftsister' pointer of the top-most stack
element. The other edges are then built from the rule rhs. Finally the
'nextedge’ pointer of the rightmost edge of the new path is set to the
value of the 'nextedge' pointer of the edge at the Dbottom of the
stack, and the latter is set to point to the rightmost edge of the new
path. In this way, the new path is inserted into the edge set of the
current vertex ahead of the parser focus.

As an example, suppose a grammar which is being applied to the chart
given above contains the rule:

C+D==X+1Y,

When PATTERN-MATCH has recognised the lhs of this rule its stack will
be in a configuration with (a pointer to the quadruple for) C on top
and D beneath (on the bottom). It then bullds a quadruple for X, and
sets its 'leftsister' pointer equal to that of C, 1i.e. pointing to A.
The quadruple for Y is then built, with its 'leftsister' pointing to
X, as specified 1in the rule action. PFinally, this quadruple is
inserted as the 'nextedge' of D (the current focus of TRAVERSE, at the
base of the stack), with B as its ‘nextedge‘’.

This algorithm is- bottom-up - all well-formed constituents are
discovered, regardless of whether they form a part of any top-level
(e.g. sentence) constituent. It is also breadth-first - no top-level
constituent 1is discovered until the paths from the rightmost vertex
are considered towards the end of the parse, at which point all such
constituents are discovered almost at the same time. Both these

B -8

strateglies are appropriate in an MT context.

When the pattern matcher builds a new path through the chart
corresponding to the rhs of a rule, each edge of the lhs path (i.e.
each edge on the stack) is flagged., When all applicable rules in one
Q-system grammar have been applied, flagged edges are removed from the
chart., Following this, all edges which are no longer in paths spanning
from entry to exit vertices are also removed., This guarantees that the
essentlal properties of the data structure are maintained.

The Q-system formalism permits the specification of unrestricted
rewrite rules, and the parsing algorithm, through 1ts use of chart
position rather than constituent length as its 'parsing variable’,
realises a system of Turing machine power. The parsing variable of a
bottom-up algorithm is a variable whose value at any given time
defines a finite set of possible candidate strings for pattern
matching. Its value must change in such a way that all sets of strings
are examined in a sequence which prevents the output of one set acting
as a member of another, previously examined, set. For a grammatical
formalism of context~-free power, number of terminal symbols .
incorporated in the pattern to be matched is & suitable parsing -
variable, and increasing this value 1s a suitable parsing strategy,
since the rhs which is buillt will always incorporate at least as many
terminal symbols as any of the lhs constituents. For rules of general
rewrite form, this does not hold, and a different parsing variable
must be used. In the Q-system, chart position is used. That is, the
set of strings to the left of and including. the current parser focus
is the candidate set for pattern matching. Only the current set may be
extended by a successful rule,

6. Evaluation of Q-systems

In a"Q-system rule, every action that the discovery of an applicable
rule must effect has to be explicitly specified within the rhs of the
rule., For instance, there is no shorthand way to specify that certain
features on nodes should be automatically copied to higher nodes when
higher-level constituents are built. Although this effect can usually
be achieved using the etiquette '/' (see 3.) and a list variable, the
fact that features and hierarchical dependencies are not formally
distinguished could force the grammar writer to express & particular
grammatical theory in a nen-obvious manner.

Another drawback of the Q-system formalism is the lack of both a path
variable (for specifying an arbitrary sequence of top-level
constituents) and a 'generalised dependent' variable (for specifying a
vertical dependency relation of arbitrary depth). These omissions may
complicate the precise characterisation of complex structures.

The fact that there 1is no way of specifying directly that some
component of a tree is at an arbitrary vertical distance from some -
other component causes particular problems with regard to lexical
transfer. In the TAUM prototype special grammars were written which
effected the linearisation of the tree resulting from analysis before
lexical transfer and its recomposition after. The result of
linearisatlion was a linear graph including edges labelled by single
lexical wunits and others labelled with the etigquettes '[' and ']*
providing the information about the structure of the original tree.
Leaving aside questions about the inefficiency of this approach, it
is unsatisfactory as it severely restricts the possibility of lexical
disambiguation from surrounding structure.

B=9

The only method of passing control between Q-system grammars 1s to
chain them in a 1linear fashion. There 1is no means whereby a
conditional invocation of a grammar can be realised. This can cause
problems when the function of a particular grammar is to treat some
optional phenomenom which may or may not actually occur in the data
structure. The grammar must be invoked in any case, and care must be ’
taken to ensure that rules do not apply where they are not intended
to. This often involves the use of 'tactical' etiquettes - that 1is,
they have no linguistic significance, being solely designed to block
or initiate the application of subsequent rules.

A final criticism of the Q-system formalism may be levelled at the
machinery with which the grammar writer must effect morphological
analysis. The necessity of decomposing words into characters
explicitly- using the '$$' operator prior to morphological analysis,
and subsequently recomposing them, is not only inefficient in terms of
processing resources, but is also clumsier to use than alternative
methods for achieving the same end that could be envisaged.

7. Organisation of rules into grammars

The success of METEQ is largely due to the fact that the nature of the
material to be translated enables the inadequacies of the Q-system
formalism discussed above to be circumvented.

For example, there i1s neither a morphological analysis grammar, nor,
as described in section 1., a transfer phase. The absence of the
former 1is made possible by the relative lack of inflected forms in
English, particularly in the telegraphic English of meteorological
bulletins, so that all inflected forms can be included in the
dictionary. Even this could result in a dictionary of unacceptable

size were it not for the highly limited vocabulary of meteorology.
The problems of accessing leaves of the tree at arbitrary depths are
obviated by the insertion of target language lexical items prior to
analysis.

The difficulties of characterising complex structures using the Q-

system formalism are obviated in METEO, since the source texts contain
no pronominal references, questions, relative or subordinate clauses,
or passives,)

There are a total of 18 stages in the treatment of texts, which may be
grouped as follows:

1) Pre-processing (3 grammars) Elimination of text units containing
errors of f{ransmission, treatment of header information, expansion of
abbreviations.

2) The idiom dictionary -~ rewrites idioms (e.g. BLOWING SNOW ->
POUDRERIE) and normalises other constructions (e.g. KILOMETRES PER
HOUR -> KMH).

3) The place-name dictionary - rewrites those English place names
which differ from the corresponding French ones, or which require
subsequent linguistic treatment.

4) The general dictionary - rewrites an English lexical unit (l.u.)
ag a tree with a root etiquette indicating. . syntactic category, and
daughters including the corresponding French l.u. and a 1list of
morphological, syntactic and semantic features. In many cases a single

B~ 10

l.u., will be rewritten in more than one way, 1i.e. as a number of
parallel edges (a bundle) carrying different French 1l.u.s and
different sets of features.

5) Syntactic Analysis 1 (5 grammars) - recognition of phrases giving
dates, times temperatures and places. In general, these phrases may -
be adverbial, nominal or prepositional in form. L.u.s which have not
been assigned a grammatical category by this point are assumed to be
proper place names.

6) Syntactic Analysis 2 - recognition of the remalining nominal groups,
which are expressions of meteorological conditions. Matching of
features on adjectives and nouns will usually result in the selection
of the appropriate edge from a bundle added by the dictionary phase.
The edges of the bundle not incorporated in higher level constituents
will be eliminated by the garbage collection procedure (see section 6.
above) at the end of this phase.

7) Syntactic Analysis 3 - construction of top level phrases from their
constituents. A top~level phrase is one of five types (see section 8.
below) and failure to match the data with one of these types will
result in a complete rejection of the partial analysis.

8) Elimination of text units for which analysis has failed

g} Syntactic Generation - decomposition of the tree inte a 1linear
form, inecluding possible reordering of the phrases created in phases
4 and 5, positioning of adjectives, determination of adjective and
article agreement, and insertion of appropriate prepositions before
place names.

10) Morphological Generation - generation of the final forms of words
from their associated morphosyntactic features. Thisg phase alsg deals
with contracti%n (DE + %E -> DU), insertion (CE + ETE —> CET ETE), and
elision (LE + ETE -> L'ETE). ‘

11) Application of stylistic rules.

8. Linguistic content of grammars

The linguistic content of the grammars 1s heavily application specific
and hence of limited general interest. However, examples of the types
of 1lingulstic information used are provided here as they are one of
the major reasons for METEOQ's success, and provide a good indication
of the syntactic and semantic complexity which must be considered even
in a very limited domain of discourse. Some of the complexity is
attributed by METEO's designers to the telegraphic style of
meteorclogical bulletins, with its lack of grammatical function words,
2.2. prepositions and articles, which complicates the task of
analysis. In addition, the output of the system is not intended to be -
to be post-edited, which imposes further complexities to guarantee the
accuracy of translation. Even so, these factors are more than offset
by the highly constrained nature of the input text.

8.1 Syntactic categories

. Traditional syntactic categories constitute the basic subdivision of
words into classes. The categories used are adJective, adverb,
determinant,” subordinating and coordinating conjunction, preposition,
numeral, proper and - common noun, and verb. The etiquettes

B -1

corresponding to these are the roots of the trees which label the
chart edges after the dictlonary phases.

Nouns, adjectives, adverbs, and verbs are sub-categorised with morpho-
syntactic features, Gender and number are indicated for nouns. As
there 1is no morphological analysis, the dictionary phases rewrite
English plural nouns as their equivalent French plurals directly,
except in those cases where a singular French form 1is the correct
translation (e.g. SKIES -»> CIEL). Proper nouns also carry an
indication of whether they require to be preceded by an article.
Adjectives are sub-categorised with features indicating their
preffered position with regard to the noun they modify, and the method
of formation of their feminine and plural forms, i.e.

FO - Feminine formed with no change

Fl - Feminine formed by addition of -E

F2 - Feminine formed by change of EAU to ELLE {e.g. BEAU -> BELLE)
ete,

PO - Plural formed with no change

Pl - Plural formed by addition of -8

P2 - Plural formed by change of AL to AUX (e.g. LOCAL ~> LOCAUX)
etc.

sub-categorised according tc whether they may modify an
verb or preposition, and verbs are marked for transitivity

Adverhs are
adjective,

or otherwise.

8.2 Semantic sub-categorisation

Months
Days of the week

-Nouns, adjéctives, adverbs and prepositions are sub- categorised with
semantic features as follows:
Nouns:

Acronyms for time 2ones e.g. HAE

Non-countables (mass nouns) e.g. AIR, BRUINE, EAU
Measures ! e.g. DEG
Places e.g. SECTEUR, COMTE
Directions e.g. EST
Times .
~ duration e.g2. MATINEE
- punctual e.g. MATIN, FIN
Possibility e.g. RISQUE
Meteorological Phenomenon
- stationary e.g. HUMIDITE BRUME, , CHALEUR
- falling e.g. NEIGE, PLUIE, GRELE
- blowing e.g. RAFALE, VENT
Adjectives:
Degree e.g. BAS, MINCE
Place e.g. AVOISINANT
Direction e.g. DU NORD

Specifying a possibility
Measure

Time

Meteorological condition

B- 12

BQN, FAIBLE, POSSIBLE
MEDIOCRE, SUPERIEUR
ANNUEL

CHAUD, VENTEUX

Meteorological phenomenon

- stationary e.g. DENSE
- falling e.g. ABONDANT
- blowing €.g. FORT

Note that the latter three examples are all possible translations of
the English adjective HEAVY, The dictionary phase will add edges
corresponding to each to the chart, and the phase which 1identifies
nominal groups will eliminate the two incorrect translations.

Adverbs:
Time
- durative e.g. POUR PEU DE TEMPS
(translation of BRIEFLY)
- punctual e.g. PAR LA SUITE
(translation of AFTERWARDS)
Place e.g. PARTO%T
Possibility e.g. PEUT-ETRE
Measure e.g. A PEU PRES
Prepositions:
Time
- durative e.g. AU COURS DE
- punctual e.g. AVANT
Place e.g. AU-DESSUS DE
Measure e.g2. ENVIRONS
Direction e.g. DE (translation of FROM)

In some cases, subcategorisation features are merged with the root
categories for compactness, e.g.

N{(TEMPS),APRES-MIDI) is replaced by vNT(APRES—MIDI)

8.3 Syntagms

The phrases which the analysis grammars are capable of parsing fall
into five classes, distinguished by the root etiquette assigned to the
tree bullt by phase 7, as follows:

1) METO -~ a list of place names
2) MET1 - a meteorological condition for the day, including
C - the condition itself, including

GN/ADJ

CMOD - an optional complement

T - expression of time (optional)
LOC - expression of place {optiocnal)

e.g. MET1(C(ADJ(SUNNY,...),CMOD(P(WITH,...),
GN(N(SHOWERS,...)))),T{ADJ{TQODAY)))

where ..., indicates that a list of features has been omitted.

B =13

3) MET2 - a phrase specifying temperature maxima and minima,
including:

GN - specifying highs or lows
GN - temperature
T - expression of time (optiona})
LOC - expression of place (optional)
e.g. MET2(GN{N(HIGHS,...))},GN(...15 TO 18...),T(ADV(TCDAY)}))

) MET3 - a phrase giving a future outlook, similar to MET1l, except
C is preceded by a GN dominating the words OUTLOOK FOR X.

5} ORG - a stereotyped bulletin header of the form
FPORECAST FOR <area> ISSUED BY ENVIRONMENT

CANADA AT <time><time zone><month><dater<year>
FOR <day or days>

9. Software and hardware environment

The METEC translation programs are executed on the CDC Cyber 76 at the
Canadian Meteorological Centre at Dorval, which is part of the
communication network linking the various sources of meteorological
data, regional centres where bulletins are drafted, and the central
data bank in Toronto. The Cyber 76 is front-ended with a Cyber 71,
which manages the -collection of bulletins from the network and their
submission for translation, and provides the software environment for
translators working at VDUs to retrieve and check translated
bulletins.

Bulletins collected by the Cyber 71 are automatically submitted for
translation every 10 minutes as a batch Jjob. A FORTRAN program,
PREEDIT, extracts the material to be translated and formats the
individual units of translation as Q-system input text strings. After
translation, another FORTRAN progfam, POSTEDIT, reconstructs the
bulletin in 1its original format, with successfully translated units
replacing the source text, and the original English text reinserted in
place of those units which the system was unable to deal with. The
bulletins are returned to the Cyber 71, where they may be progessed by
human translators using the interactive editor-manager program GERANT,
Those text units which have been translated may be considered accurate
with a certainty of 99% plus, so the translator is expected only to
provide translations for text units in English. In other words, there
is no human pest-editing of the material translated by machine., When
the bulletin 1is completely translated, it is reinserted into the
communications network, to be used by shipping and the information’
media.

B~ 14

10. Reference and documentation

Reference:

Kaplan, R. (1973) 'A general syntactic processor’', in ‘'Natural -
language processing', ed. R Rustin, Algorithmic Press, N.Y.

Documentation:

Chevalier, M., Dansereau, J., Poulin, G. (1978) 'TAUM-METEO :
description du syst®me', TAUM, Universiteé de Montréal.

Colmeraur, A. (1971) 'Les systémes-Q ou un formalisme pour analyser et
synthetiser des phrases sur ordinateur', in 'TAUM 71°'
(see below).

TAUM (1971} 'TAUM 71 : rapport de janvier 1971’

B - 15

Appendix C: TAUM AVIATION

Table of contents

0. Introduction
1. Basic¢ nature of system
2. Data structure
3. Morphological analysis
4, Analysis dictionary
4.1 Equivalence rules
4.2 Potential idiom rules
4.3 Fixed idiom rules
4.4 Example rules
4.4.1 Predicates
4.,4,2 Nouns
4.5 Dictionary software
5. Structural analysis
5.1 The ATN and REZO formalisms
5.2 Tests and actions
5.2.1 Tests
5.2.1 Actions
5.3 Example sub-network
5.4 Evaluation of REZO
6. Normalised structure
7. Lexical transfer
7.1 Traversal of the data structure
7.2 Assignments and tree manipulations
7.3 The LEXTRA software
8. Structural transfer and syntactic generation
9. Morphological generation
10. Software and hardware detaiis of the system

1l1. Documentation and references

~N ~ W B W W NP

VI S T T S R R L ™ R
= O O Vv &~ O F W oMM~ O ©

- TAUM AVIATION

0. Introduction

AVIATION 4is an MT system designed to translate aircraft maintenance

manuals from English to French. The system was commissioned by the
Canadian government from the TAUM group following the latter's
successful completion of the METEQO contract. The texts for which
AVIATION was specifically intended, and which acted as a corpus during
its development, were the hydraulics sections of +the maintenance
manuals of the Defense Department's CP-140 aircraft. Although =a
version of the system has been delivered to the Bureau of Translation,
it has yet to be 1installed or tested in a realistic operating
environment, and the TAUM group itself is no longer in existence.

The theory underlying AVIATION represents a radical departure from the
METEC philecsophy. The latter system was constructed entirely as a
sequence of Q-system grammars. With regard to AVIATION, the greater

linguistic complexity of the texts to be translated and the .

shortcomings of the Q-system formalism encouraged the development of
a variety of software tools intended to fill the specific requirements
of different stages of the translatlon process.

1, Basic nature of system

AVIATION is a transfer system - i.e. the translation process consists
of a monolingual source language analysis, a monolingual target
language generation and between the two, a bilingual transfer phase
which replaces source language lexical items with their equivalents in
the target language, using grammatical context to disambiguate between
different translations of a word. Some structural rearrangement of the
text representation is also carried out during transfer. Sentences in
the text representation have a canonical predicate/argument structure.

The- system also demonstrates a separation of the linguistic data from
the algorithms which apply that data to the data base (text
representation}, at least for all components other than those
concerned with morphology.

2. Data structure

The data structure which is employed in AVIATION to represent a text
at the various stages in the translatlion process is a development of
that used for METEQC, the chart. A chart is a directed graph with
unique entry and exit vertices, whose edges are labelled with trees.
The trees used in METEQ employed a single data type, the character

string (etiquette), to represent terminal and non-terminal symbols and

features on these. However, 1in AVIATION, features on nodes are no
longer represented as daughter nodes (leaves) in exactly the same way
as the daughters which represent the hierarchical organisation of
grammatical structure. Instead, the features pertaining to a node are
associated directly with that node as data of type set of booleans,
and are written in square brackets immediately following the etiquette
to which they refer. They may be manipulated using set operators; it
is not possible to define an ordering or superimpose a Hhierarchical
structure on the members of such a set.

3. Morphological analysils

The phase which is called morphological analysis is concerned solely

with inflectional suffixes, and has two principal functions. It

segments input strings (words) to produce possible root-suffix pairs,

which will ©be represented as a canonical root for dictionary 1lookup
with a sef of associated morphological features, and it builds the

chart on which subsequent stages will operate, adding alternative

segmentations of a particular word as labels on parallel edges

spanning the same vertlces, This phase 1is completed prior to

dictionary lookup, so dictionary information cannot be used to

eliminate impossible segmentations.

As an example, consider the input string "disturbs", which will give
rise to the two edges:

DISTURBS{ X1BASE]

DISTURB[MTERS,X1NOM, X1VERB]

e e e il
[RR——

An edge with the feature X1BASE will always be generated, as the word
may not be an inflected form (e.g. "bias”). In the example given, the
other alternative indicates that the word may be a verb (feature
X1VERB) or a noun (X1NOM) as it has the morphological ending -s
(feature MTERS). The complete set of suffixes examined 1is as
follows:

-5, =-~ing, ~ed, =', ='s3,

The possible morpho-syntactic features which will be assigned
according toc the suffix found are:

MPOSS = Possessive (noun)

MROOT = Root (infinitive) (verb)

MPAST = Past (preterite) {verb)

MPASTP = Past participle (verb)

MPRESP = Present participle (verb)

MTERS = Termination in -s (verb or noun)
X1NOM = Nominal suffix found

X1VERB = Verbal suffix found

The possessive terminations are checked.first, as the remaining stem
must still be checked for the termination «s, although the presence of
this will not, in this case, cause addition of the feature X1VERB.

An edge will be added to the chart for each proposed root form, (i.e.
for each possible segmentation of the word) with the morpho-syntactic
features compatible with the segmentation forming a single set. The
morphological analyser takes into account the various possible roots
that could give rise to a particular inflected form. For instance, if
the string remaining after removal of the suffix -ed ends in -i, the
actual root form could end in -y or ~ie, and an edge, with the
appropriate feature set, will be added for both of these. The complete
list of cases in which the ending of the remaining string causes
special action is as follows: : ‘

After removal of 8§ -
stem ends in U,S,SSE,CHE,SHE,ZZE,EE,CK,SE,OE,IE,XE.

C -2

After removal of ING -
stem ends in SS,ZZ,EE,CK,YE,Y,any double consonant.

After removal of ED -
stem ends in S$8,ZZ,E,CK,Y,I,any double consonant.

The algorithm which strips productive suffixes, adjusts the remaining
root forms and assigns morphological features is coded directly as a
PASCAL program. However, it does make use of some external linguistic
data in the form of a table of special (irregular) morphological forms
(TFMS). This table is accessed for each word after segmentation of the

suffixes -' and -'s, and contains all possible c¢ombinations of root
pPlus features for an irregular word form, e.g.
BASES =) BASES / BASIS[MPLUR] / BASE[MPLUR] / BASE[M3PRES]

thus eliminating the need for further segmentation.

The text file which carries TFMS 1s compiled by another PASCAL
program, SETMFSTAB, into a form suitable for use by the morphological .
analyser, ENGLIMORPH.

The morphological analysls phase is thus independent of and prior to
dictionary lookup, deals with a very limited set of inflectional
suffixes, and has its linguistic data coded directly as part of the
analysis algorithm. For a task of limited linguistic complexity, these
characteristics are Justifiable, particularly in terms of
computational efficiency. However, for a language with a richer
inflectional system than that of English, the separation of linguistic
data from the program which manipulates it would be preferable from
the point of view of clarity and manageability. For a language with a
totally open-ended and highly productive system of word-compounding,
such as German, a morphological phase of the AVIATION type would be
totally unacceptable,

L. Analysis dictionary

The analysis dictionary of AVIATION comprises a set of rewrite rules
of three different types. Although rule application 1is strictly
ordered according to these types, the dilctionary is conceived az a
single entity to ensure integrity of organisation and ease of update.
The type of rule is indicated by the rewrite symbol used, thus:

- equivalence rules =E=
- potential idiom rules =P=

- fixed idiom rules =F'=

4.1 Equivalence rules

These have the effect of replacing a string of one or more etiquettes -
by a different string of etiquettes. They serve to establish exact
lexical equivalences (e.g. between different spellings} in order to
avoid duplication of rules of the other types with more complex right
hand sides. For instance, the pair of rules:

e'
e

B= e
F= a

are exactly equivalent to the following pair:

e' =F= a

e =P= a3
where e and e' are any lexical etiquettes, and a is a tree giving the
syntactic category of e, &a set of features, and any other information
necessary for syntactic analysis.

4,2 Potential idiom rules

These rules rewrite a path of one or more edges labelled with lexical
etiquettes as a single spanning edge labelled with a tree. The root
etiquette of this tree indicates a syntactic category and is
associated with a set of features. The original lexical units, which
do not appear in the rhs of the rule, are actually subsumed under the
root, when the tree 1s constructed, as the leftmost daughter or
daughters, Other daughters may be present if the word or idiom is
verbal or adjectival - these indicate the arguments that are to be
expected in conjunction with the predicate; if the word is a noun,
daughters indicating restrictions on the formation of compound noun
groups may be present.

4,3 Pixed idiom rules

These rules are of exactly the same form as potential idiom rules, and
have exactly the same effect, except for the following proviso: if a
particular lexical item occurs in the 1lhs of more than one applicable
rule, it will be rewritten only once, as part of the rhs of the rule
with the 1longest 1left hand side (i.e. with the largest number of
lexical 4items). This avoids the addition of spurious edges to the
graph 1in those cases where a particular sequence of words 1s always
idiomatic, at least 'in the corpus being considered. Single words are
also rewritten using fixed idiom rules. Thus the chart:

IN ORDER TO

* 3 * 5 * y*

will be rewritten by the rules

IN == PREP
ORDER =F= N

TO =F= PREP
IN ORDER TO =P= SCONJ

as:

SCONJ (IN,ORDER, TQ)

—————— —— i~ i S -

PREP(IN) N{ORDER) PREP(TO)

b > ¥

IN " ORDER TO

> * 5 *

Y S
v
* — — o A o o ok

v

In this case, when the edges which have been rewritten (i.e. those
which. appear on the lhs of a rule which has been applied) are deleted
from the data structure at the end of the phase, there will be two
parallel paths in the chart representing a lexical ambiguity with
which the structural analysis must deal. However, 1if the last rule

c =4

were of the form:
IN ORDER TO =PF= SCONJ

this would block the application of the other rules, so after deletion
of used arcs, the result would be a single edge labelled with: '

SCONJ{IN,ORDER,TO)
4.4 Example rules

As stated above, the dictionary rules rewrite lexical wunits as a
syntactic category and an optional associated set of features, e.g.

ANY =F= [DLQ, DPRECOMPAR];
CHECK VALVE =F= N [DC, DHPART, DP, DSG];

4,4,1 Predicates

In the case of verbs and adjectives, the root category will be
assigned a list of daughter trees representing the expected arguments,
with argument numbers as the roots of these. There may also be
a daughter indicating the particles which may occur in conjunction -
with the verb, e.g.

FILTER =F= V { DERG, DPP] (PART (OUT,OFF) , 1(GN [DHUM,DP]},
2(GN {DDEFECT, DFL] },3(P{THROUGH))};

PRESENT =F= ADJ (1(GN { DDEFECT, DFL, DMAT, DVAR],2(P(IN)});

Application of the former rule will cause the building of an edge
labelled with the following tree structure:

v {DERG,DPP]
!

-+
1
!

— '—.l—--.—-_—.q.—--—

K
]
FILTER PART

]
! GN GN
! ; [DHUM,DP] [DDEFECT,DFL]

)) |
OUT OFPF THROUGH

H T
I i
f 1
1 |
2 3
! |
P
!
|
1

The feature DERG on the verb indicates that it is ergative, that is,
the first argument may be absent, 1in which case the second argument -
will occupy subJect position. DPP indlcates that the past participle
of the verb may be used adjectivally. The features on the nominal
groups are fairly self-explanatory: DHUM - human, DFL - fluid, DP -
plece of equipment, DDEFECT - unwanted substance, e.g. dirt, debris.
This representation does not appear to be suitable for specifying
different frames for the same verd, e.g., filter y, filter x from y,
other than by means of binary features such as DERG.

4. 4,2 Nouns

Like those for predicates, the dictionary entries for nouns provide
semantic information to ensure the compatibllity of elements in higher
level constituents, in this case complex noun groups. This information

Cc -5

is probably even more c¢rucial than that associated with predicates, as
there are few syntactic or morphological clues which can be used to
ascertain the internal structure of &a noun group. Compare, for
instance, the following:

booster poppet valve ~—= N(N N)
pressure regulator failure --- (N N)N

Complex noun groups of this type are extremely common within the
AVIATION corpus, and determination of their internal structure 1is
essential for correct translation. To this end, the dictionary entries
for nouns may specify co-occurrence restrictions, e.g.

SUCTION =F= N :
RESTRICT OBJ[DFL]
FUNCTION[DCANALISATION]

This entry indicates that the noun SUCTION may be the head of a noun
group containing a noun bearing the feature DFL (e.g. "fuel suction"), .
and that the relationship between the two is that the latter is the
ocbject of the nominalization SUCTION. Alternatively, SUCTION may
appear in a noun group with a2 noun having the feature DCANALISATION-
(e.g. "suction 1line"}, in which case the relationship will be that
this second noun has the function of SUCTION. Although the AVIATION
documentation claims that SUCTION will be the head noun ('gouverneur')
in both cases, this 1is quite clearly not the case.

The complete 1ist of semantic relationships which may exlst between
two elements Y and Z in a noun group is as follows: _

FUNCTION -~ a Z for Y-ing something

HAS - Y has 2 ’

SUJ - Y is thé subject of the nominalisation 2
OBJ - Y is the object of the nominalisation Z
MAT - Z is made of Y

LOC - Y is the location of 2

The use of these relations in the structure built by the structural
analysis phase is exemplified in section 6.

4,5 Dictionary software

The high-level language in which dictionary entries are written is
known as SYDICAN (SYsteme de DICtidbnnaire d'ANalyse}. The software
which realises the dictionary phase of translation 1is written in
PASCAL, and comprises two programs. The first of these is a compiler,
which accepts as input a text file of rules of the form described.
above, producing an internal representation. The second 1is an
interpreter which matches the lhs's of the compiled rules against <the
data base and tuilds the structures indicated by the rhs's. i

In addition to the updated data structure, the SYDICAN interpreter
also produces as output a list of words occurring in the text for
. which no entry was found in the dicticnary. The user may use this file
to- create a supplementary dictionary (dictionnaire d'appoint) by
providing the neccessary entries., This is then compiled and applied to
- the data structure using the SYDICAN software. Following this stage,
those words which no dictionary entry has applied to are assumed to be
proper nouns and are rewritten as such.

cC-6

5. Structural analysis

Following dictionary lookup, structural analysis uses the syntactic
and semantic information added to the graph by the dictionary, and a
collectlon of grammatical rules, to assign a structure to the sentence

{(or noun group in the case of section headings). The grammatical rules
are expressed In a formalism known as REZO.

REZ0 1is very closely based on the Augmented Transition Network (ATN)
of Woods [1970,1973), a procedural formalism for top-down left-right
parsing of natural language texts. It is possible to use the chart
data structure in conjunction with an ATN grammar, acting as a well-
formed substring facility, and thereby circumventing one disadvantage
of top-down parsers - that they may reanalyse the same low-level
phrase several times, once for each higher-level construction that
uses 1it. It 1is not clear whether the chart is used in this way in
AVIATION.

The use of the chart means that all alternative edges from a given
vertex must be considered each time the parser is focused at that .
vertex. The default parsing strategy associated with an ATN, as with
REZO, 1s depth-first, i.e. a single parse 1s discovered first,
hopefully the correct one. However, the REZ0 grammar writer has the
option to switch the parser to breadth-first mode, when, for instance,
two alternatives are equally likely, and to follow both. In addition,
as described above, the depth-first description only applies to those
parses associated with a given path through the graph. Conceptually, a
parse will be performed in parallel on each distinct path. It is not
clear how choices are made at the end of structural analysis between
alternative parses resulting from these two sources of parallelism.

5.1 The ATN and REZO formalisms

A finite state transition network is a representation of a - regular
grammar, in which the transitions that relate the states are labelled
by terminal symbols. An ATN is such a network that has been
generalised to context-free power by allowing the transitions to De
labelled with non-terminal symbols (construed as calls to the
appropriate sub-networks) and further generalised to Turing Machine
power Dby associating arbitrary tests and structure-building actions
(written in some high-level programming language) with the
transitions.

An ATN or REZO grammar is a series of sub-networks, each of which
corresponds to a non-terminal of the grammar. In REZO, each sub-
network has the form:

<sub-networky>: =
ssréseau <sub-network name>
<declarations>
<list of named states>

The order in which the list of named states is written is unimportant
except for the first, which 1s the state to which control 1is
transferred when the sub-network is called, Each state is associated
with an ordered 1list of transitions, i.e. test-action pairs, separated
by ';':

<gtateri:i=
¢state name>
<list of test-action pairs>.

C=7

The parser steps through this list evaluating each test in turn and
performs the actions associated with the first test which succeeds. As
mentioned above, the writer of a REZQ grammar may suspend the ordering
of test-action pairs associated with a given state by preceeding the
state name with ndeter. 1In thls case, the actions of all the tests
which succeed are performed. Thus the REZO traversal algorithm, taking -
into account the form of the data (i.e. a chart) is as follows (in
informal ALGOL-like notation):

procedure TRAVERSE (state; edge; right:boolean};
var transition
begin
repeat
transition := FIRST-TRANSITION (state)
repeat
while EXISTS (transition) and not (TEST(transition)) do
- transition := NEXT (transition};
if EXISTS (transition) then
DO-ACTIONS (transition);
transition := NEXT {(transition)
until DETERMINISTIC (state) or not EXISTS (transition);
edge := NEXT (edge)
until not {right and EXISTS (edge))
end;

The first call of this procedure is:
TRAVERSE (first-state, FIRST-EDGE (first-vertex), true)

It may alsoc be called recursively by DO-ACTIONS. For 1instance, the
action avancer <statename> will result in the call:

TRAVERSE { statename, FIRST—EDGE_(VERTEX-AT-END-OF (edge)), true)

avancer thus performs two actions; it shifts the focus of the grammar
to the named state and consumes the item labelling the current edge
(i.e. it shifts the focus to a new vertex of the graph). On completion
of this recursive call to TRAVERSE, 'edge' will return to its original
value, thus implementing the backtracking necessary for consideration
of each path through the graph.

Another action, nouvétat <statename>, causes the following call to
TRAVERSE:

TRAVERSE (statename, edge, false) .

This shifts the focus of the grammar without consuming a data item
(i.e. without changing the chart focus). nouvétat will normally occur
. as one of the actions following succesful parsing of a lower 1level
constituent (i.e the test part of the transition will be a push}, and
the sub-network will itself have advanced the chart focus. -
Alternatively, it may occur following some test which has indicated
that an optional constltuent is not present, or that some deep~
structure constituent of the sentence has been moved and thus 1is not
present in the surface structure.

In Woods' original formulation of the ATN, these different types of
transition, and others, were distinguished by name (e.g. - PUSH, VIR,
JUMP}. This 1is only a syntactic shorthand, and the REZO approach in
which more primitive operations are avallable to the grammar writer
gives slightly more control at the expense of having to do slightly

c-8

more work.

Other facilities provided in REZO include the following:

Registers of different types: these may be declared at the head of any
sub-network and manipulated by the tests and actions using a variety
of operators appropriate to the type. All registers in Woods ATN were
of type tree, but REZO provides the types:

arbre (ttree')
booléen ('boolean')
nombre {'integer') - for the purpose of weighting or

(prefegence calculations

2tiquette ('character string’

ensemble ('set') - a subset of the complete feature set
traits declared at the head of a REZO
program, for manipulating the syntactic
and semantic features associated with
etiquettes by the dictionary entries

liste (*1ist') - ordered 1list of trees.

Privileged memory areas: both ATNs and REZO predefine a register '*'.
This 1s of type tree and is used to hold the current input item (i. e.-
the label on the current chart edge) or, on return from a sub-network,
the tree built by that sub-network.

Other privileged memory areas in REZO are:

'+' - a 1ist of the trees which may become the next input item
(i.e. EDGESET(VERTEX-AT-END-OF(current-edge)))

pile - this 1s of type tree, being the top element of a 'LIFO'
stack whose manipulation is under user control

'$' -~ a random access array, also under ugser control, the
members of which are referenced by subscription with
integers, e.g. $1, $2 etc.

Predefined functlions: REZO provides a wide variety of functions by
means of which the grammar writer can operate on registers of various
types, thus:

ETIQ (a} - the root etiquette of the tree ‘'a’

TRAITS (a) - the set of traits associated with the root of 'a'’

FILS {a) - the left daughter tree of the root of ‘'a’

FRERE {(a) -~ the right sister tree of ‘'a!’

LFILS (a) -~ a list of all daughters of the root of ‘'a'’

ELEM (1)} - the first tree in the list '1° -

RESTE (1) - the list remaining after removal of ELEM(1l)

NOMERE (e} - the number represented by the string of numeric
characters which constitute the etiquette ‘'e!

ETIQUET (n} - the etiquette obtained by considering the digits

- of 'n' as characters
DEF (r}) - 'true' if the register 'r' is defined else 'false!’
SOMMET (a,e,t) - 'true' if the root of the tree ‘'a' is
- the etiquette 'e' with a set of traits
including the set 't', else false
SOMMET = {l,e,t) = 'true' if the 1list 'l' contains a tree 'a' for
which SOMMET (a,e,t) is true, else 'false’
LISTE (al, a2,..an) - the list formed from the trees
‘al’, ‘a2', .. 'an’

c-9

CONCLIS (11,12,..1n). - the list formed by concatenating the

lists '11', 'i2', ..'ln'

FEUILLE (a,el,e2,..en) - 'true' if LFILS(a) is empty and ETIQ (a)
is equal to one of 'el', 'e2', ..'en’,
else false

FEUILLE (1,el,e2,..en) - ‘true’ if the list 'l' contains a tree
'a' for which FEUILLE ({(a,el,e2,en)

s 'true', else false

Pattern matching: The REZ0O grammar writer may define a model, that
is, a specification of a class of trees. The model 1s written as a
tree, with the various components replaced by boolean expressions,
including parameters (éti% and traits) which will be bound to the
appropriate values from e tree against which the model 1s being
matched. Etiquettes may be tested for equality or inequality against
expressions of type etiquette, and feature sets may be compared with
expressions of type set using the standard set predicates. A model may
include embedded models to allow specification of a class of sub-
trees. For example:

etig = 'NP' traits >= [A,B,C] (8tig # 'XXXX' ,)

This will match successfully against any tree whose root is 'NP', with -
at least the assoclated features A,B,C, with a left daughter tree
whose 7root is not 'XXXX' , and at least one other non-null daughter
(indicated by the final ',' before the ')').

5.2 Tests and actions

The facilities described above may be used to create tests and actions
of arbitrary complexity. Expressions featuring in the action part may
be conditional.

5.2.1 Tests

The test part of an arc is an expression of type boolean. As well as
arbitrary tests on whatever registers, there are various expressicns
of boolean type whose side-effects are extiremely important. These are:

push <sub-network>

This test causes a transfer of control to the named sub-network. It
evaluates ‘true' only if the sub-network succeeds in analysing a
portion of the graph. Initialisation of various registers in the sub-
network prior to transfer of control may be achleved by appending an
avec clause, which consists of assignments of the form:

<register> = <expression>
pop <expression>

This test returns control to a higher sub-network, indicating that a
constituent of the type corresponding to the sub-network in which the
pop is found has been successfully parsed. It evaluates 'true' only if
the stack is In the same state as it was when the corresponding push
was made. The assoclated expression is of type +tree and after
evaluation this will become the value of the register '*' , for use in
the action part of the corresponding push arc. No actions may be
asssoclated with a pop arec.

c - 10

depiler <model>

This test assigns pile, that is , the tree on top of the stack,to the
register '*', It evaluates 'true' only 1f pile conforms to the
specified model.

Each of the above tests may be preceded by a boolean expression.
Another sort of test 1s the expression ¢of conformity, which has the
form:

<gsimple expression> c¢onforme <model>

where the simple expression defines the tree which is to be matched .
against the model. This test succeeds if a pattern match is found. The
expression of conformity may be followed by an optional pop test as
described above.

The test part of an arc may also be empty. Obviously, such an arc will
be the last associated with a given state, except if the latter is a
non-deterministic state.

5.2.2 Actions

As with the tests, actions can be considered as general or special.
General actions are those which assign to a register, thus:

<register> <assignment operator> <value>

The normal assignment operator (:=) replaces the register specified on
its 1lhs with the value on its rhs, There exist two other assignment
operators (->= and <-=) which expect a register of type list on the
lhs and a value of type tree on the rhs, and have the effect of
concatenating the tree to the left or right of the 1list, respectively.
The value on the rhs of any operator may be an expression, or a
register in another sub-network, specified by preceding the register
name with one of the reserved words ~ dernier, plus prés, premier.

Two of the special actions, avancer and nouvetat, have been discussed
above. The others are as follows:

tuer <register>
This causes the named register to become undefined.
empiler <expression>

This causes the {ree resulting from evaluation of the expression to be
added to the stack.

gcrire <expression>

This writes the tree resulting from the evaluation of the expression
to an output file. However, thils action only has an effect when the
final action of an execution is succés (see below).

- 1 -
suceces ; echece

.These two -actions have 1largely the same effect, to terminate a
particular parse, and initiate the backtracking required to follow
suspended alternatives. The only difference between them 1is that
succeés renders effective the @crire actions that have been encountered

c -11

up to that point.

Actions may be structured using 1if..then..else and case like
conditional constructs. It is not clear tEat this facility allows the
grammar writer to do anything that could not be done in the test

part of an arc, though it can be used to achieve a 'factoring out' of -
actions common to more than one transition.

5.3 Example sub-network

The following example illustrates the REZ0 formalism using the sub-
network SENTENCE and is taken from {Kay, 1977]. It is not intended to
be a definitive syntax for an English sentence.

[Other relevant declarations necessary to understand this sub-network
are the declaration of traits at the head of the REZO program:

traits active, passive, sing, plur, transitif, intrans, present, past,

past perf;

and the declarations of the sub-network PRINCIPAL, from which SENTENCE |
iz called:

ensemble numfeat, tensefeat;]
ssréseau SENTENCE

ensemble tense, volce;

arbre sujet, obJ, verb;

S1 (* search for subject *)
DEF(sujet) : nouvéetat 52;

- push NP~ : Bujet := ¥, nouvétat S2.

82 (* identification of verb *)
non (numfeat <= TRAITS(*) + TRAITS(sujet))
(* subject-verb agreement *)
: tense := TRAITS(*) inter tensefeat,
voice := [active]
81 ETIQ(*) = 'VERB' alors
debut :
verb 1= ¥ ,
avancer 83
Tin
ET_bn
ETIQ(*} = 'BE' alors avancer S6
-Inon echec .

S3 (* intransitive verb may not, have obJject ¥)
: 81 [intrans] <= TRAITS(verb)

alors nouvetat S5

sinon nouvétat S4,

ndeter' .
S0 non DEF(ob?) : nouvetat S5;
[transitif] <= TRAITS(verb) : nouvétat Sb1.

: nouvétat S$5:
(*“dont Iook for object if it is already found *)
: obJ := ¥, nouvétat S5.

shl DEF(obj)

push NP

c - 12

S5 (* end of sentence %)
pop 'S' /[voice
(sujet,
'VP' { 'AUX' / tense,
(si DEF(verd) alors 'V'(verb) sinon nil),
(

ST DEF(obj) alors obj sinon nITTTT .7
S6 ETIQ(*) = 'PASTP' : verb := ¥, nouvétat S61.

S61 (* discovery of passive without backtracking *)
{transitif] <= TRAITS(verbd)
: obj = sujet,
sujet := 'DUMMY' (nil),
voice := [passive],
avancer S7.

ndeter (* no deep subject, or one introduced by 'BY' *)
: nouvétat 8§5;
ETIQ(*)='BY' : avancer S8.

s8
push NP : sujet := * |, nouvétat S5

5.4 Evaluation of REZO

The decision. to use a top-down depth-first analyser of the ATN type
was based upon an extensive examination of the syntactic structures in
the corpus. REZO represents a radical departure from TAUM's previous
philosophy as embodied in the bottom-up combinatorial nature of Q-
system grammars. The change 1s attributable to at least two factors.
FPirst, the large number of verb-noun homographs that exist in the
AVIATION corpus would give rise to a vast number of different, mostly
incorrect readings of complex noun phrases were a purely combinatorial
approach to be followed. Secondly, the ATN approach, with its explicit
ordering of arcs leaving a state, allows the statistical 1information
about frequencies of particular structures to be utilised directly in
the grammar (that is, the depth-first strategy 1s actually ‘'most
likely first').

The consensus of opinion amongst those researchers who work with ATN-

like formalisms about the perspicuity of representation that they

permit may have been another factor in the choice. It is c¢laimed, for

instance, that the simplicity of the underlying context-free model is

retained despite the complex augmentations superimposed upon it.

This may be true in terms of the efficiency with which such grammars

may be interpreted; however, the perspicuity applies only to the

context-free surface grammar. The REZO grammars also dinclude an-
implicit inverse transformational component. As this is realised using

a varlety of different features of the formalism (tests, arbitrary.
structure building actions, privileged memory areas), the relationship

between the grammar parsed and the structure buillt 1is far from

obvious. In an 1ideal formalism, =all the obligatory consequences

following from the choice of a particular option would be deducible

from the point at which that option is chosen. Thls situation is

certainly not true of ATNs, and REZ0, with its many facilities, 1s

possibly even more opaque than simpler ATN-based formalisms. In any

case, a large measure of the perspicuity of ,an ATN ‘grammar in

graphical form is lost as soon as it is linearised.

Another advantage claimed for the ATN 1s 1its ability to make

C =13

intermediate results available I'Or semantlc processing {(using some
different software tool), though this is not exploited in the AVIATION
system.

The fact that the structure building actions on the arcs of an ATN are
explicit provides a facility for experimenting with different -
structural representations; to this extent, at least, REZO grammars
have a measure of flexibility.

The processing of conjoined sentence fragments in an ATN grammar 1is
claimed to be tractable because of the explicit stack. That 1s, the
parsing of the sentence may be restarted following the conjunction
from some configuration available on the stack, and continued until it
merges with the parsing of the suspended computatlon. However, without
a special-purpose modification to the ATN interpreter to realise this
(e.g. SYSCONJ, Woods [1973]), the treatment of conjunctions within the
grammar imposes a heavy burden on the grammar writer. This 1s because
the ATN is a predictive formalism, and it is very difficult to predict
the occurrence of coordinating conjunctions, which may occur at almost
any point in the sentence, REZ0O provides no special mechanism for
dealing with conjunctions, and it is apparent that the latter cause
significant problems in the analysis of sentences from the AVIATION
corpus. The problem is, of course, a double one; it iIs necessary,
first, to determine the scopes of a conjunction which are
syntactically valid, and then, if neccessary, to disambiguate using
'semantic' features. A refinement of the existing semantic categories
could probably cope with most problems of the latter type. However,
the former problem rests with the difficulties of capturing
generalisations in the formalism.

At present, the AVIATION analysis grammar fails to elucidate various
readings of the scope of conjunctions. For example:

"Conne¢t nitrogen or dry air charging connection to the valve.”
results in the single {(incorrect) translation:

"Relier l'azote ou le raccord de gonflage d'air sec.,"
Here it appears that a semantic disambiguation between the possible
readings, which would seem to be trivial, has not even been recognised
as necessary.
Finally, the fact that properties must be expressed as sets of boolean
features would seem to impose severe reftrictions on the grammar

writer. However, such &a representation is not inherent in the ATN
formalism, and could be improved without much difficulty.

6. Normalised structure

The AVIATION corpus contains a wide variety of sentences which can be
considered as transformationally derived from 'matrix' or ‘'canonical!
sentences. The transformations inveolved include the following:
passive, dative movement, relative reduction, There-insertion,
particle movement, extraposition, and those transformations applicable
to ergative verbs,

The aim of the grammars is to produce from sentences displaying any

combination of the above a normalised structural representation of the
sentence. This involves recognition of the main verb, determination

cC - 14

of the strongly (valency) bound arguments by comparison of the
latter's features with those indicated as expectations on the former,
and recognition of the other components of the sentence as legal,
though optional, c¢ircumstantials. The normalised structure is then
bullt by placing these different components in the canonical order -

predicate (GOV), arguments, circumstantials. In general, both

arguments and circumstantials are considered as prepositional groups
(GPs); those which are actually nominal appear in the normalised
structure with the dummy lexical item, BOF, as their preposition.

The normalised structure resulting from the example sentence:

"When the air system is defective, the check valves retain pressure in
the reservoir."

would be of the form:

RACINE
I
PH
1
3
i))) H

GOV GP GP GP CIRC
! [MTERS,DC, [DC,DFL,DMSS, [DC,DCONT,DP, [AINIT]
; DP,DPL] DNP,DSG,DVAR DHUNIT,DSG] !

s | | | :
=_1' 'l_’“""'"‘l' T_l_"l" T ! T (see
I 1 t 1 1 1 \ !

GV OPS GPREP GN GPREP GN GPREP GN over)
| [APRS] I I | i 1 |)
] | I 3]

: : { 1 : 1 1 { I i
cy cg CN DET CP CN DET CP CN DET
i]] { H]
]] i] |] [} i i] .
v P N CART P N CART P N CART
I : | | : : i [DING, | |
{ : | ART : ! ART DLOC : ART
E BOF ! (DDEF] BOF | (DDEF] DT™M] ! [DDEF]
1] 1 1

| I 1 I 1 1 { 1
RETAIN CHECK-VAILVE THE PRESSURE THE IN RESERVOIR THE

€ =15

GP
[DIQ,D?EL,DTM]
i

1 1
i , e
1] I
cP CN PH [AADJ, AREL}
| [!
P N |
l : E
BOF BOF !
!
I
i i H
GOV GP CIRC
: (DC,DP,DSG] !
| | GP
\E i [DIQ,?REL,DTM]
T— T T T T""'L_"“T
edls OPS GPREP GN GPREP GN
i {APRS] | ! | |
I | i T ;)
CADJ COP CP CN DET CP PRON
} [MTERS,] ; } i \
! DLINK P N CART P !
ADJ DSTAT] : ! ! : :
(DDEFECT] | BOF | ART[DDEF] BOF |
| i |])
1 1 i 1]
DEFECTIVE BE AIR-SYSTEM THE WHEN

Missing from this tree are several feature sefs,

the (GNs,

including those on
which are 1ldentical to those on the GPs which dominate themn,

and those on the nodes dominating BOF, which are always [XX].

Within complex noun groups, the internal structure is indicated in the
normalised tree by means of the semantic relation markers described in

section 4.

"left engine fuel pump suction line"

will be:

i
FUNCTION
I

R

i i |
LEFT ENGINE FUEL

7. Lexical transfer

PUMP SUCTION

T
]
]
i
i
i
i
i

N

LINE

For instance, the internal structure of the group:

The normalised structure produced by the analysis grammars constitutes

the

input to the lexical transfer stage,

c = 16

during which the leaves of

the tree (English 1lexical items}) are replaced by their French
equivalents.

It 1is often neccessary to examine the structural environment of a

given word in order to determine the correct translation. Similarly,
when the correct translation has been chosen, this may make it

necessary to effect certain changes on the data structure. The

formalism in which the entries of the bilingual transfer dictionary

are expressed allows the 1lexicographer to write procedural

descriptions to carry out both of these tasks,

The lhs of a dictionary rule is a character string corresponding to an
English lexical item; further conditions on the context of the lexical
item are included in the rhs - this is a specification of a traversal
of the data structure starting from the leaf corresponding to the lhs,
tests to be performed on the nodes thus visited, and their associated
feature sets, and assignments to be made according to the results of
those tests.,

7.1 Traversal of the data structure

At the start of a transfer dictionary entry, control is considered to
be focused at the node which directly deminates the lexical unit being-
considered (i.e. the lhs of the entry). This node is known as FC. Its
label, which will be a syntactic category, may be interrogated using
the function NATURE, e.g.

NATURE(FC) EST N

is a boolean function which returns 'true' if the label on FC is N and
‘false' otherwise.

The boolean function PARCOURS takes as an argument a specification of
a traversal of the tree starting from FC. This traversal is expressed
as a series of node labels ahd tree relations between them. These
relations are:
- - is dominated by

/ - is directly dominated by

\ - directly dominates

- - has as sister

PARCOURS returns the wvalue 'true' if the traversal can Dbe mnade,
otherwise 'false'., For instance:

PARCOURS /CV/GV\GPREP\CP\P

will evaluate 'true' if the sub-tree: -

GV -
I
| l]
CY GPREP
1
| 1
FC CP

1s found.

At any point in the traversal, the current node is the value of the

C =17

identifier ICI, and additional conditions may be specified on thls as
part of the evaluation of PARCOURS. These conditions will normally be
composed of set and relational operations on the feature set of ICI
and other (literal) feature sets, e.g.

PARCOURS /CADJ/GV/GOV/PH TELQUE TRAITS(ICI) »= [AREL] /GN
PARCOURS /CQ/GQ_CQ\Q TELQUE TRAITS(ICI) INTER [ENUM] = []

It 1s also possible to specify that the value of ICI at some polint be
assigned to another named variable, which may then be referenced later
in the entry. This is achieved by insertion of $<string> into the
traversal. Subsequently, the identifier <string> will be bound to the
value of ICI at the position immediately prior to the $, e.g. after
evaluation of:

PARCOURS /CADJ $ECADJ /GV $EGV/GOV $EGOV

the variables ECADJ, EGV, and EGOV will be bound to the nodes bearing
the labels CADJ, GV, and GOV respectively which were traversed during
that evaluation. _

In addition to the actual labels on nodes, traversals may also be
specified in terms of the relational categories of nodes. For
instance, the strongly bound arguments dominated by a PH node will all
be labelled by GP. A particular GP may be chosen by specifying one of
the pre-declared relations - SUJ, 0BJD, OBJI. Similarly, all
circumstantials will be dominated by a node 1labelled by CIRC.
Particular ones may be specified by subscripting the CIRC label, e.g.
CIRC{1], CIRC[2].

7.2 Assignments and tree manipulations

Variables of type UT, i.e. character string with associated set of
morphological features, and type ARBRELIBRE, 1i.e. tree, may be
declared at the top of a dictionary entry, and subsequently assigned
in the entry, e.g. '

VAR Al:UT; A2:ARBRELIBRE FIN

Al := 'Y' 'AVOIR'[B1]
A2 := CV (V UT TRADUITE Al)

The result of the assignment to A2 1s to build the tree:

cv
]
1
v
4

T T

Y AVOIR([B1]

which will subsequently replace any cccurrence of the identifier A2,

Notice that the assignment includes the infix operator TRADUITE. There
are several such operators, and to each there 1is a corresponding

c - 18

predefined procedure. In the case of TRADUITE, this is TRADUIRE. Thus:
TRADUIRE FC PAR 'PR2ESENT'{F1,Pl]

will replace the lexical unit dominated by FC with the UT-valued
literal 'PR2ESENT'{Fl1,Pl1]. As well as using a literal, the identity -’
replacement may be specified:

TRADUIRE FC PAR UT(FC)

This will be used in those cases where execution of the dictionary
entry has failed to pinpoint an acceptable translation.

Other procedures include INSERER, COPIER and DEPLACER. Each of these
has the form:

<procedure name> <tree> EN <position> S0US <node>

The <tree> may be a literal, a variable, or a named node or position.
In the latter case, the tree is that dominated by the named node. The
semantics of these three procedures are not made clear in the
documentation, though some lidea of their action may be gleaned from
their names.

To illustrate the use of these procedures, consider the fragment of a
dictionary entry for the adjective "present". This fragment performs
the restructuring of arguments when a phrase such as "x is present"” is
converted to the form "il y avoir x". (EPH is the PH node dominating
the named subject position ESUJ):

SI PARCOURS ESUJ_OBJD() $EOBJD ALORS
DEBUT
INSERER CIRC(EN GP DEPLACE (EOBJD)) EN CIRC{1] SOUS EPH;
COPIER ESUJ EN OBJD SOUS EPH;
'DEPLACER GP(GPREP(CP(P UT TRADUITE 'BOF')), EN SUBS
GN(PRON UT TRADUITE 'IL')) EN SUJ SOUS EPH
FIN

The procedure EFFACER takes a single named node as an argument and
erases the tree dominated by that node.

Assignments may be made to the set of features on a named node, e.g.

TRAITS EN EGN := TRAITS(EGN) + [TSTOFDET]
TRAITS EN FC := TRAITS(FC) + [TNOREF]

T.3 The LEXTRA software

It 1is obvious that the language in which transfer dictionary entries
are expressed, LEXTRA, 1s, like RFZ0, highly procedural. As with REZO,
the 1linguist is provided with a software tool which allows very fine
control over the operations to be performed, with very similar merits.
The complexity of writing transfer dictionary entries for AVIATION is
often clted as a reason for its lack of success.

One important consequence of the procedural nature of dictionary
entries is that the linguist must take care to maintain the integrity
-of the data structure, To ensure that this is so, the LEXTRA compiler
performs certain verifications on the entries, as well as compiling
them into a suitable form for use by. the LEXTRA interpreter.

C - 19

The compiler takes as data a formal description of the normalised
structure, and during the course of rule compilation ensures that
the manipulations expressed in the rules, providing they are applied
to a well-formed structure, will not result in a structure which
deviates from that description.

The well-formedness of the structures passed by the analysis stage to
the interpreter is verified by the latter, which also takes the formal
description of the neormalised structure, in addition to the compiled
procedures for each lexical unit output by the compiler.

The interpreter traverses the data structure according to a predefined

algorithm, which ensures that each leaf becomes in turn the value of
FC. :

8. Structural transfer and syntactic generation

Both structural <transfer and syntactic generation are effected Dby
means of Q-systems, which have been discussed extensively under TAUM
METEO. Certain limited changes must have been made to the Q-system
interpreter to deal with the feature set data type.

The distinction bDetween the two stages is not stressed in the
documentation, but remains of some theoretical significance. The
structural transfer stage has the task of realising those aspects of
the 'deep structure' of French texts which are not conditioned by the
presence of particular lexical items., This includes such
transformations as the substitution of an impersonal subject and an
active sentence structure in French for a passive in English, and the
conversion of an English gerundive subject into a French subordinate
clause. Structural transfer also deals with such phenomena as the
sequence of tenses and choice of articles.)

‘Syntactic generation serves primarily to flatten the tree output by
structural +transfer, giving a linear sequence of lexical items. It
also effects the insertion of lexical items such as relative pronouns
which are totally predictable from the information in the deep
structure, and ensures that each word is associated with the correct
set of morphological features dictated by rules of agreement.

The transformational model which underlies these phenomena, and their

deterministic nature, renders them well-suited for treatment by means
of Q-system grammars.

9. Morphological generation

The morphological generation phase, which is coded directly as a
PASCAL program, takes as input the output of the syntactic generation
phase and a separately compiled table of morphological forms., The form-
of the output from syntactic generation is an ordered forest of very
simple trees. Each tree is of the form of a syntactic category label
with a set of features describing the required inflections (e.g.
PLURAL, PASTPART, FEM) dominating the lexical item to be inflected,
with a feature set giving that item's morphological class (e.g. P1,
B6, FU4) as added by lexical transfer. Invariable word forms have the
root node INV, obviously without features. '

C - 20

For example:

INV N [MASC, ADJ [MASC, Vv [PLURAL V [PASTPART,
} } PLURAL] E PLURAL] | PRESINDj i MASC,PLURAL]
|

I | \ | i
DEUX ROBINET[P1] MANUEL[F4,P1] 4ETRE[B2] SITUER(B6]

(continued over)
I?V A%T[MASC] N [MASC] I?V [FEM] P?NC

f i
1 1

i
i
| ; | i
DANS LE LOGEMENT{ P1] DE R

e

O----=

i
1
-

UE[P1]

Morphelogical generation accesses the table of morphological forms
using both sets of features. For instance, it will lcok up the
conjugation of a verb of class B6 for a masculine, plural, past
participle, which will result in the form "situés". _

This stage also takes care of phenomena such as elision (LE AVION ->
"l'avion") and contraction (DE LE -> "du").

10, Software and hardware details of the system

AVIATION was developed on the University of Montreal's Control Data
Cyber 173 with a NOSBE 1.4, Level 508 Operating system. Texts are
automatically pre- and post-edited by application of rules written in
a formallsm known as SISIF (Systeme d'Identification, de Substitution
et d'Insertion de Formes). Like those of the SYDICAN, REZ0, and LEXTRA
formalisms, the SISIF compiler and interpreter are written in PASCAL.

In addition to the main components of the translation chain, AVIATION
provides a software system for questioning and update of entries in
both analysis and transfer dictionaries, called GEDIBADO (GEstion de
DIctionnaire en BAnque de DOnnees., It is estimated that a 1linguist
requires about three months of specialised training in order to write
transfer dictionary entries.

As of March 1981, the analysils dictionary contained 4,054 entries, as
follows: :

Nouns 1674
Adjectives 871
Verbs 8%3
Adverbs 187
Prepositions 149
Equivalence rules 136
Quantifiers 79

Ordinals, pronouns, articles 124
and conjunctions

The transfer dictionary contained 3,280 entries, this lower figure

being a result of the fact that a single transfer entry will deal with
all homographs of whatever syntactic category.

C - 21

The central memory required to execute each phase of the system is as

follows:
Stage kwords

Pre-processing 14

Morphological analysis 16

Analysis dictionary 16

Structural analysis 4o

Transfer dictionary 16

Structural transfer/syntactic gen. 23

Morphological generation 20

Post-processing 14
The size of the files (in kwords of 60 bits) is as follows:

Source Compiled
Stage C G/D C - I G/D

Pre-processing 5.9 3.7 1.3 4.3 1.5 6.0
Morphological analysis 1.2 7.4 2.3 4.8 7.7
Analysis dictionary 39.4 137.5 7.2 195.8
Analysis 15.8 11.1 15.9 15.5 5.6 20.5
Transfer dictionary .25.8 14.6 367.g 13.0 10.7 191.2
Structural transfer/SG 2. 4.6 9. 2.6 6.3 11.3
Morphological generation 0.8 6.9 5.8 6.4 2.9
Post-processing 5.9 3.7 0.8 4,3 1.5 .3
C = compiler I = interpreter G/D = grammar or dictionary

The c¢ost of producing a revised translation of texts submitted to
AVIATION was estimated to be $0.183 per word, of which $0.083 was the
cost of unedited translation. This should be compared with the cost of
a human translation of the same texts, $0.145 per word. The total cost
of producing an edited automatic translation breaks down as follows:

Preparation/input
Automatic translation
Human revision

Transcription/proofreading

8%
k3%
37%
12%

0f the $0.083 per word cost of automatic translation alone, we have
the following break down according to hardware resources:

Central Pracessing Unit
Input/output
Central memory

and according to transglation stages:

Pre-processing

Morphological analysis

Analysis dictionary
Structural analysis
Transfer dictionary
Structural transfer/SG

Morphological generation

Post-processing

C - 22

$0.0468
$0.0032
$0.0331

2.1%
3.1%
13.1%
34 ,2%
13.0%
20, 3%
1.1%
7.1%

The time required for automatic translation was estZmated at 0.63
seconds, of which 0.42 is CPU time, and 0.21 is input/output time.
This is about half the time required for human translation. However,
it is also stated that revision requires more qualified personnel than
translation.

TAUM claim that optimisation of software could significantly reduce
the hardware resources consumed and hence the cost, and further
savings could be achieved by improvement of the human interface.
Furthermore, improvement in the grammars and dictionaries would result
in a greater percentage of sentences being translated than the current
67%, which would in turn reduce post-editing time and costs, It
would appear, therefore, that translation by means of AVIATION is, in
theory, an economically viable proposition. This view is obviously not
shared by the Canadian Bureau of Translation.

C - 23

11. Documentatlion and references

Documentation:

Bourbeau, L. {1981) ‘'Linguistie documentation of the computerised
translation chain of the TAUM-AVIATION system', TAUM,
Université de Montréal.

Bourbeau, L. and Poulin, G. (1977) 'Analyseur morphologique du systéme
TAUM-AVIATION', in TAUM (1977).

Chevalier, H. and Dansereau, J. (1977) 'Catalogue des structures
syntaxiques du corpus AVIATION', in TAUM (1977).

Dansereau, J. (1977) 'Etat des travaux', in TAUM (1977).

Isabelle, P, (1977) 'Traitement des idioms dans le systeme TAUM-
AVIATION', in TAUM (1977).

Isabelle, P. (1981) ‘'A linguistic description of the TAUM-AVIATION
computerised translation system', in Bourbeau (1981).

Isabelle, P., Bourbeau, L., Chevalier, M. and Lepage, S. (1978) 'TAUM-
AVIATION: Description d'un systéme de traduction
automatisee des manuels d'entretien en aeronautique’, paper
submitted to 7th Int. Conf. on Computational Linguistics

(COLING), Bergen, Norway.

Lehrberger, J.J. (1977) 'Complementation des verbes', in TAUM (1977).

Lehrberger, J.J. (1981) 'The linguistic model: general aspects', in
Bourbeau (1981).

Macklovitch, E. and Bourbeau, L. (1981) 'The principal characteristics
of the TAUM-AVIATION system', in Bourbeau (1981).

Poulin, G. (1977) 'lLe dictionnaire TAUM-AVIATION', in TAUM (1977).

Stewart, G. (1977) ‘'Operations preliminaires & 1la formation du
catalogue des structures syntaxigues', in TAUM (1977).

Stewart, G. (1978) ‘Specialisation et compilation des "Augmented

Transition Networks": REZ0', paper submitted to Tth Int.

- Conf. on Computational Linguistics (COLING), Bergen, Norway.

Stewart, G. (1981) 'The role of computer science in the TAUM machine

translation system: computational aspects of machine
translation', in Bourbeau (1981).

TAUM (1977) 'Projet AVIATION - Rapport d'&tape’, TAUM, Universite de
Montréal.

TAUM (1979) ‘'Demonstration du 27 Mars 1979'; TAUM, Universite de
Montréal.

C = 24

References:

Kay, M. {1977) 'Morphological and syntactic analysis', in 'Linguistic
Structures Processing', ed. A. Zampolli, Fundamental Studles
in Computer Science, 5, North-Holland.

Woods, W. (1970) 'Transition Network Grammars for Natural Language
Analysis', Communications of the ACM, vel., 13, no. 1.

Woods, W. (1973) 'An experimental parsing system for transition

network grammars', in ‘Natural Language Processing', ed. R.
Rustin, Algorithmic Press, N.Y,.

c - 25

Appendix D: GETA ARIANE-78

Tabhle of contents

0. Introduction
l. Basic nature of system
2. Data structure
2.1 Variables
2.2 Formats
2.3 Linguistic content of labels
2.4 Levels of interpretation
2.5 Declarations of data
3. Morphological analysis
3.1 Dictionaries
3.2 The ATEF algorithm
3.3 The ATEF grammar - rules and operations
3.3.1 Assignments
3.3.2 Standard functions
3.3.3 Conditions
3.3.4 Modifications of entry
3.3.5 Sub-rules
3.4 Unknown words
2.5 Example ATEF rule
3.6 Evaluation of ATEF

D W O~ =~ U g W W W NN~ - e

10

12
12
12
12

13

4, Multilevel analysis
4,1 Transformational rules
4.1.1 Schema
4,1.1.1 Root of transformation
4.1.1.2 Constraints on level of rcot of schema
4.1.1.3 Schema-tree
4.1.1.4 Conditions
4,1.2 Image
4.1.2.1 Image-tree
4.1.2.2 Transfer functions
4.1.2.3 Assignments
4.,1.3 Example ROBRA rule
4.2 Transformational grammars
4,2.1 Execution modes
4,2.2 Elementary application of a TG
4.,2.3 Iteration
4,2.4 Reentrancy
4.2.5 Control on grammars
4.2.6 Example ROBRA grammar
4.3 Evaluation of ROBRA
5. Lexical transfer
5.1 Transfer dictionaries
5.2 Linguistlic content of TRANSF entries
5.2.1 Verbal government
5.2.2 Fixed idioms in TL
5.2.3 Variable idioms in TL
5.2.4 Source idioms
5.2.5 Po%ysemy
5.3 Evaluation of TRANSF

6. Structural transfer and syntactic generation

13
14

14
14
15
15
17
18
18
18
20
21
21
22
22
23
23
23
a4
24
25
25
27
28
28

28

29
29
29
30

(. HNorphological generation
7.1l Dicticnaries
7.2 The SYGMOR grammar - rules and operations
7.2.1 Dietionary access
7.2.2 Assignments
7.2.3 String transformations
7.2.4 Sequence of transitions
7.3 The SYGMOR algorithm
7.4 Evaluation of SYGMOR
8. Software environment and implementation
9. FPinal comments)

10. Documentation

30
31
31
32
32
33
33
33
34
35
36
37

GETA ARIANE-T8

0. Introduction

GETA's ARIANE~-78 system 4is a suite of software tools for the
description and application of linguistic data, particularly for the
purpose of translation. GETA (Groupe d'Etude pour 1la Traduction
Automatique), based at the University of Grenoble, 1is one of the
oldest MT research groups in the world, having been formed in 1961 (as
CETA). The CETA system was developed over the ten years to 1971, and
was based on the interlingua philosophy. This system, which was
designed for Russian-French translation of scientific texts, was not
extremely successful, failing to translate well over half the
sentences it treated. One of the principal reasons for this was the
loss of potentially useful surface syntactic information during the
reduction of the text to interlingual form.

1. Basic nature of the system

From 1971 onwards, GETA's approach to MT has been firmly based on the
transfer concept, that is, a bilingual transfer stage is interposed
between monolingual source language analysis and target language
synthesis, eliminating the need for some abstract, unambiguous,
language-independent, static text representation (interlingusa}.
ARIANE-78 is the latest development of this approach, but is strongly
based on research carried out between 1971 and 1978. Although Russian-
French translation still appears to be the main focus of 1linguistic
work using the system, other languages (including English, Japanese,
German and Portuguese) have also been studied. The system itself 1is
claimed to be suitable for translation between any language pair, and
it is in fact the algorithmic Teatures which are of the greatest
interest. The translation chain consists of six principal phases,
namely:

Morphological and preliminary syntactic analysis
Syntactic (or 'multilevel') analysis

Lexical transfer

Structural transfer

Syntactic generation

Morpheological generation

ARIANE-78 offers to the user-linguist a set of metalanguages for
expressing the linguistic data (dictionaries and grammars) appropriate
to each phase. A formal separation between the linguistic data and the
algorithms of application is observed, although certain data effect a
direct influence on the algorithms. An important feature claimed for -
the system 1is that the simpler stages of translation - i.e.
morphological analysis, lexical transfer and morphological generation
- are realised by algorithmic models of -correspondingly less
generality (ATEF, TRANSF, SYGMOR respectively), with the more
sophisticated ROBRA model being used for the remaining, more complex
stages - syntactic analysis, structural transfer and syntactic
generation.

2. Data structure

The data structure which represents a text between the stages of
morphological analysis 'and morphological synthesis 1is a complex

D-1

labelled tree, Each node of the tree is a complex labei, 1.e. a
property Iist incorporating (the values of) any number of variables of
various types. The wuse of this term 1s somewhat idIosyncratic,

designating what are normally called atftributes. It 1ls retained here,
but it should be remembered that it does not have its normal meanlng,
referring to a class of grammatical structures within a 1linguistic
rule.

2.1 Variables

Variables are declared to the system in files of variables, Each
variable 138 characterised by a name, a type (scalar or set)}, and a
list of values, Declarations of scalar variables are preceded by the
reserved word -EXC- ('exclusive'). Such variables may have at any one
time only a single value, taken from the value list plus the special
value 'nil' (or undefined). Numerical variables are a particular sub-
class of the exclusives, and are declared by stating their maximum
value, as a positive integer, in brackets after the name. Thus ARIT(n)
defines a numerical variable called ARIT whose values range over the
integers from ~-(n+l) to n. UL ('unité& lexicale') 1is an exclusive
variable predefined by the system whose values range over the lexical
units included in the dictionaries. Set wvariables have their
declarations preceeded by -NEX- (‘'non-exclusive') and have values -
taken from the set of all subsets of their associated list plus 'nil’'.
The permissible operations on scalars are tests for equality and
inequality, on sets, these plus intersection, union and membership,
and on numericals,the commonly found arithmetic operations. There is
no means whereby the presence of one variable may be made conditional
upont the . value of another, in other words, no 'variant record'
capability, and thus no way of imposing a heirarchical structure
within labels. '

Given the declaration of variables:

-EXC-~
CAT := (ART, NOM, VB, ADJ). ‘syntactic category!
K := (NP, PP, VP). 'syntagmatic class'
NB := (8, P)}. ‘number’
FS := (DES, EPIT, GOV, SUBJ, OBJ) 'syntactic function’

the structure of the subject NP "The linear systems..."” after analysis
might be of the form:

UL CAT K NB FS

i O O (NP § P ;SUJ;

1

| ' |
UL CAT X NB FS UL CAT K NB F3 UL CAT K NB FS
TTHE, ART; O | P JDES| JLINEAR|ADJ|- i TEPLT! JSYSTEM|NOM| O | P GOV}

Labels are implemented as masks of variables - fixed-length records of
32 bytes, one each for exciusive and non-exclusive variables. Each
variable will be mapped by the compiler into a field of such a record.
This imposes a 1limit on the total number of values declared under each-
type. For exclusive variables, this is 21240, and for non-exclusive
ones is 240. ’

The 'nil® value for a variable is represented by the identifier:
<variable name>O
Variables are initialised with their 'nil' values by the system.

2.2 Formats

In order to simplify the writing of dictionaries and grammars,
recurring combinations of wvariables with particular values may be
defined. These are known as formats. Each format is referred to by a
name, and is declared in a file of formats.

Formats are declared as follows:
<format name> <card number> == <comment> .** (expressions> .

The expressions part may be empty, may assign values to variables
(simple formats), or may call other formats (general formats).

Por instance, the assignments:

CAT := (PRN)
PER := (3)
NBR := {SING)
GEN := (MASC)

(i.e. 3rd. person singular masculine pronoun) may be effected by
calling a format declared as follows:

FOSIL 01 ==.,%% CAT-E-PRN, NBR-E-SING, PER~E-3, GEN-E-MASC.

2.3 Linguistic content of labels

From the linguistic viewpoint, the variables that constitute a label
fall into four classes according to the type of information they
express. The latter may be related to:

- the 1lexical item, including UL itself and all syntactic and
semantic features derived from the source dictlonary or computed
during analysis (e.g. gender, animacy, count/mass etc,)

- the actualisation of the sentence (e.g. tense, aspect, number,
degree etc.)

- tactical variables, 1.e. variables of no particular linguistic
significance, but allowing the dictionary/grammar writer to pre-
specify in the linguistic data certain aspects of algorithmic
operations, such as a particular sequencing of rules, or
prevention of a such a sequencing

-~ the level of interpretation {see 2.4 below).

2.4 Levels of interpretation

The system does not impose any a priorli limitations on the 'depth' to
which a text is analysed. This level is determined by the linguilst
when writing the analysis and transfer rules, and may in principle 1lie
anywhere on the scale from the level of surface structure to an
abstract interlingual level. In practice, however, the linguistie
teams working with ARIANE-78 have agreed upon transfer between source

D -3

and target intermediate structures - structural descriptors
containing both deep and surface Ievel Information.

A major advantage of GETA's data structure is that it allows different
levels of interpretation to be represented simultaneocusly on a single
labelled tree, rather than using separate graphical representations
for each 1level. This gives the possibility of interaction Dbetween
levels, and 1s particularly important as a fall-safe provision: 1.e.
in case of failure to compute deep-level information for some part of
the translation unit, more superficlal information is accessible to
represent that unit while still allowing deep~level representation
elsewhere {since, being on the same tree structure, all levels of
representation are formally compatible). The levels of interpretation
employed to date correspond to:

1} terminal and non-terminal syntactic classes (CAT) - e.g. NP,
VP, PREP, ADJ etc.

2) syntactic functions (FS) - e.g. subject, object, complement
ete.

3) 1logico-semantic relations (RL) - e.g. arguments of a predicate
{(ARGl, ARG2,...), argument-qualifiers and determiners (QUAL1,
DET) etc.

Tree-geometry has to be consistent with each of these levels. This is
achieved by bracketing according to the set of non-terminal classes
{(level 1); thus the structure of the tree does not imply any
linguistic dependency relation between connected nodes. This is
dictated by the use of multi-level representation, since the ARIANE-78
system itself is quite generazl in the type of structure it supports -
e.g. Iimmediate-constituency or dependency. In a tree structured
according to immediate constituents, levels (2) and (3} involve
relationships between sister-nodes - e.g. between verb and noun, noun
and adjective etc¢. These relations are expressed in the label by
employing the value GOV ('governor') of the variable FS, 1in addition
to the FS/RL value which describes the relationship. For example, if
node i bears the relationship R (e.g. ‘'subject of!, 'first argument
of') to node J, then node i will be labelled for the value R (ie. its
FS/RL variable will be assigned this value)} and node j {which must be
a leaf} will be labelled for the wvalue GOV (i,e. 1its FS variable will
be assigned the value GOV, its RL variable necessarily taking the
value 'nil')., Thus for every set of sister-nodes, one will have the
role of GOV, and all other (optional) nodes of the set will Dbe
dependent on the GOV node via thelr respective FS and RL values.

For example, the multi-level intermediate structure of the sentence:
"Cette musique plaft aux jeunes gens"

would have the form:

CAT (PHVB)
1 : ¥
CAT (GN) UL (PLAIRE) CAT (GN)
FS (SUJ) CAT {(VB) FS (OBJ1)
RL (ARG1) FS (GOV) RL (ARG2)
UL (CE) UL (MUSIQUE) UL (A) CAT (GA) UL (GENS)
CAT (DEM) CAT (NCOM) CAT (PREP) TFS (ATR) CAT (NCOM)
FS (DES) . FS (GOV) FS (REG) RL (QUALL) FS (GOV)
UL (JEUNE)
CAT (ADJ)
FS (GOV)

2.5 Declarations of data

The external linguistic data available to the various phases of the
translation chain may be of the following kinds:

- variables (all components)

formats (all components)

- dictionaries (ATEF, TRANSF, SYGMOR)
grammars (ATEF, ROBRA, SYGMOR}.

!

Variables and formats are declared for each phase separately, though
variables which have already been declared for one phase may in
certain cases be carried over in simplified form to the declarations
of subsequent phases, Dictionaries and grammars are specific to each
component which uses them. All four kinds of data are expressed in
particular metalanguages, whose syntax and coherence is checked by the
corresponding compiler. The compilers generate compact Iintermediate
code which is interpreted at run-~time.,

3. Morphological analysis

The component ATEF ('Analyse des Textes en Etats Finis') is
responsible for morphological analysis and the preliminary stage of
syntactic analysis. Its function 1is to convert text-strings into -
labelled trees, as 1input to the subsequent stage of multilevel
analysis reallsed by ROBRA. ATEF 1g based on a non-deterministic

te-state transducer model; non-determinism is essential, since in
general multilevel analysis must receive all possible interpretations
of a form, as disambiguation between these may not be possible until
thilis later phase.

The linguistic data available to- ATEF comprise:
- declération of variables and formats

- source dictionaries

- & grammar, each rule of which includes a list of calling
formats, a set of conditions and a set of actions.

The input text is considered as a string of forms. A form is a string
of characters bracketed by two blanks, and usually corresponds to a
word of the text. The text is analysed left-to-right, form by form.
The direction (left-right or right-left) of analysis of each form 1is
set by the linguist at compilation time.

The functions of the morphological analysis phase are twofold; first,
to assign to each form a mask of variables representing the sum total
of 1linguistic information characteristic of the form -~ this 1is
achieved by segmenting each form into its component morphemes and
integrating the information contributed by these; and secondly, *to
assign a basic tree structure to the text - the terminal nodes of this
tree will consist of the masks of variables representing forms.

Non-terminal nodes, which are generated by the automaton, may have the
following values of the variable UL (and otherwise empty labels):

ULTXT for the node corresponding to the text

ULFRA : for the node corresponding to the sentence

ULOCC : for the node corresponding to an occurrence of a word
ULMCP : for the node corresponding to a compound word

LR

For example, 1f the text consists of a single sentence:
"Un physicien montre un semi-conducteur.”

the ocutput may have the form:

IUET}{TI 6 1

|UEFRA| 0 1
| § i E

TOLOCCT O | TOLOCCT O | TULOCCT © | TULOCCT 0 |

| : | |
i i T ! '
i] i 1
| I | |
TON | P
1
4

**T TPHYSICIEN[®¥T IFONTRE[®*] IHONTRERT®*T TULMCPT 0

TSEMIT**] CONDUCTEUR,; O |

'%%' and '0' stand for the values of the variables other than UL which
make up the mask associated with each form. '0' indicates that all
values are 'nil’.

Note +that unresolved ambiguities are represented as the multiple
daughters of a ULOCC node for resolution in multilevel analysis
(although this particular example of verdb/noun homography would
probably be resolved during the application of a realistic ATEF
grammar) .

3.1 Dictionaries

The ATEF system permits the wuser to define a maximum of six
dictionaries plus &a dictionary of idioms. There is at least one
dictionary of stems and one of affixes; otherwise the number and
arrangement of dictionaries is user-defined.

The form of an ATEF dictionary entry is:

<dictionary entry>::=
<character string> == <morphological format>
(<syntactic format> , <lexical unit>) .

The elements ',' «<lexical unit> appear only in stem and idiom
dictionaries. Morphological and syntactic formats are declared in
separate files. Morphological formats incorporate only morphologlcal
variables (declared separately from syntactic variables); syntactic
formats may not incorporate exclusive morphological variables.
However, both morphological and syntactic variables may relate to
information at any 1linguistic 1level (morpho-syntactic, semantic,
logico-semantic); the distinction between morphological and syntactic
formats 1s therefore essentially strategic rather than linguistic,
morphological formats being used to access particular ATEF rules.

For each application of the ATEF grammar, the set of dictionaries to
be used must be initialised, and the type of control adopted must be
specified. This 1is achieved via the obligatory rule RDICT, which
comprises two main rhs elements - a list of source dictionaries, and a
control code, e.g.

RDICT : (1,2,3 / D).

The control code 'D' indicates that the three dictionaries {(which will
normally be those for suffixes, stems, and prefixes) are accessed in
an order defined by the system. Alfternatively, the control code 'N’
permits the user to control the current set of dictionaries and the
order 1in which they are accessed by means of assignments to the non-
exclusive tactical variable DICT in the grammar.

3.2 The ATEF algorithm

The basic . {unconstrained) algorithm examines all possible
segmentations of a form { which will number 27n-1 for a string of n
characters) by attempting to match character substrings exhaustively
with entries in the available dictionaries. For example, the German
word "Automaten" may have the following potential segmentations,
assuming a likely set of dictionary entries:

AUTOMAT + EN
AUTOMATEN = AUTOMAT + E + N
AUTO + MATE + N

Of these ‘'solutions', only AUTOMAT + EN will be retained as wvalid
after application of the ATEF grammars. In general, valid
segmentations are those for which: '

- each segment is compatible with its co-segments (morphological
coherence) - i

- the form itself, so analysed, 1is compatible with the analysis
of neighbouring forms, to a maximum of the four preceding forms

D -7

and the immediately following form {syntactic coherence),.

Morphological and syntactic c¢oherence are determined by the ATEF
grammar - specifically, by the conditions contained 1in 1individual
grammar rules. These conditions relate to c¢ertain key masks of
variables, designated by the following codes of origin:

‘A', ICt’ |P1l, 'PE', 'P3', 'PLI-', g

'Pl'.,.'P4' represent the masks assoclated with the four forms
preceding the form being currently analysed, 1in order of increasing
distance from that form. 'S' represents the mask assoclated with the
immediately succeeding form. These five masks are employed in
determining syntactic ccherence., Morphological coherence 1s determined
on the basis of the two masks 'A' and 'C', 'C' represents the 'current
state' of the analysis of a particular form -~ the 'C' mask embodies
the sum total of information c¢ontributed to the interpretation of the
form by the segments (morphemes) so far analysed.

A step of the analysis begins by 'cutting out' a prospective segment
from the as yet unanalysed part of the form. The dictionaries are
scanned to find a corresponding entry. If one is not found, the scan
is repeated with a shorter segment. A dictionary entry for a segment
provides the mask 'A’ {('argument state') - i.e. ‘'A' represents the
information (morphological and syntactic formats and a possible UL
value) characterising the 'new' segment. The morphological format
associated with the segment is the calling format of one or more
grammatical rules. The condition parts of each such rule are
evaluated, and if 'true', the specified actions are carried out. Thus
a rule serves to determine whether mask 'A' is compatible with mask
'C', and will update 'C' accordingly.

After the applicable rules for a particular segment have been applied,
the segmentation continues with a new segment until a blank,
indicating the end of a form, 1is reached. Thus the left to right
segmentation of a form "WXYZ" will examine all possible segmentations
{unless interrupted by a standard function) in the order:
1) WXyz
2) WXY - 2
3) WX - YZ 4)WX - Y - Z
5} W-XYZ 6) W-XY=-2Z 7T)W-X-YZ B8)W-X=-Y-~-2
Failure to 1locate a dictionary entry for a particular segment will
eliminate one or more of these segmentations. For example, if there is
no entry for WX, 3 and 4 will be eliminated, and none for X will
eliminate 7 and 8. Other segmentations will be eliminated by a failure
to verify rule conditions. The search for sclutions for a form may be
characterised by a tree, which branches as a result of:
- several different segmentations of the form
- the same segment being found in several dictionaries
~ several rules being called from the same dictionary ehtry
In terms of the automaton which realises theé analysis, morphological
formats specified in the argument label 'A' and in the lhs of grammar

D -8

rules constitute the set of input elements to a transition, and the
label 'C' constitutes the output. A final state is reached at the end
of a successful segmentation and is represented by the resulting 'C’
label for a particular form. The systematic traversal of the solution
tree associated with a form (which is the realisation of the non-
deterministic nature of the algorithm) is effected by stacking and
unstacking copies of the partially completed label 'C' at appropriate
times. However, by means of the standard functions described Dbelow,
the user has the facility to 1intervene 1in this combinatorial
enumeration and thus heuristically constrain the search for possible
solutions,

3.3 The ATEF grammar - rules and operations

The ATEF grammar contains an unordered list of rules, of the form:

<rule> ::= -
<name of rule> : <lhs> == <rhs> .

in which the lhs consists of a list of calling formats by which the
rule is accessed (separated by '-'), whilst the rhs specifies the
conditions on the application of the rule and the actions to be
effected if the conditions are satisfied, thus:
<rhs> :i=
<assignments and standard functions> /
<conditions on current and previous forms> /
<modifications of entry> /
<conditions on the succeeding forms /
<sub-rules>

The need to divide the set of conditions into two parts arises . from
the fact that, when analysing a particular form, the variables
agssociated with the succeeding form are not yet available. Hence
<conditions on the succeeding form> come into effect retrcactively,
when that form is analysed. In consequence, this part of the condition
cannot make reference to 'P4' which, by the time the condition 1is
evaluated, has disappeared from the field of the automaton.

3.3.1 Assignments

Values may be assigned to the variables of the masks 'C' or 'S'. These
values may be literals, e.g.

GEN(C) := MASC

or may have been calculated during the course of analysis of earlier
forms, in which case they are 'situated' by subscripting them with the
appropriate code of origin, e.g.

GEN(C} := GEN(P1l)
In the case of a non-exclusive variable, assignment may refer to a set
of values, obtained by means of the set operators: -U- {union), -I-
(intersection), -N- (complementation), e.g.
CAT(C) := GNM -U~ GVB -U- CAT(A)
The opening and closing of dictionaries as appropriate is controlled

in this part of an ATEF rule by means of the tactical variable DICT.
The assignment of values (representing the avajilable dictionaries) to

D=9

this variable takes the same form as any assignment to a non-exclusive
variable, except that the codes of origin on the rhs of the assignment
may not include 'Pl' to 'P4', e.g.

DICT(C) := DICT(C) -U- 01 -U- 02 -I- -N- 05

where 0l, 02, 05 refer to source dictionaries. {The value of DICT(C)
on the rhs may have been assigned during analysis of the previous
form, i.e. to the variable DICT(S)}).

In order to avoid lengthy enumeration of variables 1n certain
systematic transfers of values from one mask to another, groups of
variables may be referenced by means of reserved identifiers
predeclared by the system, e.g.

VARES(C) := VARES(A)}
VAREM(C) := VAREM(A)
VARNS(C)} := VARNS(A) -U- VARNS{(C)
VARNM(C) := VARNM(A) -U- VARNM(C)

where VARES and VAREM refer to exclusive variables (syntactic and
morphological, respectively), VARNS and VARNM to non-exclusive
variables (syntactic and morphological, respectively).

3.3.2 Standard functions

Several of the standard functions available enable the user to
intervene in the segmentation algorithm, (that is, to cut the branches
of the solution tree,) as follows:

~ARRET- : blocks any further segmentation or processing of the current
argument segment, Dbut retains valid solutions discovered previously,
and allows analysis of the form as a whole to continue,

~FINAL- : rejects any valid solutions found previously, and blocks any
further segmentation of the current segment, continuing the treatment
of subsequent segments only until the first valid solution is found.

-3TOP- ¢ retains valid solutions discovered prior to its invocation,
but otherwise has the same effect as -FINAL~.

-ARD- : blocks further processing of the current segment, and Dblocks
access to the same dictionary with sub-segments of the current
segment. . ‘

-ARF- : as -ARD- but blocks access to any dictionary with sub-segments
of the current segment.

Other standard functions are used for the creation or suppression of
lexical units or nodes in the analysis tree.

-S0L~ : creates a ULMCP node under the current ULOCC node, i.e. it is
applied whenever a compound form is recognised.

-TRANS- : applies when a valid segmentation cannot be found, creating
a UL wvalue i1dentical to the entire current form, thus permitting
treatment of numerals, and proper nouns whenever these are not
Inflected. ‘

~TRANSA- : creates a UL value from the current segment, when the
latter cannot be analysed, but retains analyses for other segments of

D ~ 10

the same form. This 1s used for treatment of unknown words WwWith
recognisable inflections.

-INIT= : creates a new ULFRA node, subsuming under this the analyses
of all forms encountered until the next call of -INIT-. This function

is associated with the rule for processing full stops, and has the
effect of dividing the text into a series of coherent sentence units.

ELIM(x) : eliminates the form x (= 'S*', ‘'C', 'Pl1'-'Pl'),

ELIT(x) : eliminates all forms between x and 'C' inclusively. This and
the previous function are used for the treatment of idioms.

3.3.3 Conditions

A simple condition is a boolean expression consisting of lhs and rhs
connected by one of four types of relator:

-E- : equality

~NE- ! non-equality

-DANS- : set-membership - non-exclusive variables only
-~INC~ : set-inclusion - " o '

The 1lhs of a relation always contains as 1its first element a
'situated' variable. In the case of an exclusive variable, this 1s the
unique component of the lhs, e.g.

TMP{P2) -NE- FUT
TMP(S) -E- TMP(C)

In the case of a non-exclusive variable the lhs and rhs may be
compound expressions involving the binary set operators -U- and -I- ,

e.g.

CAT(P2) -U— CAT(Pl) —INC- PRN
GEN(S) -DANS~- GEN(C) -I- GEN(P1)

Relations may involve literal values of type character string. The
pre-defined function SCHAINE(X,Y,Z) returns a string value calculated
from the values of its parameters, as follows:

X - the code of origin of the form containing the string, i.e. 'S’',
'C'y 'PL'='P4', or 'A', where 'A' refers to the remainder
(unanalysed segment) of the current form - 'C'

Y - the origin of the substring in that form. This parameter 1s an
integer between 0O and 31 inclusive (from the left if
segmentation is from left to right, or from the right if it is-
the other way, and vice versa 1f the number is preceded by $)

Z - the 1length of the substring, again an integer, or '*' which
represents the remainder of the form-string, from the specified
origin.] .

For example, SCHAINE {(Pl, O, 2) designates the substring consisting of
the first two characters of the form 'Pl'. String literals are
represented Dby enclosing them with single apostrophes. Literal
relations take a form analogous to that of relations involving
exclusive variables, e.g.

SCHAINE (S, 0, *) -E- 'IN’

D - 11

vonaitions may be compounded from basic relations by means of the
logical operators, -ET- (conjunction), -QU= (disjunction), -N-
(negation), e.g.

GNR(C)} -I- GNR(S) ~-NE- GNRO -ET- NBR{C) -I- NBR(S) -MNE- NBRO
-ET- CAT{(S) -E- NOM

The speclal boolean function TOURN takes a form code as parameter and

evaluates ‘true' if the idiom dictionary contains a sequence of forms

corresponding to a text sequence commencing with the parameter, e.g.
SCHAINE (P2, 0, 2) -E- 'DE' -ET- TOURN (P2)

3.3.4 Modifications of entry

The third component of the rhs of an ATEF rule permits, 1like the
standard functions, interference in the algorithm, in this case by
transformation of the current form. This is effected by calling the
pre-defined procedure TCHAINE(P,Q,R}) and specifying:

P - the origin in the current form of the substring to be
transformed { the same as the second parameter of SCHAINE)

Q - the length of the substring, or a string literal with which the
substring must coincide for the modification to take effect

R - a string literal representing the result of the modification.

Por example, TCHAINE (O, '', f11') might be called during the
processing of a stem with an inflectional suffix, and will have the
effect of prefixing the suffix with the string '11', TCHAINE is used
principally to convert morphs to a canonical form, thus eliminating
allomorphic variation, and it is also used tactically, to reduce the
possible readings of an affix by using syntactic characteristics of
the stem to condition different forms of the affix.

The sub-rule part of the rhs is an ordered list of rule names. The
first of these whose condition evaluates 'true' is applied. The
calling formats of these sub-rules are usually empty. This facility
allows the common parts of several rules to be factored out.

3.4 Unknown words

-

MOTINC is a special, obligatory, rule, which applies automatically
when no other rules do. It may be used to effect the assignment of a
set of values to any word not found in the dictionary.

3.5 Example ATEF rule

The following rule 1s taken from an ATEF grammar for German., Its
function 1is the interpretation of non-terminal morphemes found 1in
verbal conjugations, or morphemes of comparison in adjectives, and the
prefixation of the final segment., It is called by some of the
dictionary entries associated with the morphemes:

EN, END, ER, EST, ET, ST, T

though not all, since by the time the dictionary is accessed, these
morphemes have been prefixed with various strings according to the

D =12

stem with which they were found.

RC2: FMDVB-FMDVF~FMDA2-FMDA2X ==
VARNM(C) :=VARNM(C)-U-VARNM(A), DICT(C):=3, -ARD- /
SCHAINE(A,O0,1)=NE-' ' /

TCHAINE(O,'','30').
3.6 Evaluation of ATEF

The ATEF system obviously permits expression of a wide wvariety of
analysis techniques to the linguists concerned with morphological and
preliminary syntactic analysis. Given the limitations of the tree as a
data structure for representing possible ambiguous readings of
sentence constituents (e¢f. the chart), 1t is obviously desirable for
cases of morphosyntactic ambiguity to be resolved as early and as
simply as possible.,

However, the intensely procedural nature of the ATEF system, as
exemplified by:

- multiple assignments to variables, particularly the widespread
use of tactical variables

- modifications of the data during the course of processing, by
means of TCHAINE

- intervention in the algorithm by means of -ARRET-, -~-FINAL- etc.,
results in grammatical rules whose functions in 1isolation are

extremely difficult to ascertain, and consequently grammars which are
more difficult to write, debug and extend.

4. Multilevel analysis <

Multilevel analysis is the term used by GETA to designate the analysis

stage effected by the abstract tree-transduction model ROBRA. The

input to this stage is the flat labelled tree output by ATEF. The

model comprises a set of transformational rules (TRs) which
progressively convert the input 1into the desired intermediate

structure by applying local transformations in the object +tree. TRs

are grouped into transformational grammars (TGs): each TG consists of

an ordered set of TRe and in general will correspond to a specific

linguistic phenomenon e.g. relativisation, infinitival complements,

expressions of comparison etc. . ’

The linguistic data consist of:
- declaration of variables and formats

- a transformational system comprising
- condition functicons and assignment procedures
- transformational rules
- transformational grammars
- a control graph specifying the flow of control

Variables and formats are declared in a similar way to those of ATEF,
except that the morphological vs. syntactic distinetion 1is here
inapplicable., For variables which have been previously defined in
ATEF, the 1list of +their values is replaced by '*¥' 4in the ROBRA
declaration. ' .

D - 13

Condition functions and assignment procedures are used in order to
simplify the writing of TRs. They are declared in the same file as the
rules, following the reserved word -PROC-. Different types are
distinguished by preflxing each rule with one of the following codes:

PCP: - ('procedure condition propre') -~ boolean functions
invoked during evaluation of conditions on individual
nodes

PCIS: - ('procedure condition inter~sommet') - boolean
functions invoked during evaluation of inter-node
conditions

PAF: - {'procedure d'affectation’} - assignment procedures.

The use of these is explained at appropriate points below.

4.1 Transformational rules {(TRs)

A TR consists of a rule-name, an lhs (the schema) and an rhs (the

image):

<TR> :i:= -
<rule-name> : <schema> == <image> .

A TR 4is thus a production rule, where the scheme represents the
pattern and the lmage represents the action.

4.,1.1 Schema

The schema part of a rule contains all the information necessary to
identify the type(s) of tree to which the rule applies. It consists of
four components:

- an optioconal section, defining the root node of the
transformation, and the restrictions on the level of the object
tree at which the root of the schema-tree may occur

- a schema-tree, giving the structural geometry of the sub-tree
upon or within which the rule applies .

- an optional set of conditions on the labels of individual nodes
of that sub-tree '

-~ an optional set of conditions on relations between the labels
of these nodes; i.e.

<schema> ::=
(<root of transformation> ,
<constraints on level of root of schema>)
<schema-tree> /[
<individual-node conditions> /
<inter-node conditions>

4,1.1.1 Root of -transformation

It is important to note that the schema is not necessarily limited to
describing only that section of the object tree which 1Is actually
transformed by the rule; the section to be transformed (rooted in RT)
may in fact be a strict sub-tree of the schema-tree (rooted in RS). In
this case the invariant (non-transformed) part of the schema acts as

D - 14

the context of the sub-tree to be transformed and so helps to
constrain the number of possible sub-trees that may undergo the
transformation. Though invariant, nodes forming part of the context
may appear on the rhs of assignments In the image part of the rule.

The element <root of transformation> will be empty if RT and RS are
the same node, If RT does differ from {(is a descendant of) RS, then
its node name in the schema tree must be stated in the <root of
transformation>. RT 1is the lowest node in the tree such that all
transformed nodes are subsumed under it, and it is not necessarily
transformed itself. If it is not transformed, its name should be
preceded by '*', so that the interpreter may safely apply several
transformations each rooted on this same node (horizontal
parallelism).

b,1.1.2 Constraints on level of root of schema

The tuple of levels at which RS 1s permitted to be located (&NIV) can
be constrained by the use of the arithmetic relation operators =, >,
Y=, <, <=, <>, e.g.

expression levels comment

2 >= &NIV 1,2

2 <= &NIV <= 5 2,3,4,5 intersection
2 >= &NIV >= 5 1,2,5,6,Tec. union

That is, if the expression contains two relations, it evaluates to the
intersection of the tuples, unless this is empty, 1in which case it
evaluates to their union.

4.1.1.3 Schema-tree

The geometry of the schema-tree is represented by the conventional use
of bracketing, e.g.

1 (2, 3) represents: 1

T -1
I 1

2 3

Note: the node names 1, 2, 3... are arbitrary - any identifier could
be used ~(in production system terminology, nodes are called
variables).

While the precision of the schema-~tree representation is obviously
crucial, it must also be flexible enough to capture a variety of
possible configurations of the basic structure to be transformed. For
example, the formalism must allow reference to two elements (which may
or may not form a 'discontinuous constituent'), separated in surface
structure by an unspecified number of elements (possibly none), or
whose surface ordering with respect to each other may vary (e.g. noun
+ adj / adj + noun in French). To facilitate such descriptions, the
following conventions have been incorporated:

1) List nodes: A connected (and possibly empty) set of unspecified
sister nodes is represented by a list node, designated by a node name
preceeded by the symbol '$', e.g. ‘

1(2, $3, W)

D = 15

indicates that any number of daughter nodes of node 1 ray intervene
between nodes 2 and 4. List nodes may not be placed adjacent to each
other in the schema-~tree,

2) Generalised dependant nodes: Reference may be made to a descendent .
of a particular node without the need to specify the (possibly empty)

set of hierarchically intervening nodes. The generalised dependant

node is designated by the symbol '?' preceeding its node name, e.g.

1(2 (73 (4, 5)), 6) represeﬁts: 1

——la) = - _m-.

L] r
| I

4 5

3) Antinodes: Constraints on the contiguity of nodes may be
expressed by the antinode, designated by '¥*', e.g. -

1(2, *, 3) indicates that sister nodes 2 and 3 must be
contiguous

1(*, 2, 3) indicates that node 2 must be the leftmost daughter
‘ of node 1

1(2, 3, *) indicates that node 3 must be the rightmost
daughter of node 1.

Without the antinode, the schema 1(2, 3) could apply to the tree:

Q-——=2

in the following ways:

A(B,C)
. A(C,D)
. A(B,D)

Note that the list node is not thereby made redundant; a list node may
figure explicitly in the individual- and inter-node conditions of the-
schema, and in the image part of the rule.

4) The following codes may be used to express constraints on the
ordering of nodes, and on the choice of nodes to which the schema
applies. The codes are placed after the name of the node to which they
apply, and are immediately preceded by the symbol '&’':

‘1) N: The daughters of the associated node are considered as
unordered, e.g.

1&N (2, 3)

D - 16

may represent:

1 or 1
|
i

1 i I T
i | 1]

2 3 3 2

0: The daughters must respect the ordering of the schema-tree
as it is written.

i1) D: If more than one of a set of sister-nodes is eligible for a
particular point on the schema, priority is given to the
rightmost eligible node.

G: In the same circumstances, priority is given to the left-
most node.

iii)} B: Where more than one node {(with possible descendents) is
eligible as a 'generalised dependant', the lowest node in

the tree is chosen. For example, given the schema 1(7?2)
applicable to the object tree:

where both X and Y satisfy the conditions on node 2, Y is
chosen as corresponding to node 2.

H: In the same circumstances, the highest solution 1is chosen.
{Codes O, G, B are the default options).
4.1.1.4 Conditions ,

Both individual and inter-node conditions are stated as boolean
‘expressions in much the same way as described for ATEF.

1) Individual-node conditions: This component consists of a 1list of
conditions separated one from the other by ';'. Each condition
consigts of the name of the node to which it applies, followed by ':',
followed by the boolean gxpression, e.g.

2 : GNR -E- MAS -ET- (CAT -NE- CATO -QU- NBR -E- NBR(*FT1})

{'NBR(*FT1)' refers to the value of the variable NBR specified in the -
format FT1).

In order to simplify the writing of conditions, pre-declared_
functions may be invoked within a boolean expression. The function
name is preceeded by '$', e.g.
2 s $ART
where ART might be pre-~declared as:
PCP : ART == CAT -E- ART

Note that conditions may be imposed on list nodes , in which case the

D - 17

the condition 1is interpreted as applying to all the elements of the
list.,

2) Inter-node conditions: This part of the rule consists of a single,

usually complex, condition on relationships between nodes. Variables .

are 'situated' by being followed by the name(s) of the node(s) to
which they refer, enclosed in brackets. Again, functions may be called
within the condition - in this case, parameters of +the function,
giving the nodes upon which it operates, follow the name, e.g.

$CGN (1, 2)
where CGN might be pre-declared as:
PCIP : CGN(A, B) == NBR(A) -E~ NBR{(B)
Note that whole subtrees of the schema may be compared as part of the
condition. In this case, a subtree is specified by naming its root

node, enclosed in brackets and preceded by '*', e.g.

(1) -E~- *(2)
*(1) -INC- *(2)

4.,1.2 Image

The 1image part of a rule contains all the information describing the
result of the transformation. It consists of three components:

- an image-tree, giving the structural geometry of the tree which
-1s to be bullt

- transfer functions, giving the correspondances between nodes of
the schema- and image-trees

. - an assignment section, c¢ontaining explicit assignments to the
labels of the image tree; i.e.

<image> ::i=

<image~tree> /
<transfer functions> /

<assignments»

h.1.2.1 Image-tree

The image-~-tree is expressed in a similar way to the schema-tree, using
arbitrarily named conventional nodes, 1list nodes and generalised
dependant nodes, where the latter two types have been carried over
from the schema. Clearly, though, the image-tree does not have to
capture alternative configurational patterns so that, wunlike the

schema~tree, the image-tree has fixed ordering and contiguity of _

nodes. Consequently, the use of the antinode (*} is redundant as are
the codes expressing ordering and priority possibilities (4.1.1.4).
Note that the image-tree may include two or more 1list nocdes as
consecutive sisters, resulting from a reordering of (necessarily non-
consecutive) list nodes in the schema-~tree, -

4.1,2.2 Transfer functions

These define, for each node of the transformed section of the schema,
the projection of its descendants onto the image-tree. For example,
given the schema-tree 81 (382, S3), where Sl = RT, and a corresponding

D - 18

image-tree T1 (T2), the following transfer functions:
Tl <=~ 81 , T2 <-- 82,383

indicate that the descendants of 32 and S3 become descendants of T2, .
and that all other descendants of S1 become descendants of T1,

In general, each node of the transformed part of the schema-tree must
figure once and only once in the rhs of a transfer function; each node
of the image-tree must figure once as the lhs of a transfer Tfunction.
. However, the identity transfer function between nodes having the same
name in both schema and image is assumed unless overwritten,

Deletion of a node of the schema-tree, or introduction of a totally
new node in the image-tree, 1is indicated by the antinode, e.g.

Tl <emwe S1, % Cmwee 52,83, T4 <~am= S4, T2 <—mmm *
indicates that S2 and S3 are deleted, and T2 is newly created. It is
possible to specify the ordering in the image-tree of non-expressed
descendants of schema-nodes by means of three modes of transfer. For
each, assume a schema-tree of the type:

SO (sL (s4,s5), s2 (s6,S7), 83 (s8,59))

representing the sub-tree:

S0
:
; : ;
?l s2 83
]]
T T T T T T T T T
1 s&4 112 S5 L13 L21 S6 L22 ST 123 L3l S8 L32 839 L33

Where L1l1,...L33 represent lists of nodes which are not explicitly
expressed in the schema. Assume further that each 1ist 1is to be
attached as a descendant of node Tl 1in the image-tree:

"~

Then:

1) Total mode retains the internal ordering of each set of unexpressed
sister-iists, but allows the reordering of these sets with respect to -
each other and with respect to the explicit descendants of Tl.

Tl <~-- (T) 83,82,%,S1

where (T) denctes total mode, and * represents the explicit image sub-
tree T1{(T2,7T3). This would result in the following sub-tree, after
transformation:

T1
:
: T T] 1 1 “.r B T 1 T BB

' | { ! | } 1 | \
L3l L32 L33 L21 1L22 L23 T2 T3 L1} Ll2 113

D~ 19

2) Ordered mode allows for particular unexpressed descendants of S1,
S2 and 53 to be extracted and placed to the right of node T3 1in the
image-tree. If 'ordered mode' is specified as '(0G)', then the right-
most descendant of each of S1, S2 and 83 is extracted; if '(OD)' 1is
selected, then all but the leftmost descendant is extracted, e.g.

would give:

Tl

By] I L] 1 I

. . l i . . P ; : |
L2l 122 L11 Ll2 L31 132 T2 T3 L33 123 113

3) Projective mode: Here, one of the unexpressed lists 1is chosen as a
cut-off point; the rightmost lists up to the cut-off point, and all
except the leftmost 1lists after the cut-off point {(including the list
chosen as cut-off point), are placed to the right of T3 in the image-
tree. All other unexpressed lists are placed to the left of T2, e.g.

TL <~---= (P) 81, 82(2), 83

(where S2(2) designates the second unexpressed list descendant of S2
as cut-off point) would result in:

Tl
'

] 1 T I 1 L] L] 1

[} 1 1
] | I]] H i i]
11 Li2 121 L31 T2 T3 L13 I22 I[23 L32 133

4.1.2.3 Assignments

In this part of the rule, values are assigned to the variables of the
nodes of the image-tree. These may be transferred from the schema
(with the identity assignment between nodes of the same name as
default), or newly introduced, e.g..

Tl : Sl

assigns the complex label of node Sl of the schema-tree to node Tl of
the object-tree.

TL : Sl, GNR := MAS, NBR := NBR(Sl) -I- NBR(S2)
does likewise, and in addition assigns new values to the variables GNR
and NBR, for the given label. An assignment may include a conditional
statement, thus:

1 :1, -SI- ANM(0) -E- ANI -ALORS- UL(l) := 'QUI'
-SINON- UL(1l) := 'LEQUEL' -FSI~-

and may reference formats, e.g.
Tl : *FT1

assigning to Tl the values declared in format FT1.

D = 20

Assignments may also call pre-declared procedures, e.g.
Tl : $AFGN (S81,852)
where AFGN might be pre-declared as:
PAF : AFGN (X,Y) == GNR := GNR(X) -I- GNR(Y), NBR := NER(X) -I- NBR(Y)
4.1.3 Example ROBRA rule

The following rule 1is taken from a multilevel analysis grammar of
Russian. It converts adjacent sister ULOCC nodes dominating a long-
form adjective (checked by the call to AQFOL) and a noun {(call to NMj,
into a noun group {(call to AFCGNA) with the original noun as its GOV.
CGN checks that there 1s agreement in case, gender and number. RESEP
is a conditional procedure which assigns the lexical unit '*EPIT' to
the node which dominates the adjective. This ‘'lexicalisation' of
syntactic function helps debugging, since ULs are always printed in
graphic displays of trees.

AQN1: (*0, &NIV = 2)
0(A{1),%,B(2)) /
0 : $ENONCE; A : $ULOCC; B : $ULOCC;
1 + $AQFOL ; 2 : $NM / $CGN (1,2)

= O(B(A(1),2)) / * <= A,B ; A (== * ; B <= * /[

B : 2, $AFCGNA (1,2) ; A : 1 ;
1 : *F, $AFGOV (1) ;
2 : *F, $AFGOV (2), $$RESEP (A;1).
For example:
ENONCE ENONCE
i
L]
: — —> *GN
uLoce ULOCE !
i H i i
DINAMI SISTEM *EPTT SISTEM
} (GOV)
DINAMI
(GOV)

4.2 Transformational grammars (TGs)

A TG consists of an ordered set of TRs. TRs are grouped into 7TGs
according teo two main criteria:

- they correspond to related linguistic phenomena

- they share the same execution modes (see 4.2.1)

TGs are declared in a file of application in the form:

<TG> :2:=
< TG name >
{ <execution modes> }:
< list of rule names »>;
< control graph>.

D= 21

4,2,.1 Execution modes

One of the most important characteristics of the ROBRA rodel, which is
intimately linked to the use of a single tree as a data base, 1s that
it updates the data base by substitution rather than addition. In
other words, the image-tree replaces the schema-tree on application of
a rule. This has important consequences for the interpreter. First,
the structure built by application of several rules will be dependent
upon the order in which they are applied. Therefore it is essential
that a means 1is provided to enable the interpreter to resolve
conflicts between applicable rules, Secondly, since a text may be
locally or globally ambiguous, a facility must be provided to permit
backtracking in the event that a particular sequence of rule
application turns out to be incorrect. Execution modes are provided
for conflict resolution and control of backtracking, as well as for
control on the iteration of TGs.

The execution modes are specified in brackets following the name of
the TG. They number seven, each involves a binary choice between two
values, one of which is a default, and any combination 1is wvalid -
(though not necessarily sensible}.

default other

U - unitaire E - exhaustif
B -~ bas H - haut

C - coupe T - total

D - dessous P - ponctuel
G -~ contrdlé L - 1libre

F - facultatif I - impératif
N - normal Z - zero

4.2.2 Elementary application of a TG

An elementary application of a TG is effected by the selection of a
maximal subset of all potential applications on the data base of all
rules in the grammar, such that no two applications share a common
active node. This 1s done in accordance with the following criteria:

- if the TG is 1in mode 'B' ('bas'), priority 1is given to
those rule applications whose RT is at a lower level 1n the
object tree; whereas in mode 'H' ('haut'), priority is given to
the applications with RTs at the highest level. If the grammar
is 1in mode 'C' (‘'coupe') no transformation may be applied I1If
its root node is dominated by that of another transformation,
even 1f the transformed sub-trees are disjoint; 1in contrast,
mode 'T' ('total') allows simultaneous application of such
rules, thus exploiting vertical parallelism., Note that mode 'E'
is not equivalent to modes 'U' plus 'T', since the application
of rules sequentially may alter the context of subseguent rules
so that theéy are no longer applicable.

- conflicts resulting from different rules applicable at the same
level (hence with the same RT, otherwise there would bDe no
conflict) are resolved in favour of those rules which appear
earlier in the TG. 1If, however, the schemata specifying each
transformation indicate that RT remains invariant (see
4.1.1.1), and the transfer functions of the images do not
include a reordering of unexpressed descendants, then all such
rules may be applied, thus exploiting horizontal parallelism.

D= 22

- the only conflicts remaining will be the result of a single
rule being applicable to different sub-trees rooted in the same
RT, and these may be resolved by reference to the code (D or G)
of that rule (see 4,1.1.3, #4ii). Again, given the appropriate
conditions, horizontal parallelism may be exploited.

4.2,3. Iteration

The execution mode 'U' ('unitaire’') specifies that the grammar is
subject to a single elementary application only. In contrast, mode
*E' causes elementary applications of the TG to be iterated until neo
rule is applicable,

Control over the iteration is effected by two pairs of execution
modes ('P'/'D' and 'G'/'L'). In mode 'P' ('ponctuel'), any rule which
has applied is marked on the RT node, while in mode 'D* ({'dessous')
the node is marked not only for that rule, but for all previous rules
in the grammar,

Given this marking, mode 'G' ('contrdle') prevents any rule(s) marked
on a particular node from being used on or bhelow that node in
subsequent iterations. A mark 1is thus equivalent to a .tactical
variable., In this way, the number of potential rule applications
diminishes with each iteration of the TG (at a faster rate in mode 'D’
than in mode 'P'); consequently, termination of iteration is ensured.
In contrast, in mode 'L' ('libre') no such invalidation of rules is
effected, so that iteration may, in principle, fail to terminate.

4,2.4 Reentrancy

A rule of a TG may call one or more rules (a subgrammar) of the same
or a previous TG, or a transformational subsystem consisting of one or
more TGs forming a section of the control graph with a single entry
edge. For instance, if a rule Ri calls rules Rm to Rn {m<n) of a
grammar GJ, this is indicated by following Ri with:

{ ¢j / Rm...Rn / validated nodes)

The rule names may be replaced by * If all rules of Gj are called. If
Gj 1is prefixed with *, this indicates a call to the transformational
subsystem with initial node GJ, e.g.

(*G3 / * [/ v.n,)

The reentrant call is effected by cutting out the subtree dominated by
the RT specified by the rule, which is then handled as a new object
tree. Only those nodes of the image-~tree of the rule which are listed
as validated nodes may take part 1ln any transformation during the
reentrant call. Since the valldated nodes must be a strict subset of
the nodes in the image tree, a recursive call is guaranteed to
terminate. The result of a reentrant c¢call replaces the input sub-tree
in the original object tree,

4.,2.5 Control on grammars

The order in which TGs are applied 1s specified in an implicit acyclic
directed graph; together the grammars and control graph constitute a
Transformational system (TS). The vertices of the graph are the TGs
themselves, and the edges are labelled with conditions on the data
structure which must hold for them to be traversed.

D - 23

The graph is realised by an ordered list of transitions, separated by
r;', written at the end of each TG, thus:

<transition> ::=
<pattern> <-- <grammar name>

The last element of this list should have an empty pattern, The
patterns are very similar to the schema parts of rules, 1i.e. they
comprise a structure, plus individual and inter-node cenditions on
ghat'?tructure. <pattern> may in fact be a list of patterns, separated
y "'

Control 1is transferred to the named grammar if any of the associated
patterns is verified. If the empty grammar '&NUL' iIs specified, then
verification of the associated pattern indicates that the object tree
is the final result of the application of the TS.

Two palrs of execution modes ('I'/'F' and 'N'/'Z') have an effect on
the +traversal of the control graph. If a TG is in mode 'I'
('impératif') then an execution of this grammar in which no rules are
found to be applicable will initiate backtracking through the control
graph. However, if such a grammar is in mode 'F' ('facultatif'),
forward traversal of the control graph will continue. ’

A grammar in mode 'Z' ('zero') indicates that Dbacktracking is
prchibited past this grammar (so that any transformations it has
effected may not be undone), while one in mode 'N' ('normal’') is not
subject to any such prohibition.

4,2.6 Example ROBRA grammar

The following grammar is taken from a structural transfer from English
to French. The grammar treats relative clauses by iterative ('E')
application of the rules CB2, RELl, etc. (declared elsewhere) in
punctual ('P') mode, and then transfers control to grammar C2P if an
adverb has been found or certain other conditions obtain, or to C2R if
not:

C2N (EP) : CB2, RELl, REL2, REL3; -
0(1) / O : K1-E~PH -0QU- K1-E-MD -~OU~ UL-E-'¥*ADVERBE';
1 : K-E-B /
(== (2P : <¢-= C2R,

4,3 Evaluation of ROBRA

The facilities provided by the ROBRA formalism appear to be adequate
for any task a grammar writer might wish to perform, though it 1is.
difficult to see the wvalue of transfer functions as described
(4,1.2.2). The node variables and associated codes (4.1.1.3) are very
useful.

Because a single tree is used as a data structure, and hence update is
by substitution rather than addition, ROBRA provides mechanisms for
expressing precise control over the order of rule application,
backtracking ete. The use of certain execution modes with their
interactions for this purpose makes it a 1little complicated to
ascertain the precise behaviour of grammars.

However, given the general tree transduction approach to Dbuilding

complex structures, the facilities for collecting rules into grammars
and chaining the application of grammars appear to be a .useful way of

D - 24

acheiving a perspicuous organisaticn.

5. Lexical transfer

Transfer 1s effected 1in two separate stages; lexical transfer and
structural transfer. Lexical transfer rules are expressed 1n the
metalanguage TRANSF and are applied by the corresponding automaton.

TRANSF uses the following external datd:
- declaration of variables
- condition formats
- assignment formats
- condition functions and assignment procedures
- dictionary.

Variable and format declarations take the same form as for ATEF and
ROBRA. Condition formats employ only those socurce language (SL)
variables and values declared in the previous phase (multilevel -
analysis). Assignment formats employ target language (TL} variables
and values, either newly declared or SL variables which have been
carried over from the previous phase.

Condition functions and assignment procedures are used to simplify the
writing of dictionary rules. As with formats, condition functions
refer to SL variables only, assignment procedures refer to TL
variables. Both are declared on a single file, condition functions
following the reserved word -PCP-, and assignment procedures following
-PAFP-, the file being terminated with -FIN-. For example:

-~PCP-
78 == PG -E- 78 -ET- ABS -INC- PP.
—-PAF-
ACC == MPP:=ACC, RF:=N.

~FIN~
Here the function 78 1s a condition on the type of prepositional group
ocecurring as complement of certain verbs in Russian (as SL). ABS -INC-
PP specifies that the verb must have a PP as one of its arguments; PG
~E- 7S specifies that this PP must be of the form 'S' + instrumental -
{'7'). The procedure ACC assigns the value ACC ('direct object'} in
transferring certain types of Russian PPs into French, and assigns the .
value N ('active') to the variable RF ('volece'),

5.1 Transfer dictionary

A single dictionary suffices for lexical transfer as stems {including
compounds) have been reduced to a canconical form, and inflections have
been incorporated as values in the node labels.

D - 25

The form of a TRANSF dictionary entry is:

¢dictiocnary entry> ::=
<lexical unit> ==
<list of triples> <last triple>.

The list of triples is optional, but the last triple must be present.
A triple specifies the following information:

- a boolean condition on the variables assoclated with the
lexical unit, which must evaluate 'true' for the other
components of the triple to apply; thilis part must be empty in
the last triple

- an image sub-tree, which will be constructed if the triple
applies

- a set of assignments to the nodes of the image sub-tree; i.e.

<triple> :i:=
<condition> / <image sub-tree> / <assignments>

The automaton traverses the input tree in preorder, and accesses the -
dictionary with the value of UL in the label associated with each node
thus visited. On locating the entry, the algorithm searches for the
first triple whose c¢ondition is verified by the current node of the
input tree. Since the last triple of each entry is always stated with
an empty condition, a TRANSF rule, once accessed, will always apply.
The image sub-tree in the second part of the ¢triple 1is then
substituted for the current node. Usually the image sub-tree will
consist of only one node, so effecting no change in the input tree .
geometry. In certain cases, however - e.g. TL compound words or idioms
- a single node of the input tree may correspond to an image sub-tree
of more than one node. In such cases, descendants of the root-nade of
the image sub-tree are ordered before any descendants of the original
node which it replaces. Finally, the last part of the triple is used
to assign a TL lexical unit to the variable UL of each node in the
image sub-tree, and, optionally, other values to the other variables
in the label(s).

The condition part, if not empty, contains either a conditional
expression, e.g.)

PG -E- 5K
or a call to a condition function, e.g.
$7s - -

The geometry of the image sub-tree is expressed in the same way as
that of the ROBRA image-tree, e.g. :

Generalised dependants and list nodes are prohibited.

If the sub-tree consists of a single node only, it need not be
specified. ’

D - 26

The assignment part contains, for each node of the image sub-tree:

- the name of the node followed by the symbol ':'., If the image
sub-tree has not been specified, then this part is obviocusly
empty

- the TL 1lexical unit (i.e. a string literal) that 1is to be
assigned to UL

- an optional 11list of assignments to the other variables of the
node label, separated by ','.

An assignment may include names of assignment formats, possibly
prefixed by '+' or '*' {see below), one or more assignments to
expressions, and calls to assignment procedures, e.g.

0 : 'METTRE', +FVBll, $IFA;
1 ¢t 'A', *PPl, PG:=2ZA,

If the name of an assignment format is prefixed with '+', this

indicates that only the variables declared in this phase (i.e. not

carried over from analysis) are to be assigned values as specified in
the format. Thus, even if the format contains values for ’'transferred’
variables, these values are not taken into account for the purposes of
the particular assignment in question., Alternatively, the prefix '*’
indicates that all variables listed in the format, regardless of the
phase at which they originated, are to be assigned +the values
specified. '+' is the default.

(Note that the variable 'UL' is unaffected by these restrictions -
formats are prohibited from containing either source or target values
for UL),.

5.2 Linguistic content of TRANSF entries

The context 1in which a given triple of a TRANSF rule applies 1s
limited to the mask of wvariables immediately associated with the
UL acting as entry to the rule, It is thus the responsibility of
multilevel analysis to ensure that this 1label contains all the
information necessary for lexical transfer.

In many cases, this poses no problems, and a single TL lexical unit
may be conditionally or unconditionally assigned, e.g.

'MUST' =
"KAKOJ!'

/ / '"DEVOIR',+VB.
= $P2A//'AUCUN'/
//'QUEL’.

‘(PQA evaluates 'true' if the input node is negative.)

Fixed SI idioms will hormally have been reduced to a single node

before this phase, and may thus be treated with rules such as:
*CARRY-OUT' == //'EXECUTER', +VB.
More complex 1image sub-trees will be added in the following cases

(examples are from Russian- -> French and English -» French but such
considerations are really language-pair independent}.

D - 27

5.2.1 Verbal government

In those cases where a particular verb conditions a ‘'non-literal’
translation of a following preposition, the correct translation is
given as the UL of a supplementary node under that of the verb, e.g.

'ZAMENITQ' == / O(l) / O: *'REMPLACER’;
1: 'PAR', PG=2NA.

Structural transfer will then use the information that 'PAR®' and not
'SUR' 1is the translation for 'NA' + accusative (which is held as the
value of PG) to substitute 'PAR' for 'SUR' at the appropriate point in
the sentence.

5.2.2 Pixed idioms in TL

If a SL 1lexical unit requires a translation consisting of a fixed
phrase, the elements of the latter are subsumed under a node with the
tactical UL '*LOCF' ('locution figee'), e.g.

'AS-A-RULE' == / 1(2,3,4) / 1: '*LOCF', +VIDE;
2: 'EN', *VIDE;
3: 'REGLER', *ACTFS;
L: 'GENERAL', AQFS.

This is the construction of the fixed idiom "en régle générale". Note
that the elements of a fixed SL idiom must have the canonical form in
which they are entered in the morphological synthesis dictionary, with
the label giving the information needed to generate the form in the
idiom.

5.2.3 Variable idioms in TL

There appear to be two principal ways of representing these. Non-
verbal idioms are subsumed under a node with the tactical UL '*LOCV!
{'locution variable'}), e.g.

*CAN' == $KES / 0(1,2(3,4)) / 0O: "*LOCV', +NMF;
'BOITE’, *NMF, $GOV;
'*LOCF', *VIDE;
‘DE!', *IVPP;
'CONSERVER', *ACTF5, $SIN.

" S

0
2
3
I

LI L

'BOITE' 1is subsumed directly under '*LOCV' since it must be inflected
for number. ‘'*LOCV' . appears to be used in those cases where other
words may intervene in the idiom (e.g. an adjective modifying
'*BOITE'}.

Verbal 1idioms are vrepresented with the head as a father node
cominating the remainder of the idiom, e.g.

"TEND® == / O(1) / O: 'AVOIR', TRAVF =GPA;
1: *TENDENGE'.

The value assigned to TRAVF will be recognised during the subsequent

treatment of this sub-tree, and will initiate the generation of "i" to
complete the idiom "avoir tendance 3a".

D -~ 28

5.2.4 Source idioms

Variable idioms in the source language may appear as sub-trees in the
output from multilevel analysis. As only a single source node may be
considered by the TRANSF algorithm at any one time, the presence or
absence of the idiom cannot be ascertained. Hence the target sub-trees
for each element of the idiom are constructed with tactical ULs and
other variables whose values embody predictions which may or may not
be substantiated during structural transfer.

For example, the three rules:

'KOYEFFICIENT® == / O(A) . / 0: 'COEFFICIENT';
A: '+KOYEFFICIENT',
*POLEZEN' == [O(X(A(1)}) / O: 'UTILE';
X: '*RLX3';
A: '+KOYEFFICIENT';
1: 'RENDRE'.
'DEJSTVOVATQ' == / O{X{(A)) / 0: 'AGIR':
X: '*RLX3';

A: '+KOYEFFICIENT'.

indicate the possible occurrence of the idiom "koyefficient poleznogo
dejstviya" ("rendement"). The tactical UL '*RLX3' will call the rule
RLX3 during structural transfer. This rule will ascertain whether the
other components (i.e. those bearing the UL value "+KOYEFFICIENT') are
present, and if so, will replace all three by 'RENDRE' plus the values
giving the appropriate derivation (i.e. "rendement").

It 1s difficult to see why this sort of complexity has not been
obviated by reducing variable (but contiguous) idioms to a single node
in morphological analysis, since ATEF obviously provides the
facilities to do so.

5.2.5 Polysemy

Analysis may have been unable to resolve certain cases of polysemy
(i.e. to have provided the information in the associated label to
enable the condition component of the appropriate TRANSF rule to
resolve 1it). In these cases, the alternative translations will be
retained, and a tactical wvariable is used to indicate to morphological
generatlon that these alternatives must be marked as such in the final
output. For example:

'ZAPUSTITQ' ==./ 1(2) / 1: 'LANCER'; 2: 'NEGLIGER', $HOM.
The procedure $HOM makes the assignment to the tactical variable.

5.3 Evaluation of TRANSPEF

Most of the above complexities could be much reduced if the TRANSF
formalism allowed the dictionary writer to interrogate and/or change
labels on nodes other than that bearing the UL currently being
considered.

IN this way, for instance, the correct preposition could he inserted
in place in the tree (c¢f. 5.2.1), or the presence of a variable idiom
in the SIL tree could be verified (cf. 5.2.4), thus obviating the need
to carry tactical information into the structural transfer stage.

This would, of course, necessitate an increase in the power of the

D - 29

TRANSEF autcmaton, both to deal with generallsed tree transduction and
to provide user-deflned general-purpose tree traversal procedures.
However, this would be more than offset by the resulting increase in

perspicuity of the linguistic operations.

6. Structural transfer and syntactic generation

The rules which effect the phases of structural transfer and syntactic
generation use the ROBRA formalism described above (section 4.).

Since the different groups who have written rules for these phases
have partitioned the treatment of wvarious linguistic phenomena.
differently between them, they are discussed together.

The sort of linguistiec phenomena handled in these phases may be
exemplified as follows:

- the rearrangement of the text into basic TL word order

- the distribution or elimination of constituents from c¢oordinated
phrases according to TL norms

-~ the generation of TL articles

-~ the computation of correct tenses and moods, and generation of
auxiliary verb structures to realise them

- distribution of agreement information (from non-terminals onto
leaves)

. = the use of the tactical information added by lexical transfer to -
initiate various actions (e.g. recognition of SL idioms).

7. Morphological generation

Morphological generation is the final stage of the translation
process, and has the function of converting the labelled trees output
by the syntactic generation phase into character strings (i.e. words
and punctuation of the output text). Rules for this phase are written
in a formalism c¢alled SYGMOR, which realises a finite state
deterministic (ef. ATEF) automaton, thus reflecting the lesser
complexity of the synthesis process. The model is composed of two
transducers: the first of these is 'tree-to-string', the output being
a string of masks of variables; the second transforms this string into
. a string of characters.

The tree-to-string transducer is realised by a traversal algorithm on
the data structure. Obviously this algorithm will wvary according to -
the 1linguistic representation in the tree, e.g. 1if the tree is
structured accoriding to immediate constituents, the traversal .
algorithm must enumerate only the leaves, while if it is a dependency
tree, internal nodes must also feature in the transducer's output. The
decumentation claims that the traversal is user-defined, but does not
indicate the facilities provided to permit this definition.

The second,” string-to-string, transducer makes use of the foliowing
linguistic data:

- declaration of variables, formats, condition functions and
assignment procedures (similar to previous phases)

D =~ 30

- dictionaries
- a grammar

7.1 Dictionaries

A maximum of eight dictionaries may be used during this phase, each
being addressed by the values of varlables, The first dictionary is of
TL lexical units, and is addressed by values of UL. QOther dictionaries
may be addressed using the values of other variables, e.g. a
dictionary of wverbal inflections accessed by means of the values of
the variables indicating person, number or tense.

The form of a SYGMOR dictionary entry is:
<dictionary entry>i:=
<entry value> ==
<list of triples><last triple>.

The list of triples 1is optional, but the last triple must be present.
A triple specifies the following information:

- the name of a boolean function, i.e. a condition on the values of -
other variables in the current label, which must evaluate 'true’®
for the remaining components of the triple to apply; this part
must be empty in the last triple

- the name of an assignment format

- a character string; i.e.

<triple>::=
<condition> / <assignment format> [/ <string>

For example:

LEQUEL == NIB / VID / LAQUELLE,
== NID / VID / ’®LESQUELLES,
== PLU / VID / 'LESQUELS,

/ VID / 'LEQUEL.

An apostrophe appearing in a string, e.g. 'LEQUEL, will be used by the
grammar to make contractions.

7.2 The SYGMOR grammar - rules and operations

Certain special symbols appear in the grammar rules. These are
interpreted in the following way: -

'C' and 'P' : These designate respectively the current and
preceding masks of variables in the string of masks which
constitute the input to the transducer

'T* and 'S' : These designate respectively the current and
preceding character strings in the string of strings which
constitute the output of the transducer .

'G', 'D' and 'M' : These are codes of origin referring to
positions 1in the character string 'T'. The first two designate
respectively the leftmost and rightmost positions. 'M' is the
position equivalent to the leftmost position in the character

D - 31

string most recently inserted into 'T', 1if that string was
inserted to the right, or the rightmost positicn 1f it was
inserted to the left, _

A grammar rule has the form:
{grammar rule> ::
<rule name> ! <condition>

= <rhs>.

A condition is a boolean function on the values of the two masks 'C!
and 'P', e.g.

DD(C)-NE-DDO -ET~ DD{(P)-E-DD4

This condition must evaluate 'true' for the rule to be applied. The
empty condition, signified by NIL, always evaluates 'true'.

The 1rhs of a rule consists of several parts, any of which may be
empty; i.e.

<rhs>i:=
<dictionary access part> /
<assignmentsy /
<string transformations> /
<sequence of transitions>

T.2.1 Dictionary access

This part of the rhs of a rule has the form:

<dictionary access part>::i=
EC<insértion code> (<dictionary number>)

The dictionary specified (from 1 to 8) is accessed and the first entry
value corresponding to a value in the mask 'C' which has not already
been treated is leocated. The first triple associated with this entry
value whose condition is fulfilled provides the character string to be
inserted into 'T' according to the insertiocon code. For example:

ECG (2)

inserts the character string obtained as a result of accessing
dictionary 2 on the left (G) of 'T!'.

The dictionary number may be replaced by a string literal which will
be directly inserted into 'T' according to the specified code.

7.2.2 Agsignments

In this part, any number of assignments (separated by ';') may be made _
to the character strings 'T' and '8', and to the variables of the
masks 'C' and 'P', An assignment to 'S' may only be:

lst P !Tl

which concatenates 'T' to the right of 'S*, Similarly, an assignment
to 'T' is:)

tTY 1= '3

which concatenates 'S" to the left of 'T', eliminating 'S' as a

D - 32

separate entity. After this assignment, 'M' will be the position 1n
'T* corresponding to the point of concatenation.

A wvalue assligned to a variable of 'C' or 'P' 1s either the value of
the same variable in the other mask, or the value of this variable
declared Iin the format associated with an entry 1in a specified
dictionary accessed by means of the old value. In the case of a non-
exclusive variable, a set of such values may be assigned. For example:

GNR(P) := GNR(C) -U- GNR(2)

7.2.3 String transformations

Transformations may be effected on 'T' by calling the pre-defined
procedure TCHAINE(W,X,Y,Z) and specifying:

W - the code of origin within 'T' for the offset specified as the
X parameter, i.,e. 'G', 'D' or 'M'

X - an integer, between =128 and +126 if the W parameter was 'M',
or between O and 254 if it was 'G' or 'D'

Y - a string literal (enclosed in double quetes), which must occur
in 'T* starting at the point specified by the W and X
parameters in order for the transformation to take place; or an
integer

Z - a gtring 1literal, which will replace either the character
string, or the number of characters specified in the Y
parameter,

The parameter X may alternatively be '*', in which case parameter Y
must be a literal, and the latter will be replated 1if it occurs
anywhere to the left of 'M' if parameter W is 'G', or anywhere to the
right if W is 'D'.
For example:

TCHAINE (M, -4, »sI' *'IL", "S'IL")
will occur after the assignment:

T 1= S

and will apply if the value of 'S' was previously "SI' " and that of
'Tt was "'IL", 'M' will be situated between the two strings.

7.2.4 Sequence of transitions

This part of the rhs of a SYGMOR rule includes an ordered list of the ‘

names of other rules, separated by ',', each optionally bracketed. The
function of this part is described below.

7.3 The SYGMOR algorithm

A SYGMOR grammar is an ordered list of named rules as described above,
Each mask of wvariables, as enumerated by the traversal algorithm,
becomes in turn the value of 'C'. For each such value, the automaton
searches for the first rule whose lhs conditions are fulfilled. The
string 'T', initially empty, is given a value by means of the actions
in the rhs of the rule: The automaton then steps through the rules

D= 33

specified in the 'sequence of transitions' (taking no zccount of the
'sequence of transitions' associated with any of these). For each
rule, the condition 1s evaluated, and if 'true', 'T' 1is updated
accordingly. If the condition is 'false', and that rule was bracketed
in the original list, then the next rule is tried. If the condition of .
an unbracketed rule is 'false' then the automaton stops and indicates
an error. A final (accept) state of the automaton will be reached 1if
the condition on the last obligatory (unbracketed) rule named on the
original 1list is 'true'. Whether or not the automaton reaches a final
state, 'C' will then become 'P' and 'T' will become 'S', and the
algorithm will be repeated until the final mask of the Input has been
processed.

As in ATEPF, the potential transitions that the automaton could undergo
may be characterised as a tree, which in this case Dbranches as a
result of:

- the conditions on rule application
- the choice of dictionary to be accessed

- the triple of the dictionary entry chosen.
However, because rules and dictionary triples are strictly ordered,
and a single dictionary only may be accessed from one rule, and since
the automaton does not have the facility to backtrack, the transducer
realised is deterministic, and the solution generated corresponds to a
single path from root to leaf in the solution tree.

7.4 Evaluation of SYGMOR

SYGMOR provides facilities which appear adequate for the treatment of
any linguistic phenomena appropriate to this phase, e.g. contraction,
elision, stem modification with particular inflectional or rectional
morphemes, etc. ,

It 1is difficult to see the value of some facilities, such as
assignments to masks 'C' and 'P', which are supposed to be inputs to
the automaton. Certainly such assignments must detract from the
perspicuity of SYGMOR grammars. The fact that the conditions on the
input masks (which are the realisation of the transitions) are
partitioned Dbetween dictionaries and grammar must also have adverse
effects on perspicuity.

The algorithm by which the dictionaries are accessed is not made clear
in the documentation. It appears that it is the values in 'C' which
are accessed by means of a sequential scan of the entries in the
gpecified dictionary, which renders the order of dictionary entries-
significant. The dictionary scan must continue until a corresponding
value 1is found for a variable which has not already been treated, .
which means a list of treated variables must be maintained by the
algorithm. It would seem more efficient and more perspicuous if a
speciflied dictionary was accessed by means of the values of named
variables, as in the assignment part of a rule; the grammar writer
must have a notion of what is expected in the chosen dictionary, and
could reasonably ask for it by (variable) name.

D - 34

8. Software environment and implementation

The components of the system as described above are ertedded within a
conversational monitor, which makes available to the uszer facilities
for the following tasks:

- the creation, editing, compilation and listing of the linguistic
data for any phase of the translation chailn.

- the preparation of texts in any of the source languages of the
system.

- = the execution of one or more phases of translation for any
language or language palr, and examination of the results.

The moniter 1s heirarchically structured, with four levels of
treatment corresponding to:

O. Entry to the system, giving access to general commands.

1. General commands for specifying which of the tasks described
above is to be carried out, and on which phase of the translation
chain.

2. Commands giving access to a particular data file associated with
the phase specified at level 1, e.g. variables, grammar.

3. Specific operations on the file chosen in level 2, e.g. modify,
list, compile.

In any of the levels, the user has the option of being questioned by
the system 1in detailed or simplified mode, and of obtaining a very
detailed explanation of the possible answers and their effects.

In addition to the facilities for listing provided by the monitor
(including provision for various listings of files sorted according to
different fields of the entries), the ROBRA system 1itself allows
specifications within its grammars of wvarious outputs, e.g. rules
applied, rules marked on nodes of the object tree, the object tree
itself in various forms.

ARTIANE-78 is implemented on an IBM-360 series compatible minicomputer
under the CP/CMS operating system. The conversational monitor is
written in the command language of the operating system. Interpreters
and compilers for each algorithmic model are written in 360-Assembler,
except for those of SYGMOR, which are in PL/1.

D =35

9. Final comments

Most of the criticisms which have been levelled at the ARIANE-~78
translation system in this report are recognised as valid by 1its
designers themselves. VWork is currently in progress at GETA aimed at
improving many aspects of the system, including:

the development of a unified, high-level formalism for the
metalanguages of all components

the introduction of a single data structure, the chart, to
replace the two currently used, 1.e. the tree and the string of
forms.

the provision of facilities currently unavailable to various
components of the translation chain, e.g. dictionary access
during multilevel analysis, generalised tree manipulations during
lexical transfer.

the improvement of system portability, i.e. its implementation in
one or more widely available high-level languages, e.g. PASCAL
and LISP. .
A machine translation system with these features could be considered
as very close to the state-of-the-art, but it remains to be seen
whether GETA will be the first to achieve such a system.

10. Documentation

Boitet, Ch. {1977) ‘'Nouveau systéme: €tude de définition -1 and 2°',
NS-PQ-1, NS-PQ-2, GETA, Grenoble.

Boitet, Ch. (1978) 'Bases pour 1l'8laboration d'un logiclel de
traduction automatisée multilingue', GETA, Grenoble.

Boitet, Ch., Guillaume, P. and Quezel-Ambrunaz, M., {(1978)
'Manipulations d'arborescences et parallelisme : le systéme
ROBRA', presented at Tth Int. Conf. on Computational
Linguistics, Bergen, Norway.

Boitet, Ch.,‘ Guillaume, P. and Quezel-Ambrunaz, M. (1982)
Tmplementation and conversational environment of ARIANE-
78.4', presented at 9th 1Int. Conf. on Computational

Linguistics, Prague.

Boitet, Ch. and Nedobejkine, N. (1980) ‘'Russian-French at GETA.
Outline of the method and detailed example' R.R. 219, GETA,
Grenoble.

Chauche, J. (1975) ‘'Présentation du systéme CETA', G-3100-A,. GETA,
Grenoble.

Chauche, J. (1975) 'Les systémes ATEF et CETA', T.A. Informations,
vol., 2.

Chauche, J., Guillaume, P. and Quezel-Ambrunaz, M. (1972) 'Le systéme
ATEF', G-2600-A, GETA, Grenoble.

Euvrard, A. and Lecomte, J. {1979) 'Elaboration d'une chafne de
traduction automatique d'anglais en francais: bilan d'une
expérience’, No. 36, Centre de Recherches et d'Applications
Linguistiques, Nancy.

Guillaume, P. (1978) 'Le modéle de transformations d'arbres: ROBRA',
GETA, Grenoble.

Guilbaud, J-P. (1980) 'Analyse morphologique de 1l'allemand en vue de
la traduction par ordinateur de textes techniques
specialisés’', Thése de Troisiéme Cycle, L'Université de la
Sorbonne nouvelle, Paris.

Jaeger, D. (1978) 'SYGMOR', GETA, Grenoble.

Quezel-Ambrunaz, M. (1978} ‘'ARIANE-78: Systéme interactif pour 1la
traduction automatique multilingue (Version II)', GETA,
Grenoble, '

Thouin, B. {1976) 'Systéme informatique pour 1la génération
morphologique de langues naturelles en &tats finis',
%resented ‘at 6th Int. Conf. on Computational Linguistics

COLING), Ottawa, Canada.

Vauquois, B. {1977) 'L'evolution des 1loglciels et des moddles
. linguistiques pour 1la traduction automatisge', GETA,
Grenoble, ‘

Vauquois, B. (1979} ‘'Aspects of mechanical translation in 1979',
Conference for Japan IBM Scientific Program, GETA, Grenoble.

D=-37

Appendix E: LRC METAL

Table of contents

0. Introduction
1. Basic nature of system
2. Data structure
3. Monolingual dictionaries
3.1 System features
3.2 Specific features
4, Linguistic content of grammar
4.1 Grammar rules
4,1.1 Context-free rules
4,1.2 Column-tests
4,1.3 TEST
4.1.4 CONSTR
4.2 Case-frames
4.2.1 Application of case-frames
4.2.2 Form of case~frame functions
4.3 Transformations -
4.3.1 Application of transformations
4.3.2 Porm of transformations
5. The parsing algorithm
6. Transfer
6.1 Transfer functions
6.2 Lexical transfer
-T. Generation

8. Evaluation of METAL

9. Software environment, implementation, results

10. Documentation

W O N N v W N N =

[0 A T 1 N L T T L T R R i s e R R R
O &= W W N O W O W R EFE W - O

LRC METAL

0. Introduction

METAL is the translation component of a total software package for the
definition and application of linguistic data, developed by the
Linguistics Research Center {(LRC) of the University of Texas, Austin.
The LRC Ybegan working on MT in 1961, though its early research was
largely theoretical. Like that of other groups at this time, the LRC's
conception of MT was founded on the interlingua philosophy and was
also influenced by the then current theories of Transformational
Grammar. A system for German-English translation based on these ideas
was implemented during the years 1972-1975. However, the complexities
of transformational parsing and the inadequacies of the syntactic
interlingua eventually led the LRC to redesign their system according
to different principles.

l. Basic nature of system

In 1977, the Rome Air Development Corporation made funding available
to LRC for the development of an operational MT system based on state-
of-the-art principles, METAL. By 1980, funding had been taken over by
Siemens. The main application of the system to date has been the
translation of telecommunications texts from German into English,
though other applications (e.g. English analysis) are currently the
subject of experimentation. METAL is constructed in a modular fashion
that enables 1t to be interfaced with application-specific routines
tailoring 1t to the needs of a particular language, text type,
translation type, linguistic theory etc.

Like its predecessor, METAL owes a large debt to mainstream
theoretical linguistics, with different algorithmic components
dedicated to the treatment of such phencmena as context-free PS rules,
transformations, and case-frames. However, in the new system, the PS-
rules define a surface grammar, and the transformations convert
structures built by these into deeper-level structures, so that the
problems asgociated with classical transformational parsing {(i.e.
applying deep-to-surface transformations in reverse) are obviated. The
structures built are not intended to be language independent
representations, Dbut .are passed to a bilingual transfer phase.
However, transfer subsumes operations normally performed during
structural generation and even morphological generation; and control
over transfer is effected solely by transfer procedures attached by
the analysis rules which built the representation, the two sets of
rules being conceived as a single entity. Hence METAL is far from

being a transfer system in the conventional sense. i

METAL 1is implemented in (a dialect of) LISP and the linguistic data
which it wuses for +translation are expressed in one of two ways;
certain 1linguistic phenomena are described in a form suitable for
direct execution by the system functions, others are LISP functions
themselves, which are passed as parameters to system functions. Since
LISP functions may be executed according to a strictly data-driven
model, and since the permitted form of the data functions is highly
restricted, the fact that data may actually be algorithmic does not
contravene the principle of strict separation of the two components.
In Tfact, such an crganisation confers real advantages. As well as
reducing the total software, the linguistic data may be interpreted
directly by the LISP interpreter, without the need for compilaticn

E-1

inte a form suitable for execution by an interpreter. This provides
the means for data to be written and tested with minimum delay.
However, once tested, the data may be compiled for greater efficiency.

The three principle phases of the translation chain are realised by .
the three LISP functions, PARSE, TRANSFER and GENERATE, which are
called in order by the top-level drive function TRANSLATE. The latter
expects a sentence 1n the source language (SL) and returns as its
value the equivalent sentence in the target language (TL). PARSE and
TRANSFER call other functions. Functions are of two types - core
functions, which are permanent in the sense that they do not vary with
the SL/TL languages being treated, nor with the type of 1linguistic
theory being implemented; and application-specifie functions as
described above, which are user-defined, although the system provides
appropriate defaults.

The core functions are:

TRANSLATE
PARSE
DO-TXFORM
DO-TXFORMS
FIND-FRAME
TRANSPFER
TLX

XLX
GENERATE

The application specific functions are:

USER-PREPROCESSOR
USER-WORD

USER-ADD
USER-IDIOM
USER-RULE
USER-ERROR
USER-POSTPROCESSOR

2. Data structure

The data structure of METAL may be divided into two components,
computational and linguistic. The parser itself manipulates only a
chart, whose properties have been discusses extensively elsewhere, and
has access only to the roots of the structures which label the edges,
and to certain other, 1limited, 1information. The complete form of the
labels, 1.e. the linguistic structure of well-formed phrases in the
input, is determined by the application-specific module USER-RULE (see
section 5.). These may be syntax trees, data base queries or whatever
else the user chooses,

3. Monolingual dictionaries

METAL dictionaries are either monolingual or bilingual. The latter are
used for lexical transfer. SL and TL (monolingual) dictionary entries
are essentially of the same form, though they are accessed differently
- via ALO values in the case of SL dictionaries, and via CAN values in
the case of TL dictionaries. '

Monolingual dicticnaries contain lexical entries for all elements
analysed by the system, including word-stems, 1dioms, affixes,

E -2

punctuation, symbols, etc.

Fach entry is essentially a list of feature + value palirs. The [first
item on the list is reserved for values of the feature ‘'canonical

form', whose feature-name (CAN)} is in fact omitted. This item 1is .

followed on the same line by the feature CAT ('category'), and on the
next line by the feature ALO ('allomorph'). These first three items
are the only obligatory ones. The format is:

(<canonical form> (CAT) (<category>)
(ALOQ) (<allomorph>)
<feature 1> (¢<list of values>)
<feature 2> {<list of wvalues>)
1

}
¢<feature n> (<1list of wvalues>)

) PN

At one time, the dictionary entries for each ALO corresponding to a
particular CAN were conflated, that is, a list of different ALO values

would appear in the ALO Iine of the entry, and subsequent lines would

give a 1list of the corresponding ALO-dependent feature values. These
lines were separated from the rest of the entry (i.e. ALO-independent
features and values) by '$', e.g.

(THIS CAT (DET)
ALO (this) (these)
NU (SG) (PL) 3

PLC (WI WF)

)

It now appears that a different entry corresponds to each ALO value,
which 18 presumably intended to improve the efficlency of dictionary
organisation.

Any feature may have zero or more values. The same value may appear in
the value list of different features, and the values of any features
are formally compatible, 1.e., there is no strong typing of values
according to feature. Features used in dictionary entries are of two
kinds, system features and specific features.

3.1 System features

System features are those to which the core functions may make
reference, or those which are considered applicable to any lexical
entry in any language, although the possible values that are defined
for each may vary with the application (e.g. language pair, text type
etc). The system features currently used are:

—_—

1) CAN ('canonical form'). The values of this feature are character .

stfings, corresponding to 'morphemes', unique forms representative of
possible paradigmatic variants. When two different morphemes have
identical canonical forms - e.g. TABLE (verb) vs.TABLE (noun) - these
may be distinguished by means of an integer added to the end of the

character string - e.g. TABLEl vs. TABLE2. The values of CAN are used

as entries to access the bilingual transfer dictionary.

2) CAT ('lexical category'). Values of this feature correspond to
morphological and syntactic classes, and include:

AST {tadjective stem')
NST ('noun stem')

VST {'verb stem')

DET (*determiner')

LOC {'locative adverb')
MAN (*‘manner adverb!')
T™P (*temporal adverb')
DEG {'degree adverb')

CONJ {'conjunction')

PREP ('preposition')

PRN {*pronocun')

N-FLEX ('noun inflection')
A-FLEX ('adjective inflection')
D-FLEX ('determiner inflection')
V-FLEX ('verb inflection')

PNCT ('punctuation')

These values are used by PARSE in performing pattern-rmatching against
the context-free rules - CAT is the principal component of the label
on a chart edge which is accessible to PARSE, i.e. the root node. The
non-terminal categories which are introduced by the context-free rules
may thus also be considered as values of CAT.

3) ALO ('allomorph'). Values represent the actual surface strings in
which canonical forms may be realised. There may be several allomorphs
corresponding to a single canonical form, when there exist, for
instance, spelling variations or forms not recognisable by a regular
morphological analysis. ALO is the key by which the analysis
dictionaries are accessed.

4) PLC ('placement'}. This indicates the possible positions of the
morph with respect to other morphs with which it may occur in a word.
PLC values are used to limit the application of morphological level
context~-free rules; the possible values are:

WF ('word final')
WI {('word initial'}
NI ('non-initial’')}
NF ('non-final')

These values often occur in clusters. PFor example, an inflectional
ending must occur word-finally, and never word-initially i.e. (WF NI};
a pronoun in English occurs only as an unbounded form i.e. (WI WF).

5) PRF ('preference'). Values of PRF are numeric: 1 indicates no -
preference, 2 indicates 'twice as good', 0.5 indicates 'half as good'
ete. Such values are introduced in the dictionary so that a numerical .
ordering may be defined on all analyses discovered by PARSE, affording
a means for choosing between alternatives. For example, a compound
noun or fixed idiom may be entered as such in the dictionary with an
indication of - whether it is to be preferred to a reading derived by
analysing its components individually. During application of context-
free rules the PRF values associated with the daughters are multiplied
together and then by a PRF value provided by the rule being applied,
to give a new value for the root of the phrase. At the end of
analysis, the structure with the highest PRF value will usually be
chosen by USER-POSTPROCESSER as the final output from PARSE and hence
the input fto TRANSFER.

E -4

6) LEX ('lexical cecllocation'). This boolean-valued ('T' or 'NIL')
feature is used to indicate whether a word may be a ccnstituent of a
variable (i.e. inflected) and discontinuous collocaticn. A 'T' value
will 1indicate to PARSE that special action must be taken. The
documentation is wunclear as to the precise acticn taken, the
relationships Dbetween fixed and variable idioms, 2ontinuous and
discontinuous idioms, context-free rule and dicticonary representations
of idioms, and the role of the function USER-IDIOM.

7} SNS ('sense number'). It appears that this feature, whose values
are integers, was originally used to distinguish between homographs,
i.e. different lexemes realised by the same string; in later

documentation 1t is used to distinguish different allomorphs of the
same morpheme, i.e. different strings realising the same lexeme.

8) CNO (‘'concept number'). This feature may be used to assign a
common index (an integer) to semantically related words. For example,
"compute", "computer", "computation", "computational®”, "computable"
would share the same concept number.

9) TAG ('area of provenience tag'). This indicates the subject area(s) .
in which a particular word or word-sense is most likely to be used.
Where multiple translations of a word are possible, the TAG value may
be used to select the appropriate translation according to the subject
area of the source text,

3.2 Specific features

Specific features are those which are particular to individual lexical
items and/or to individual languages. They carry the additional
morphological, syntactic and semantic information proper to an item
and necessary for accurate translation. They include the more odbvious
morpho-syntactic features like:

NU ('grammatical number')
GD ('grammatical gender')
PS ('person')

TN ('tense')

MD (‘mocod'}

v (*voice')

CL ('inflectional class')

These features may have their values assigned in the dictionary for
certain items, such as GD for nouns, whilst the values for other
items, sueh as GD for adjectives, will be assigned during analysis.

The feature TY ('semantic type of noun') has as values a matrix of
semantic attributes which may be used to characterise any given noun,

e.g.

ENT ('entity')

MAT ('materialt')
LIV {'living')

TMP ('temporal')
COM ('commodity')
VOL ('volitional’'}

In the entry for a particular noun, each atiribute Is marked Tfor
'polarity', in one of the following ways:

+ <attribute> the noun has the attribute

- <attributes> - the noun does not have the attribute

+/- <attribute> the noun may or may not have the attribute, or it
has certain sub-attributes dbut not others

*NIL! - the attribute is irrelevant

Semantic attributes are hierarchically structured, and in describing
the set of attributes particular to a given noun, certain opticnal
choices of values, e.g. -LIV, will automatically generate appropriate
values for others e.g. 'NIL' for VOL.

TY values are used in imposing semantic co-occurrence restrictions
between constituents. This 1is achieved by the use of what may be
called 'contextual features'. For example, the dictionary entries for
verbs include the following contextual features:

1} RA ('role of argument(s)'}. Expresses functional relations between -
a verb and its arguments., Values are based on the ‘'deep case’
relations of case grammar theory, and include: .

AGT ('agent')

TAR ('target')

BEN ('benefactive')
REC {'recipient')
INS (t'instrument')
LOC ('locative!')

_RAs are therefore case-~-frame features, representing all the possible
central (i.e. verb-specifie) arguments that a particular verb may
take. Peripheral roles, which are not verb-specific, are not
specified. RAs serve an identificatory purpose, labelling potential
arguments for further specification by other contextual features. Like
TY values, RAs may be hierarchically structured. For instance, LOC,
which occurs as a central argument of verbs of motion, subsumes STA
('static location') and MOT {('motion'}, and both of these in turn have
more specific RAs as daughters. The reason for such a hierarchy 1is
that certain prepositions will dictate that thelr phrases fill a
certain argument role, and this role must be dominated 1in the
hierarchy by the role specified for a particular verb in order for the
phrases to be recognised as central arguments to that verb.

There does not appear to be a facility for specifying that the
opticnal arguments for a particular verb must not have certain RA
values, though such a facility would appear to be of some use.

2) TA ('semantic type of argument(s)'). Imposes semantic constraints
on the arguments listed as RA values. TA values are ldentical to the .
TY values for nouns. For example, the verb "murder” recuires that its
AGT be +RSP ('responsible'}; in the entry for "kill", however, the AGT
argument would be marked as +/-RSP, indicating that this verb may take
an AGT marked +RSP, -RSP or +/-RSP

3) FPA ('constituent type of argument{s)'). Usual values are:

NP (‘'noun phrase’)

. PP. ('prepositional phrase')
CP ('clausal argument')
ADV ('adverbial phrase')

E-6

4) MA ('syntactic marker of argument(s)'}. This indicztes the surface
case markers which help to identify argument roles. Ccommon values for
English are particular prepositions or 'U' ('unmarked case'). Others

include:

S {'subject case')

0 {'object case')

TH ('"that" complement')

T ('infinitival complement')

WH ('complement initiated by WH-word')

!

(S and O are used in English for pronouns).

5) TT ('transitivity type'). Summarises the main valency-patterns in
which central arguments may occur, e.g.

T1A : intransitive verb with one argument, an AGT
I2AL: intransitive verb with two arguments, AGT and 10OC
T2AT: transitive verb with two arguments, AGT and TAR.

A single verb may be specified for more than one TT value - e.g. "eat".
may be either Y1A ("John ate") or T2AT ("“John ate the cake"). -For each _
TT value there is a corresponding user-defined LISP function which
uses voice and mood features to instantiate case frames for particular
verbs during analysis and transfer (see section 4.2).

4. Linguistic content of grammar

The METAL grammar consists of an unordered set of context-free phrase
structure rules augmented (and effectively made context-sensitive) by

rule body expressions. These expressions, which are passed to USER-
R by SE for evaluation, impose conditions on rule application
and determine the linguistic structure built by each rule.

4.1 Grammar rules

Each rule of the grammar consists of:

i) the context-free rewrite rule, defining a constituent in
terms of its component constituents.

ii)} the rule body, comprising

- column tests, stating conditions on each component
constituent individually

- an inter-constituent test part (TEST), stating conditions
on agreement between component constituents

- a phrase constructor (CONSTR), formulating an
interpretation of the phrase

- & transfer part (TRANSF), specifying functions te Dbe
performed during the transfer stage of translation (see
section 6.).)

The TEST, CONSTR and TRANSF parts may include transformations and
calls to case-frames (see below). Before describing each part in more
detail, the following example of a word-level rule will illustrate the
overall form of rules (see over):

E-7

NN NST N-FLEX

0 1 2
- (REQ WI) (REQ WF)
TEST (INT 1 €L 2 CL)
CONSTR {(CPX 1 ALO CL)
(CPY 2 NU CA)
{CPY 1 WI)
TRANSF (XFR 1)
(ADF 1 ON)

(CPY 1 MC DR)

4,1.1 Context~free rules

The first line of each grammar rule specifies the context-free rewrite
rule on which the grammar rule as a whole is based, with daughters on
the rhs and father on the lhs, but including no explicit rewrite
symbol. Thus the first line of the example rule above indicates that a .
noun may consist of a noun-stem followed by a noun-ending.

" The lhs always consists of a single element, a major morpho-syntactic
category (value of CAT), defining the word or phrase of which the rhs
elements are constituents., The rhs consists of one or more elements.
These may be major morpho-syntactic categories, or string literals
representing a particular word, symbol or punctuation mark (with the
pseudo-category LITERAL). String literals are enclosed between doudble
quotation marks - e.g. "," for a comma. Por reference purposes, first-
line elements are numbered from O to n, for an rhs of n constituents,
the single lhs element corresponding to O.

The context-free fuies may be recursive; this is essential if a finite
number of rules 1is to be capable of describing a theoretically
infinite number of sentences. For example, the following rule:

NO ADJ NO
0 1 2

indicates that a nominal (NO) may consist of an adjective followed by
a nominal. It will apply recursively to a sequence of any number of
adjectives, followed by a nominal.

4,1.2 Column tests

In many cases, specifications of the values of features of the rhs
elements other than LITERAL or CAT are essential to prevent the
context-free rules applying over-generally. To this end, the third and
subsequent 1lines of a grammar rule may include column-tests, 1i.e. -
boolean expressions on the presence or values of features. on the
rhs element in whose column they occur. USER-RULE must evaluate these
expressions as 'T' for the rule to be applied. The forms of
expressions used in column tests and their semantics are as follows:

(REQ <feature names)} -

- 'T' if the named feature is present, regardless of its value(s).

(REQ <feature name> <list of values>)}

- 'T* if the named feature has a value in the 1list (hence 'NIL' 1if
the feature is absent.

(REQ <feature name> * <list of values>)

- 'T" if the named feature has at least one value not in the list.
(NREQ <feature name>)

- ' if the named feature is not present
{OPT <feature name> <list of values>)

- 'T' if the named feature is absent, or present with at least one
of the wvalues in the list.

{OPT <feature name> * <list of values>)

- 'T* if the named feature is absent, or present with at least one
value not in the list. .

These expressions may be compounded by means of the standard LISP
functions OR and AND. AND is in fact redundant except when used within
an OR expression, since the overall value of all column tests is the
AND of each of their values,

Note that the ‘'placement' values WI, WF, NI, NF are used in this and
other parts of the rule body as features in their own right, and so
occur without the feature name PLC.

The following examples, from German analysis rules, illustrate column
tests: '

VB GE-VB VsT V~-FLEX
0 1 2 3
(REQ WI) (NRQ WI) (NRQ WI)

- (OPT PX NIL) (REQ PF PAPL)

[Gloss: A verb (VB) may consist of a past-participle marker (GE-VB)
followed by a verb stem (VST) followed by a verb ending (V-FLEX). The
GE~VE element must be word-initial, the VST and V-FLEX must not be
word-initial. The VST may optionally have the feature 'prefix' (PX),
but 1if so it must have the value NIL. The V-FLEX must have the
paradigmatic form (PF) past participle (PAPL)].

NP NO
0 1
{REQ IN ST)

(OR (REQ GEN) (REQ UNK) (REQ NUM) (REQ CA * G))

[Gloss: A noun phrase (NP) may consist of a nominal (NO). The latter
must have the inflection (IN) feature with a 'strong' (ST) value, and
at least one of the following features: ‘'‘genitive' (GEN}; ‘'unknown'
(UNK); 'number' (NUM); t'case' (CA), with at least one value other than
genitive (G)].)

h,1.3 TEST

The TEST part of a grammar rule, 1like the column test part, has the
purpose of 1limiting rule application by imposing conditions on
features and values associlated with rhs elements. Unlike column tests,.
TEST expressions relate the features and values of one constituent
to those of a sister constituent. Any one TEST expression may refer to
a maximum of two rhs elements, designated by the reference numbers
given in the second line of the rule.

TEST expressions are based on the two set functions: INT
('intersection') and SUM ('set union'). In certain expressions, the
result of these operations, i.e. a set of {featureless) values, may be
assigned to a rule-internal variable for use in other TEST expressions
or in the CONSTR part of the rule., The basic expression types are
listed Dbelow as described in the documentation. The INT expressions
appear to evaluate 'T' if the specified set-intersection is not 'NIL'.
It is not clear how SUM expressicns are used to return boolean values,
since no examples are given.

(INT <integer i> <feature A> <integer Jj> <feature B>}

- Intersect the values of feature A on constituent i with those of”
feature B on constituent J. Also succeeds if constituent i is not
marked for feature A, or if the set of values for feature A is
empty.

(INT <integer i> <feature A> <integer j> <feature B> = <variable Xk>)

- Intersect the values of feature A on constituent i with those of
feature B on constituent j. Both features are assumed to be
present. The result of the intersection is assigned to the
variable XXk.

(INT <variable Xi> <integer Jj> <feature A> = <variable Xk>)

-~ Intersect the values of the variable Xi with those of feature A
on constituent j. Assigns the result to variable Xk,

(INT <integer i> <feature A> <list of values>)

- Used within COND expressions, %o intersect the values of feature
A on node 1 with the specified list of values.

{SUM <integer i> <feature A> <integer j> <feature B> = <variable Xk>)
- Create the union of values of feature A on constituent 1 with
values of feature B on constituent j. Both features are assumed
to be present. Assigns the result to variable Xk.
(SUM <variable Xi> <integer j»> <feature A> = <variable Xk>)
- Create the union of values of variable Xi with values of feature
A on constituent j, and assigns the result to variable Xk. Xi can
only be the result of a previous SUM.

The above expressions may be compounded by means of the standard LISP
functions AND, OR, COND and NOT.

The function RET ('retrieve') may also be used within compound
expressions to test Tor the presence of a particular feature on a

E - 10

specified constituent., RET expressions take the form:
(RET <integer i> <feature A>)
- Evaluates 'T' if feature A occurs on constiuent i.

In addition, the functions FRM and FRT are used in TEST to invoke the
case-frame processor - see section 4.2 below.

The following are examples of complex TEST expressions (only the TEST
parts are glossed):

ADJ ADJ PP
0 1 2
(NRQ COMP PP) -
TEST {COND ((INT 1 FC PP) {INT 1 MC 2 PR = X1))
(T NIL))

[Gloss: 1If the ADJ has the 'form of complement' (FC) feature with a
'prepositional phrase' (PP} value, then intersect the values of the
'marker of complement' (MC) feature marked on the ADJ with values of
the 'preposition' feature marked on the PP, and assign the result to
varia?le X1, else (i.e. if PFC for ADJ does not include PP) return
'NIL'J.

PP PREP NP
0 1 2

- (OPT KP * DEM)
TEST (INT 1 GC 2 CA = X1)

(OR (RET 1 WF)
(AND (RET 2 BF) (INT 1 CN 2 BF = X2)))

[Gloss: 1Intersect the values of the feature 'governing case' (GC)
marked on the PREP with the values of the feature 'case' (CA) marked
on the NP and assign the result to variable Xl1. Then, either ensure
that the PREP is marked for the value 'word-final' (WF), or ensure
that the NP is marked for the feature 'bound form' (BF) and intersect
with its values the values of the feature 'contraction' (CN) marked on
the PREP, assigning the result to variable X2].

4.1.4 CONSTR

If all the conditions on rule application succeed, USER-RULE bullds a
structure in which the lhs element of the rule is the root, with rhs
elements as its daughters. The CONSTR part of the rule specifies which
features and values are to be assigned to the father node; it may-
modify the tree by applyilng transformational rules {see section 4.3)}.
CONSTR also includes the ‘area of provenience tag' (TAG) specifying
the subject-area(s) in which the rule applies, though it is difficult
to see why this should be here and not in the TEST section.

The ©basic functions and expressions used in CONSTR are as follows
(addition or copying of features and values is in all cases to the
newly-created father node):

(ADD <feature A>)

-.Add feature A to the father_node.

E - 11

{ADD

(ADF

(ADF

(ADX

(ADX

(CPX

(CPY

(PRF

These

<feature A> <list of values>)

Add feature A with the specified list of values.

<integer i> <«feature A>)

Add feature A, assigning to it the values of the same feature
marked on constituent i. The function only operates if feature A
is marked on i,

<integer i> <feature A> <feature B>)

Add feature B, assigning to it the values of feature A marked on
constituent 1. i

<variable Xi>)

Add the values of variable Xi, wusing the feature-name given as
second argument of the TEST function which originally assigned
the values to Xi.

<variable Xi> <feature A>)

Add the values of variable Xi, using feature-name A.

<integer i> <list of features>)

Copy &all the features and values from constituent 1, except
system features and those listed.

<integer i»> <list of features>)
Copy from constituent i the listed features (with their values).

<integer i>)

Assign preference factor i1 to the father node. This factor will
be multiplied by that calculated from the preference values of
the other components to determine this node's final weight. If
the result falls below CUTOFF-WT, this node will be pruned from
further analysis.

assignments may be compounded by means of the standard LISP

functions AND, OR, COND and NOT, and the set function INT.

The

following examples illustrate the CONSTR part of rules (only the

CONSTR parts are glossed).

(see

PRED WERDEN PREDEF
0 1 2

(REQ PF FIN) (REQ PK PAPL INF MDX)
TEST

CONSTR (CPX 2 PK)
(CPY 1 PS NU MD)
(COND ((INT 2 PK PAPL) (ADF 1 TN) (ADD VC P))
(T (ADD TN FU)} (ADF 2 VC)})
(TAG ALL)

over for gloss)

E - 12

[Gloss: Copy from the PREDEF ('defective predicate'} all features
(with their values) except PK ('kind of predicate'}. Copy from WERDEN
(*passive auxiliary') the features PS ('person'), NU ('number') and
MD ('mood'), with their values. If the PK ('predicate kind') feature
marked on the PREDEF has the value PAPL ('past participle'), then add -
the feature TN (‘'tense') with its values from WERDEN, and add the
feature VC ('voice') with value P ('passive'); else add the feature TN
with value FU ('future'), and the feature VC with its values from the
PREDEF. The rule is general (TAG ALL)].

NO ADJ NO

0 1 2
(REQ PO ATR) -

TEST (INT 1 NU 2 NU = X1)
(INT 1 CA 2 CA = X2)
(INT 1 GD 2 GD = X3)

CONSTR {(ADX X1)
(ADX X2)
(ADX X3)
(CPX 2 IN NU CA GD)
(CPY 1 1IN DG WI)
(ADD PNM)
(AND (INT O CA G) (ADD GEN))
{TAG ALL)

(Gloss: Add the values for variables X1, X2 and X3 assigned during
TEST. Copy from the daughter NO ('nominal') node features with their
values, except the features IN ('inflection'), NU (‘number'}, CA
('case'), GD ('gender') and system-features. Copy from the ADJ
('adjective') the features IN, DG ('degree'} and the placement value
WI. Add the feature PNM ('prenominal modifier'). If the values of the
feature CA ('case') marked on the father node include the value G
(tgenitive'), then add the feature GEN ('genitive!) to the father
node. The rule is general (TAG ALL}].

k,2 Case-frames

As stated in section 3.2 above, the dictionary entry for each verb-
stem 1includes a feature TT {'transitivity type'). The wvalues (e.g.
T3ATR, T2AT, TIlA etc.} of TT correspond to case-frame functions,
written in LISP, which are part of the linguistic data available to
the system. They may be called as part of the TEST in a rule-body
expression to check for well-formedness of clauses, and to assign
case-labels +to the arguments of predicates. Case-frames may alsc be
invoked by transformations within any part of the rule-body, and must
apply for the transformation to apply.

A clause is well-formed if:

~ the central arguments to its predicate match the specifications
stated in one of the case-frame functions called for that
predicate, given the values for mood and voice marked on the
predicate

~ any remaining arguments not so matched are valid as peripheral
arguments - i.e, arguments which may occur with any predicate.

Any clause analysis whose result is not a well-formed clause 1is
rejected. '

B - 113

4,2.1 Application of case-frames

The case-frame processor (FIND-FRAME) is responsible for caliling the
relevant case-frame functions for the predicate in guestion. FIND=-

FRAME itself is called by the function FRM, included in the TEST part .

of grammar rules which build clauses; or by the function FRT, used
within a transformation rule. The possible expression types are as
follows:

({FRM (<integer i»)
{PRM (<integer i> <integer j>)
(FRT (<integer i>)

In all three, the first or only parameter (i) to the function is a
clause, 1i.e. any structure containing a finite verb, designated by
the reference number of its root node in the rhs of the context-free
rule. The second parameter (j)} may be any other argument to the verd
which has not yet been included within the clause - e.g. an initial
subject argument.

On being called, the case-frame processor accesses the TT feature _

associated with the verb in the specified c¢lause and, for each TT
value in turn, applies the corresponding function, until a successful
application 1is achieved., Possible TT values are listed in descending
order according to the number of central arguments specified - e.g.
T3ATR before T2AT. In this way, the valid interpretation that uses the
greatest number of central arguments will be selected. Upon successful
application of a case-frame function, the processor checks that any
remaining arguments {(i.e. ones not accounted for by the case-frame)}
are legal peripheral arguments. If they are, it reorders the daughters
of the clause, placing the predicate first feollowed by all the
arguments 1in the order in which they appeared in "~ the c¢lause. The
feature RO ('role of argument'), with values given by the case-frame,
is assigned to each central argument, and the prepositions of central
PP arguments are deleted. If all case-frame functions fail, FRM/FRT
fails, causing the clause-rule to fail.

4,2,.2 Form of case-frame functions

Each case-frame function consists of two main parts, used respectively
for analysis and transfer. The function SYNTAX, which succeeds during
analysis and fails during transfer, determines which part 1is
applicable at each phase. Within SYNTAX the nested conditional (COND)
tests for values of the features VC ('voice') and MD ('mood'} marked
on the predicate, and these values determine the selection of one of
several sub-frames. For example, the function Il1A (i.e. an
intransitive verb with one central argument, an AGT) for English will

specify that the imperative form of the verb occurs without central -

arguments. Each sub-frame consists of a list of central arguments,
with each argument being specified in the folleowing way:

(FRAME <marker of argument> <form of argument> <role of argument>)

FRAME 1s a function which determines which of the arguments of the
clause being analysed 1is eligible for the given argument-role,.
Constituents are processed left-to-right until one is found which
matches the specifications given in the first two parameters of FRAME.
The parameters are specified as follows: '

<marker of argument> - a value of the feature MA, denoting the surface
grammatical case, preposition, or.complementiser by which the

E - 14

argument is marked {(see section 3.2)

<form of argument> - a value of the feature FA, denoting the
constituent type (e.g. NP, PP) of the argument

<role of argument> - the case-role to be assigned to the argument.

If either of the first two parameters are specified as 'NIL', then the
lexical entry for the verb in question is accessed to provide the
relevant information.

The following example shows the analysis part of the I2AL case-frame
for German verbs such as "gehen:

(DEXPR I2AL (VC MD)
(COND { (SYNTAX)
(COND {(AND (ACTIVE)} .
(NON-COMMAND)
(FRAME N NP AGT)
(FRAME NIL NIL LOC)
T)
((AND (ACTIVE) (COMMAND) (FRAME NIL KIL LOC)) T}}))
(* transfer part of case-frame *})

The first sub-frame 1is instantiated if the verb 1is active and
declarative (NON-COMMAND) . This frame consists of two central
arguments, AGT and LOC. The AGT must be an NP in the nominative case;
the surface form and marking of the LOC is specific to each particular
verb. If the verb is active and imperative (COMMAND), the only central
argument is a LOC, again with a verb-specific surface realisation.

4.3 Transformations

Transformation rules are invoked by the rule bodies associated with
phrase-structure rules. They are used:

- to modify syntactic structure by adding, deleting or reordering
nodes in the object tree

- to copy, add or delete features and values to/from descendants
of the nodes specified in individual context-free rules. For
this purpose, the functions and expressions described above for
CONSTR - ADD, ADF, ADX, CPY etc. - may be incorporated in
transformations

- to 1impose conditions on descendants of the nodes specified in
individual context-free rules. For this purpose, the functions
and expressions described above for column tests and TEST -
REQ, INT, SUM etc. - may alsc be incorporated.

The use of transformetions provides a powerful means of attaining the
deeper, more abstract structural descriptors output by PARSE.

4,3.1 Application of transformations

Transformations are invéked in a grammar rule by the function XFM.
There are three different forms for doing so:

(XFM <pattern> <action>)

t

- Here the transformation 1s specified directly in the rule-body.

E - 15

XI'M calls the system-function DO-TXFCRM, which matches the
pattern against the structures which are active in the current
context-free rule,

(XFM <transformation named)

- Once again, DO-TXFORM 1is accessed, in order to apply, 1if
possible, the named transformation, which will have bDbeen
predefined 1in a special file so that it may be invoked from
several rules, thus:

{DT <pattern> <action> <transformation name>

(XFM)
- In this case, DO-TXFORMS is called, which will call DO-TXFORM for
each transformation in a predefined set of general

transformations. When invoked, each member of the set whose
pattern matches against any of the active structures will be
applied. Although the system allows for such transformations,
they have not been used.

4.,3,2 Form of transformations

Both the pattern and action of a transformation are based on tree-
gtructures, which are represented in the conventional way, using
nested bracketing. The nodes of the trees may be of three types; in
each case <integer> is a reference number used to equate nodes in the
pattern with those in the action - the numbering 1s specific to the
particular transformation rule, and need not correspond to the
numbering of nodes of the context-free rule in whose rule-body it
occurs:

<category name or literal> : <integer>

The node thus specified must be of the named category or have a CAN
value equal to the literal.

& : <integer>

Such a node will match against any single node, regardless of its
category, i.e. in the terminology of production systems, '&' is a node
variable.

— i <integer>

-~ will match against any number (including zero) of contiguous sister
nodes, i.e. '—-' is a list wvariable.

Note the absence of a variable which may be used to match nodes of an
unspecified depth in the tree (generalised dependent variable).

An expression may be asscclated with any node, ' by bracketing the
expression as though it was a daughter of the node to which it refers,
Expressions iIin the pattern must be of i{ype boclean, e.g. using the
functions described for column-tests (4.1.2) and TEST (4.1.3). Those
in the action will generally be structure-changing expressions as in
CONSTR (&4.1.4). '

E - 16

The following rules drawn from a German analysis gramrzr are used to
cxemplify transformations:

RCL PRED "on CLS-SUB
0 1 2 3

- - (REQ MK TH)
TEST

CONSTR (CPY 1 TT MD SPX PX)
(XFPM (RCL:1 (PRED:2 &:3 CLS-SUB:4})
(RCL:1 (PRED:2 CLS-SUB:4)))
(PRF 3)
(TAG ALL)

The transformation performed here is straightforward. It has the
effect of deleting any single unspecified node (in this case, a comma)
intervening between a PRED {'predicate') node ard a CLS-SUB

('subordinate clause') node, when these constitute an RCL ('right-
branching clause').

RCL RCL PRFX
0 1 4

(NRQ SPX) (REQ WI)
TEST (INT 1 PX 2 CAN = X1)

CONSTR (XFM (RCL:1 ((RCL:2 {(PRED:3 (-—=:4)) -=:3)) PRFX:6))
(RCL:2 ((PRED:3 (——:4) (CPY 6 CAN) {ADD VC A))
-— :5) (ADD CLF) (ADD SPX)))
(TAG ALL)

The transformation here transforms the sub-tree:

"RCL:1
E
! !
RCL:2 PRFX:6
]
i
i i
P?ED:3 —-—:5
i
——:4
into:
RCL:2
: | !
PRED:3 —35
i

Loy

In addition, the feature CAN ('canonical form') is copied from the
PRFX ('prefix') to PRED, and the feature VC ('voice') with value A
(tactive') is added to PRED; the features CLF ('clause-final') and '‘SPX
('separable prefix') are added to RCL:2.

- 17

CLS-SUB CONJ LCL
0 1 2
(REQ CU SUB) (REQ MD * IMP)

TEST (XFM (CLS-SUB:1 (CONJ:2 (LCL:3 (--:84) (F2T 4))))
(CLS-SUB:1 (CONJ:2 (LCL:3 (--:4)
(ADD EXPR TRANSF (XFR) (OR0}}))))

This transformation does not alter the sub-tree defined by the
context-free rule, but applies the case-frame processor to the
daughters of the LCL and adds to the CLS~SUB node a function which
during transfer will transfer and reorder the daughters --:4,

5. The parsing algorithm

The context-free grammar specified by the first lines of the analysis
rules is compiled into two forms, a grammar indexed according to the
leftmost constituent for bottom-up determination of possible
applicable rules, and a discrimination net which will be nused to
realise a top-down filter to limit the rules applied to these which
will actually form part of a sentential analysis. The top-down filter
may be turned on or off by USER-PREPROCESSOR, since its use has been -
found to be advantageous only for sentences above a length of about
words.

METAL actually provides alternative bottom-up parsers, one
implementing the Cocke-Kasami-Younger algorithm and the other, a Left-
Corner algorithm.

Both of the parsing algorithms are chart based but make no commitment
to the sort of structures with which the chart edges are labelled. The
structures are built by the user-defined routine USER~-RULE which
is called by PARSE when the latter finds a possible applicable rule,
The two functions communicate by means of a linguistically-neutral
interface, through which are passed the structures corresponding ¢to
the rhs components of the context-free rule, and the eXxpression
(i.e. column tests, TEST, CONSTR, and TRANSF) included in that rule.
USER-RULE returns either a2 structure that it has built, for addition
to the chart, or an indication that the rule was not applicable. By
this means, the algeorithm for building the structure can be tailored
to fit Dboth the style of analysis that has been inecluded in the
grammar and the purpose for which the structure is to be used.

The system provides a default for USER-RULE which realises a
conventional n-ary immediate-constituent syntax tree by means of
attribute-value pairs (structural attributes with values generated by
the f?nction itself and user- and system-defined features with their -
values).

The organisation of the calls by PARSE to the user-defined functions_-
is as follows:

1)} USER-PREPROCESSOR is called with the sentence to be translated, and
may turn the top-down filter off or on according to the length of the
sentence, as well as making other initialisations for the purpose of
keeping performance statistics ete. This function then returns the
sentence, as a LISP list, to PARSE. '

2} USER-WORD is called with each word of the sentence, which returns a
structured list of possible alternative segmentations of the word, or

E - 18

'NIL' if there are none. The elements of the list are added to the
chart.

3) USER-ADD is called if the word is a literal of a %ype found on the
list ADD-INTRINSICS (a number in one of various forms), and will
assign a syntactic category to the word, NUMBER being the default.

4) USER-ERROR will be called if both USER-WORD and USER-ADD have
failed to provide an interpretation of a word, and the glocbal variable
ADD-UNKNOWNS does not indicate (i.e. has not been assigned a value
corresponding to) a grammatical category to which unknown words should
be assigned, e.g. PROPN (’'proper noun')., USER-ERRCR must take some
action, such as c¢alling an automatic spelling-correction routine,
initiating an interactive request for the ~ word's definition, or
returning *ERROR¥, thus terminating the parse and initiating a call to
USER-POSTPROCESSOR to print an error message.

5) As each new edge is added to the chart, all context-free rules
which are rendered applicable by this addition are determined, and for
each, USER-RULE 1is called with the component symbols of the rule, the
structures from the chart corresponding to the daughter components,
and the rule-body expression. USER-RULE evaluates the .rule-body
expression, expanding the macros FRM, FRT and XFM into calls to the
system functions FIND-FRAME, DO-TXFORM and DO-TXFORMS as appropriate.
USER~RULE returns either a structure for PARSE to associate with the
new edge corresponding to the root (lhs) symbol from the rule, or the
value *ERROR¥, in which case no new edge will be bullt. A new edge may
cause further context-free rules to apply, s¢ PARSE continues
recursively until no more rules are applicable., Stages 2, 3, 4, and 5
are repeated until all morphs for all words have been treated. .

6) PARSE determines the categories associated with those edges
spanning the chart from entry to exit vertices and checks these
agalinst the 1list ROOTCATEGORIES to see if they correspond to
sentential =analyses. Depending on the values in ROOTCATEGORIES,
sentential analyses may be sentences, or some other constituent if,
for instance, the input text derives from a table. Acceptable analyses
are passed to USER-POSTPROCESSOR, which may choose between
alternatives by means of the preference values assoclated with them,
and may also print out processing statistics. If no sentential
analyses have been found, PARSE passes the chart to USER~
POSTPROCESSOR. The 1latter may then specify a phrasal analysis by
subsuming the edges of the shortest, highest-scoring path through the
chart under a 'dummy' S ('sentence') edge. Such a phrasal analysis may
actually lead to a quite acceptable translation, and will also be
useful in determining why the grammar failed to find a sentential
analysis.

"6, Transfer

After 8L analysis has been completed, the driver routine TRANSLATE
invokes the function TRANSFER on the highest weighted interpretation
output by PARSE. In current applications, the purpose of the transfer
phase is to convert the deep, semi-abstract representations resulting
from analysis into surface syntactic structures in the TL. In this
sense, transfer assumes most of the task of structural generation,
leaving relatively little for the final GENERATE phase to do.

There 1is no centralised control procedure for transfer:' control 1is
exercised by the TRANSF part of grammatical rules. During analysis the

E - 19

rule-body interpreter USER-RULE automatically asscciates the rule-body
expressions (including TRANSF) of each successful rule applied, with
the new father node created by that rule. The transfer phase begins
with TRANSFER evaluating the TRANSF part of the rule-body associated
with the root node of the analysls tree. By means of the function XFR
contained in the TRANSF part of non-terminal nodes, TRANSFER may be
recursively called on daughters of the current node - i.e, TRANSFER
will descend one level in the tree to evaluate the TRALSF expressions
associated with one or more daughter nodes. When a terminal node is
reached the function XLX or TLX specified in TRAKSF will effect
lexical transfer on that node. 1In addition to these functions, TRANSF
expressions may modify tree structure by invoking transformations and
case-frames, and may propagate features and values upwards or
downwards in the tree. These operations may be performed either before
or after invoking XFR, depending on the ordering of expressions in any
particular TRANSF section. Thus, for example, TRANSFER may be invoked
on a particular daughter, and features or values (which may be those
of the TL if the daughter has been lexically transferred) may then be
returned from that daughter to the father node in order to be used in,
or to initiate, further TRANSF operations specified on the father
node.

6.1 Transfer functions

The forms of the functions used in the TRANSF parts of rule~bodies are
as follows, (unlike their counterparts in CONSTR, in which all
cperations change the father node, these functions add or copy
features to a specified daughter):
(SEV <integer i> <feature A>)

- Add the feature A to the daughter 1.
(SEV <integer i> <feature A> <list of wvalues>)

- Add feature A to daughter i with the specified list of values.
(SEF <integer i> <feature A>)

—~ Add feature A to daughter i with the values of A from the father.
(SEF <integer 1> <feature A> <feature B»)

~ Add the feature B on daughter i with the values of feature A on
the father.

{XFR)

- Invoke the system function TRANSFER on all the daughters of the
current node in order.

{XFR <list of integers>)

- Invoke TRANSFER on the daughters of the current node whose
reference-numbers appear in the list.

{XIX <integer i>)

- Lexically transfer the daughter node i.

E - 20

{XLX <integer i> (<list of features>))

- Lexically transfer the daughter node i using the features listed
to select the correct entry in the transfer dictionary.

(XLX <integer i> (<list of features 11>)
{<inflection category> <list of features 12>))

- Lexically transfer the daughter node i, using the 1list of
features 11 to select the correct entry 1in the transfer
dictionary. Inflect the stem with the appropriate allomorph in
the TL dictionary entry for the spec¢ified inflection category,
selected according to the list of features 12 (see 6.2).

(TLX <list of features 11>)
(<inflection category> <list of features 12>))

-~ Lexically transfer the current node, using the other information
as described for XLX. This funection 1is used within a
transformation.

(ORO)

This function, of zero parameters, is invoked on the father node of a
clause, with the purpose of converting the canonical ordering of the
predicate and 1its arguments into a TL ordering. CRO applies the
transfer part of the same case-frame function that was successful
during analysis. For example, the transfer part of the I2AL case-frame
cited earlier is:

(DEXPR I2AL (VC MD)
(COND ((SYNTAX)
((* analysis part of case-frame ¥}
({AND (ACTIVE) (NON~COMMAND) (PRED AGT LOC))
(ROL-ORDER (AGT) (PRED) (LOC))
({AND (ACTIVE) (COMMAND) (PRED LOC})}
(ROL-ORDER (PRED) (LOC))))

After checking to find which TL sub-frame is applicable, according to
the values of VC and MD and to the central argument roles assigned
during analysis, the function ROL-ORDER is called to reorder the
predicate ('PRED') and arguments as specified in its parameters. Any
peripheral arguments are placed after the last central argument, to be
reordered. by transformations if necessary. The central arguments are
marked (e.g. by insertion of prepositions) using the _specifications
given in the dictionary entry for the particular TL verb (note that
this requires lexical transfer to have been performed on the predicate
and its arguments before ORO is invoked),

In addition to the functions just listed, TRANSF may incorporate any
of the add or copy functions used in CONSTR, together with the
standard functions AND, OR, COND, NOT and the TEST function INT, and
may invoke transformation rules in the usual way via the function XM,
The following is an example of a complex TRANSF section, associlated
with) the German analysis rule corresponding to NP --> DET RO (see
over): :

E - 21

TRANSF (XFR 2)
(CPY 2 MC)
(COND ((AND (INT 2 DR NP) (NOT (INT 2 DR RD)})
(XFM (NP:1 (DET:2 NO:3)) (NP:1 (NO:3))))
(T (ADP 2 ON) (SEF 1 ON) (SEV 1 KD DET)
(XLX 1 (ON NU)}}))

6.2 Llexical transfer

Lexical transfer is effected in the following stages:

1) The bilingual transfer dictionary is accessed with the SL canonical
form, to identify the corresponding TL canonical form. Entries are
essentially equations in LISP format; the following example, from the
German-English dictionary, illustrates the basic form of an entry:

(give {geben) VST (CAT VST))

i.e. the canonical form 'geben', marked for the feature CAT with value
V3T, ¢translates as the canonical form 'give', also a VST. Where
multiple translations are possible, further conditions may be imposed
on the feature-values of the SL form to ensure that the .correct
selection is made, e.g.

(be-lost {gehen)} VST (CAT VST)} (PX VERLOREN)}
{go (gehen) VST (CAT VST) (PX NIL) (PF FIN INF PAPL))
(outgo (gehen) VST (CAT VST) (PX NIL) (PF PRPL))

i.e. 'gehen' translates as ‘be-lost' if it is marked for the feature
PX ('prefix') with value VERLOREN; if PX has the value 'NIL', then
'gehen' translates as 'go' if its PF ('paradigmatic form'} feature
includes at least one of the values FIN ('finite'), INF ('infinitive')
or PAPL ('past participle'); or as 'outgo' if PF has the wvalue PRPL
('present participle’'). _

2} The TL canonical form is then used to access the TL monolingual
dictionary, which provides the appropriate allomorph. Where a single
TL canonical form has more than one allomorph, the second argument of
the function XLX/TLX in TRANSPF is used. to select the correct entry.
For example, the lexical ¢transfer cof a verb is initiated Dby the
function:

(TLX (PF NU TN PS) (V-FLEX CL PF NU TN PS)).
which is invoked from the named transformation VB.

The second argument indicates that the features PF ('paradigmatic
form'}, NU ('number'), TN {('tense') and PS ('person'), as specified
for the TL allomorph in its dictionary entry, must have wvalues which
agree with the corresponding values marked on the SL verb.

3} If the TL word is inflected, this is indicated by the third
argument of the function XLX/TLX. Since inflectional endings are not
canonically transferred, and since the TL lexicon is accessed via CAN
values, the TL 1lexicon includes special entries for inflectional
endings, in which the canonical form is the same as the Iinflection
category. An example English entry should clarify this (see over):

E - 22

{V-FLEX CAT (V-FLEX)

AIO (-es)
SNS (61)

CL (PR-ES2)
PS (3)

NU (SG)

TN {PR)

MD (IND)

PR (FIN)

)

The inflection category stated as the first element of the third
argument of XLX/TLX accesses all those entries with 2 corresponding
CAN wvalue. The remaining elements of the argument are used to select
the entry for the appropriate allomorph. In the example TLX expression
for verbs given above, the third argument specifies that the allomorph
of V-FLEX must agree with the values of CL, PF, NU, TN and PS marked
on the verb stem.

4) Once the appropriate allomorph of the TL stem has been selected as

in (2), the inflectional allomorph (where applicable) is added to it

and the whole string, with its associated lexical information.from the
TL dictionary, 1is substituted for the SL node upon which 1lexical
transfer was called. Note that there are no facilities for performing
transductions on character strings, so phonological phenomena like
elision and contraction must be realised by using phonological
features on nodes to select differing allomorphs.

If there are multiple translations, as a result of unresolved lexical
ambiguities, these are all marked on the same neode, Ttut are separated
by slashes.

7. Generation

When all leaves of the tree have been assigned TL stem allomorphs with
their appropriate inflectional allomorphs, the tree 1is passed to
GENERATE, which performs a traversal, visiting all the leaves, and
appending each of the associated character strings to the end of the
global variable TRANSLATION.

8. Evaluation of METAL

The fact that the METAL grammars apd system functions are directly
interpreted/applied by the LISP interpreter is advantageous in two
ways. First, new rules may be added without the need for compilation,
and secondly, the full power of LISP is potentlally available for use
.as necessary.

The use of a basically context-free grammar has several advantages, in.

terms of ease of grammar writing, perspicuity (at least of the surface
grammar) and efficiency of parsing, the latter being exploited to the
maximum in METAL. The current number of rules is 400, and METAL's
designers estimate that a total of 1000 rules will be adequate for all
sentence formg in all languages.

The close strategic link which exists between the rules of analysis
and ‘'transfer' must detract from the independence of the two stages;
and even though the system has a claim to multiiinguality, this would
necessitate several changes to the syntax of grammatical data, e.g.

O D22

for case-frames, where the data for the two phases is closely linked.

The fact that 1lexical transfer (including structural changes
conditioned by lexical items) and structural transfer are inextricably
linked, and that the order in which transfer must be effected 1is .
conditioned largely by the order in which analysis rules were applied,
must give rise to difficulties in writing, debugging and extending
transfer grammars, by reducing the modularity of individual rules
within the transfer phase, This compounds the problems arising from
the interdependence of the two phases.

In contrast to the interdependence of analysis and transfer, which
from a theoretical point of view might be better separated, the
processes of string segmentation with dictionary 1looxup (USER-WORD)
and the determination of morpholeogical coherence (PARSE) are
independent, although they might be more profitably interwoven.

Despite these reservations, the facilities provided for the treatment
of case-like phenomena, particularly the hierarchical structuring of
features and the explicit devices for case-frame representation, are .
extremely wuseful. Other aspects of the system which appear to be of.
particular value include the use of the PRF feature for
disambiguation between competing analyses, and the capability of
continuing with translation despite a failure to derive a sentential
analysis. The documentation does not mention the theory underlying the
assignment of PRF values to rules, although it appears to Dbe
reasonably effective (see below).

9.8o0ftware environment, implementation, results

METAL is embedded within a software environment that . provides
the following facilities:

- rule handlers dedicated to the treatment {(creation, editing etec.)
of each type of grammatical data, i.e. dictionaries, context-free
rules, transformations and case~-frames; of particular interest is
the 'lexical default' program which automatically generates
dictionary entries from a minimum of specified information

- the choice of applying linguistic¢ data in source or compiled
form, depending on whether grammars are being developed, or
being applied in an operational context, respectively

- a suite of text-processing programs which, with a minimum of
human intervention, format the text, dividing it into sentences
and excluding material which should not be translated; this is
particularly significant in the texts that are submitted to -
METAL, which often contain flowcharted information such that a
single 'sentence! must be read vertically rather than .
horizontally])

-~ facilities for human revision and reformatting the text; in those
cases where METAL has failed to achieve even a phrasal analysis,
the post-editor has access to translations of the technical terms
in the text.)

E - 24

METAL was originally implemented in INTERLISP on a DEC 2060, and was
found to translate at a speed of about 2 c.p.u. seconds per word, of
which about 45% was accounted for by storage managemer.t. In terms of
real-time, this amounted to about 3.7 seconds per word. Transferred to
a Symbolics LM-2 LISP Machine, translation time increased to 10-12
seconds per word, but it is envisaged that substantizl reductions in
this figure will occur when the memory of the LM-2 is increased from
256k to 512k

Tested on a corpus of 1103 sentences in 1980, METAL gave the following
results for translation quality (discounting & sentences with major
source errors):

Analysed sentences 90.0 %
- excellent translation 83.7 %
- inadequate " 6.2 %
Unanalysed sentences 10.0 %
- excellent phrasal 2.9 %
- inadequate " 5.4 %
- no translation 1.7 %

E - 25

10. Documentatiocon

Bennett, W.S. (1982) 'The linguistic component of METAL', Working
Paper LRC-82-2, LRC, University of Texas, Austin.

Lehmann, W.P., Bennett, W.S., Slocum, J., Smith, H., Pfluger, S.M.V.
and Eveland, S.A. (1980) 'The METAL system', Final Technical
Report, RADC/TR-80-374, vol. 1 & 2.

Slocum, J. (1981) 'The METAL parsing system', Working Paper LRC-81-2,
LRC, University of Texas, Austin.

Slocum, J. (1982) 'A status report on the LRC Machine Translation
System', Working Paper LRC-82-3, LRC, University of Texas,
Austin.

Slocum, J. and Bennett, $.(1982) 'The LRC Machine Translation

System', Working Paper LRC-82-1, LRC, University of Texas,
Austin.

E - 26

Appendix F: Wilks' PS System

Table of contents

0. Introduction
1. Basic nature of system
2. Dictionary entries
2.1 Elements
2.1.1 Nouns
2.1.2 Verbs
2.1.3 Qualifiers
2.1.4 Cases
2.1.5 Modals
2.1.6 Miscellaneous elements
2.2 Formulae
2.3 Example formulae
2.3.1 Nouns
2.3.2 Verbs
3. Fragmentation
3.1 Relatives
3.2 Conjunctions and scope
3.3 Clausal objects
4., Bare template matching
4.1 Inventory of bare templates
4.2 Template rankings -
5. Template extension
5.1 Type A extension
5.2 Type B extension

5.3 Examples and discussion

O v 0 ~N 9 3 O N E R WD -

i e
S -

6. Generation
6.1 Simple stereotypes
6.2 More complex stereotypes
6.3 Control of generation
6.4 Paraplates
7. Anaphora resolution
7.1 Basic mode resclution
7.2 Extended mode resolution
7.2.1 Extractions
7.2.2 Common-sense inference rules
7.2.3 Inferencing
8. Evaluation of PS
9. Software and hardware details
10. Final comments

11. References

14
14
14
15
16
18
18
18
18
19
20
20
22
22

23

WILKS' PS SYSTEM

0. Introduction

The Preference Semantics (PS) system for treatment of natural language.
texts was conceived, designed and (partially) implerented by Yorick
Wilks at Stanford Artificial Intelligence Laboratcry and Systems
Development Corporation in the late 60's and early 70's. It differs
significantly from other systems described in this report, both in its
origins and its aims. Wilks background is philosophy, and his aim is
to explore in detail certain aspects of language which are not treated
(or at least not stressed) within the mainstream of generative
linguistics., The system can thus be located within the AI research
paradigm, in that much emphasis 1is placed on semantics; the
translation of texts from English to PFrench that it effects
constitutes a testhbed for the system's facilities, rather than the
raison d'etre for the system. 1In no sense, therefore, is PS intended
as an operational MT system.

However, this 1is not to deny that PS embodies ideas of relevance 1to
the design of operational MT systems. Criticisms that are made in this
report thus serve the purpose of highlighting those aspects of PS
which would not be appropriate in an operational system. -

The notion of preference embodies the theoretical position that
utterances are more or less acceptable in a particular context, rather
than ‘'grammatical' (or otherwise), and therefore that ambiguity
resolution (hence, a fortiori, understanding) is a matter of
preferring one reading of an utterance to another. The notion appears
in various forms throughout the system.

1., Basic nature of system

Wilks refers to the structure that the system assigns to a text as an
'interlingua', on the basis that 'it contains sufficient information
to admit of the formal manipulations, adequate for producing
translations 1in natural or formal languages'. He Justifies the fact
that not all information which would be necessary for translation 1s
explicit in this structure by stating that such information 'cannot be
well~defined with respect to any coding scheme'. Although his
Jjustification is correct, his use of 'interlingua' is misleading. What
is usually meant by the term in the context of MT is a particular form
of system organisation. That is, the result of an analysis 1is an
interlingua if it 1is not subject to processing wusing language-pair
specifio information.

In PS, at the point at which TL specific information is first used,
the text has not been assigned an unambiguous representation, even in:
‘terms of the SL. The final stages of disambiguation are driven by
procedures associated with TL lexemes, which in turn are accessed via
the SL lexemes. The structure built using monolingual, SL information
is ‘'adequate for producing translations' only in the sense that it
contains procedures to effect disambiguation and TL text generation.

The result of analysis, a semantic block, is a linear sequence of text
fragments (usually sub-sentential), fo each of which has been assigned
one (or more) of a finite inventory of basic message forms, called
bare templates, which are triples of the form: '

actor - action - object

Restrictions imposed by a particular class of action on the associated
classes of actor and object are specified as the invzntory of Dbare .
templates. These are the first means whereby Isambiguation is

effected in the system. A bare template corresponds Lo the notion of
the 'gist' of an utterance, e.g. 'some human possesces some physical _
object', 'some human experiences some internal state'.

Each role in a bare template is either filled by one of the words in
the fragment or by a dummy item. Each word in the frzgment which does
not fill a role in the bare template is incorporated intoe a full
template as a dependent of one of the words which does. This template
extension effects further disambiguation.

There 1s no morphological analysis phase, each word fcrm being entered
directly in the dictionary. The latter associates with each word a
formula and a list of stereotypes. The formula is a representation of
an English word sense as a tree of semantic primitives. Stereotypes
are the procedures which are used to determine the case-like
relationships (ties) between fragments and to generate the French
output.

Some anaphors may be resolved at the same time as ties are determined.
If unresolved ones remain after this, the system enters extended mode,”
which uses rules expressing plausible inferences for resclution.

Thus the system comprises the following phases:
1) Pragmentation {subsuming dictionary look-up)
2) Bare template matching

3) Template extension

4) Determination of ties

5) Extended mode

6) Generation

Phases 4,5 and 6 are, as mentioned above, interleaved.

2. Dictionary entries

A dictionary entry comprises a formula and a list of stereotypes. The

latter are discussed in section 6. Formulae are constructed from an

inventory of semantic primitives called elements. The elements are no

more than an empirically useful subset of natural language words and-
~are therefore ambiguous in isolation. Within a formula they will be

structured so as to give an unambiguous representation of a word.
sense. This approach is convineingly justified by Wilks .-

'Except in those special cases when people do actually draw attention
to the external world in c¢onnection with a written or spoken
statement, 'meaning' is always other words, and talk about 'the senses
of words’' is only a disguised restatement of that fact.'

2.1 Elements

There are about 70 elements, the precise number varying in different
versions of the system, For explanation, they may be grouped into

F-2

several classes. The rightmost element in each formula, the head, will
be a member of the class which corresponds to *“he t¥aditional
syntactic category ({(noun, verb, adjective or adverb) ol the word-sense
indicated by that formula. In the rest of a formuls, though, the
meaning of an element does not necessarily correspond to 1its class, .
e.g. a nominal element may be used adjectivally.

In addition, there are classes which do not correspond to categories.
The elements in these may not be the heads of formulae. One such class
is that which comprises the case elements - these are used within
formulae to indicate expected arguments. A miscellaneous class 1is
provided for other elements which also occur only within formulae.

*_classes, designated *<mnemonic>», are used in various places in the
system as a shorthand for a set of elements.

2.1.1 Nouns

Certain *-classes are of particular importance in categorisation ¢
nominal elements, since they are used in the rules which define the
repertoire of bare templates (see 4.1). The relevant cztegorisation is
as follows: .

*AN (animate) = MAN human being
- FOLK human group
- BEAST animal
- GRAIN structure or organisation
*P0 (potent) - ACT acts
- STATE states of existence
- THING physical object
- STUFF substances
- PART parts of things
- THIS a particular instance
- *AN
*EN (entities) - SPREAT) spatial extension
- *PO, excluding ACT, STATE
*30 (soft) - STUFF
- WHOLE
- PART
- GRAIN
- SPREAD
*MA (mark, i.e. that can designate items that themselves designate)
- ACT
- STATE
- SIGN
#*AL (all) - *EN
— *MA

DTHIS 1is a pseudo-element which is used to fill an otherwise empty
agent or object role in a bare template, 1i.e. it acts as the dummy
nominal. It is treated as a member of *PO.

2.1.2 Verbs

Elements denoting actions, i.e. verbs, are the heads of formulae which
will fill the middle (action) role in a bare template. They are:

BE equality or existence PAIR

WRAP enclose PLEASE

HAVE possess MOVE intransitive only
TELL inform with words DO

CAUSE CHANGE

SENSE physically, e.g. "touch"” WANT

USE DRCOP give up

FORCE compel GIVE any ditransitive
PICK choose MAKE

FEEL experience internally THINK

FLOW move a8 a fluid

The criteria for assigning one of these elements as the head of a
verbal word-sense are primarily semantic, though in certain cases
these are over-ridden by syntactic considerations. For instance,
"tell" is assigned the head GIVE, as it may feature in a ditransitive
construction 1like "John tells me a story". The remainder. of the
formula for "tell" is constructed so as to capture the 'real' meaning~
of the word. The element TELL is assigned as the head of the formula
for verbs like "say".

DBE will fill the action role in the template assigned to a fragment
without a finite verb, i.e. it 1s the dummy verb.

The elements PDO and PBE occur as the héads of formulae for
prepositions, which f1l11 the action roles in the templates assigned to
prepositional phrases, (with DTHIS as the agent).

2.1.3 Qualifiers

KIND - this element is the head of any noun qualifier, 1i.e.
adjectival word-sense formula

HOW « this element is the head of any verd qualifier 1.e.
adverbial word-sense formula

2.1.4 Cases

These elements do not occur as heads, but are used within formulae to
indicate the various arguments that are expected, either directly, in
the formula for a verbal word-sense, or in a verbal sub-formulae in a
nou? formula which expresses typical actions of the head as actor (see
2.2): -

SUBJ subject

OBJE object

TO direction | subsumed under
FROM " 1 *DIRE

SQUR source

GOAL purpose

FOR recipient

LocaA spatial or temporal location
IN containment ‘
POSS possessed by

INST instrumental

WITH ’ accompaniment

F-4

The same set of cases also serves the function of latelling the ties
(i{.e.case relations) between fragments.

2.1.5 Modals

It 1is not apparent what element auxiliaries have as their heads
(HOW ?), Dbut where necessary, modality may be incorpocrated into any
formula by means of the elements CAN, MAY, MUST, WILL, LET.

2.1.6 Miscellaneous elements

This c¢lass comprises elements which are provided to enable various
aspects of meaning to be captured, and which may n2t be wused as
formula heads. Included are GOOD (morally acceptable), TRUE (valid or
correct), COUNT (numerical), LINE, MORE, MUCH, WHERE, “HFN, SAME, SELF
(co-referential with the actor in the formula).

2.2 Formulae

A formula is a binarily bracketed string of formulae, elements or
elements preceded by NOT. A formula is well-formed if:

i} it has a legal element as its head (a nominal, verbal or -
qualifier element),

ii) the left-hand member of each bracketed pair of formula can
be interpreted as a dependent on the right hand member, and

iii}) each bracketed pair can be interpreted as being one of the
fellowing types:

. Adverbial e.g. (DO HOW) = manner in which
. Prepositional e.g. {MAN SUBJ) = human is preferred agent
Adjectival e.g. (NOTCHANGE KIND) = "fixed"

. Nominal e.g. (SENSE SIGN) = some abstract sensory property

L B R T "

. Verbal e.g. (DONE HAVE) = "had” (past of "have")
6. Sentential e.g. (THING USE) = "apply"

Only certain elements may occur as immediate constituents of each
bracket type. Certain bracket types may be nested within others
consistent with the notion of dependency, e.g. the left hand side of a
prepesitional pair may itself be a nominal pair. In this way, formulae
may be buillt up to an arbitrary depth in order to provide an-
unambiguous representation of the sense of a word.

2.3 Example formulae

2.3.1 Nouns

"policeman":
({ FOLK SOUR } ({((NOTGOOD MAN) OBJE) PICK) (SUBJ MAN)}))

[Gloss: a "policeman" is a human (MAN), the typical subject of the
action of selecting (PICK) bad (NOTGOOD) persons (MAN) from (SOUR) the
body of people (FOLK)]

"erook"
{({{ NOTGOOD ACT) COBJE) DO } ((SUBJ MAN })

[Gloss: a "crook" is a human (MAN), the typical subJect of the action
of doing {(D0O) bad (NOTGOOD) acts (ACT)])

"erook":
({(((((THIS BEAST)} OBJE) FORCE) (SUBJ MAN)) POSS) (LINE THING))

[Gloss: a "crook" is a long straight object (LINE THI!G) posessed by a
man (MAN) who controls (FORCE) a particular kind of animal (THIS
BEAST)]

2.3.2 Verbs

"interrogate":
((MAN SUBJ) ({(MAN OBJE) (TELL FORCE }))

[Gloss: "interrogate" is an action in which typically a man (MAN SUBJ)

compels (FORCE) another man (MAN OBJE) to speak (TELL)]

l!srasp“ : .

((*AN SUBJ) ({ *PHYSOB OBJE } (({ THIS (MAN PA=T)} INST)
' (TOUCH SENSE })))

[Gloss: T"grasp" 1is an action in which an animate subject (*AN SUBJ)
makes physical contact (TOUCH SENSE) with a physical object (*PHYSOP
OBJE) by means of (INST) a particular part of the subjiect (THIS (MAN
PART), i.e. the hand]

"gfasp": .
{({ MAN SUBJ)} ({ SIGN OBJE) {(TRUE THINK }))

[Gloss: "grasp" ig an action in which a human (MAN SUBJ) realises the
validity (TRUE THINK) of an idea (SIGN OBJE)]

'drink":
({ *AN SUBJ) (({ FLOW STUFF) OBJE) ((SELF IN)
{(((WRAP THING) FROM)} (({ *AN (THRU PART)} TO) { MOVE CAUSE))))}

[Gloss: "drink" is an action in which an animate subject (*AN SUBJ)
causes a liquid (FLOW STUFF) to move from a container {WRAP THING) ¢to
an aperture (THRU PART) of the specified animate entity, with the
result that the liquid is in it (SELF IN).]

Note the use of the conventional pairs to représent such concepts as
"liquid", ‘"aperture" {in this case, the mouth) and "container".

The sub~formula type closed by each right bracket in the formula for
"drink" is as follows: -

P h 2242402566666

3. Fragmentation

The first phase of processing is the fragmentation of a text into
elementary sentences, complex noun phrases, and clauses introduced by
marker words, with obliteration of the original sentence boundaries.
The fragmentation function PARA has access to four lists of marker
words, 1i.e. prepositions, subjunctions, conjunctions and punctuation,

P.- 6

with which fragments may start. PARA may also access the dictionary
and refer to the heads of formulae for the words of trhe text, which
information it uses to define the endings of fragments.

Wilks consistently stresses the minimal importance of the .
fragmentation process, claiming that it would be possible to reassign

fragment boundaries 1f the results of subsequent analysis were

unacceptable, or that fragmentation c¢ould be dispensed with

altogether. However, it is clear that it performs tasks of linguistic

interest, by means which are not always apparent, and whose general

applicability 1is not always obvious. Amongst these, we may clte the

following:

2.1 Relatives

Relative clauses are located and isolated as separate Iragments, e.g.:
"the dog that bit the man has been shot”
becomes:
(THE DOG HAS BEEN SHOT)(THAT BIT THE MAX).
Relatives without explicit relative pronouns, e.g.:
"the man the dog bit is ill"™

are presumably treated by recognising adjacent noun phrases, though
this 1s not stated.

It is not clear what action is taken in those cases where isclation of
a relative as described would introduce an ambiguity, e.g.:

"the dog that killed the rat chased the cat"
(THE DOG CHASED THE CAT) (THAT XILLED THE RAT).

Fragmentation is able to distinguish between the use of "that" as
relative pronoun and as demonstrative, so that, e.g.:

"T like that wine"

is not fragmented. Nco mention is made of how an ambiguous use of
"that", e.g.: .

"I believe that man is foolish"
would be treated.

3.2 Conjunctions and scope

Conjunctions are not treated in a consistent manner. For instance:

"Britain's transport system and with it the travelling public's habits
are changing"

becomes:

{BRITAINS TRANSPORT SYSTEM ARE CHANGING) (AND)
(WITE IT THE TRAVELLING PUBLICS HABITS),

F-T7

whilst:

"President and Congress are elected separatély"

is not fragmented. The reason for the latter is given zs the necessity _
of locating the triple:

(CONGRESS ARE ELECTED)

during subsequent processing, but the same consideration could equally
apply to:

(HABITS ARE CHANGING).

There is a function REORDER, which follows PARA and has the task of
delimiting OF phrases by marking their ends with FO. This is done in
order to exclude them from consideration by the bare template matching
routines. The marked phrases are then moved in front of the nouns they
qualify. Adverbs and infinitives are also moved before the verbs they
qualify, so that the template extension routines need only lock to the
left of each word in order to find dependents of these types.

The means by which REORDER determines scope of 'of! constructions, and -
how this interacts with the scope of conjunctions is very unclear. For
instance:

"The pattern of commuter movement and dormitory area congestion could
be changed®

becomes:

(THE OF COMMUTER MOVEMENT AND DORMITORY AREA CONGESTION FO PATTERN
COULD BE CHANGED).

This is almost certainly the correct reading, but the motivation for
choosing this rather than, e.g.:

(THE OF COMMUTER.MOVEMENT FO PATTERN AND DORMITORY AREA CONGESTION
COULD BE CHANGED)

L

is not sapecified.

3.3 Clausal objects

Certain cases where the normal fragmentation procedure would give
unacceptable results are recognised, e.g.:

"I want him to go", -

if partitioned between "him" and "to", would give the semantically .
spurious fragment: :

(I WANT HIM).

Therefore, an occurrence of a verb like '"want" initiates special
action to produce a fragmentation of the form: g

(I WANT) (HIM TO GO).

Verbs which take participial clauses as objects also cause the
inserticn of a fragment boundary immediately following, so that the

F-8

fragmentation has the same form as for infinitival c¢lause objects.
Thus, Just as:

"John likes to eat fish" becomes:
(JOHN LIKES) (TO EAT FISH)
by the normal fragmentation procedure, so:
"John likes eating fish" becomes:
(JOHN LIKES) (EATING FTSH).

Presumably, subsequent processing will recognise and treat the
participial/adjectival ambiguity in such cases as:

"John likes eating apples™.

4, Bare template matching

"Each sentence fragment is passed to the PICKUP routines, which attempt
to match bare templates onto the heads of the formulae for the words
in the fragment. Each sequence of three heads (not necessarily
contiguous) is compared with the inventory of bare templates as given
below. The only exceptions to this exhaustive matching process are:

i) the heads of those formulae delimited by OF and FO are not
considered

ii) conjoined <formulae may not fill two roles 1in the same
template, e.g. in "president and congress are elected”,
"president" and "congress" will not be considered as actor and
object respectively within any given template.

4.1 Inventory of bare templates

The inventory of bare templates 1is empirically rather than
theoretically motivated, and is realised by the substitution of all
members of the appropriate *-class into the following:

*Al, BE *AL, - where the two occurrences of *AL must be the same
*A1, PAIR *BEN *AI, WRAP *EN
*AI, PLEASE #AN *EN HAVE *EN
*EN MOVE DTHIS *PO TELL *MA
*PO DO *EN *PO CAUSE *EN
*PO CHANGE *EN *PO SENSE *EN
*PO WANT *EN *PO USE *EN
*PQO DROP *EN *PO FORCE *EN
*PO GIVE *EN *PQ PICK *EN
*PO MAKE *EN . *AN TFEEL *MA
*AN THINK *MA ' #30 FLOW DTHIS

Two possible types of word-sense ambiguity may be resolved during this
stage. The first of these is noun-verb homography, e.g. "father"
meaning 'male parent' or 'to cause to have life'. Thus two alternative
strings of formulae heads may be considered for a sentence such as:

small men father small sons

KIND MAN MAN KIND MAN
KIND MAN CAUSE KIND MAN

F=-=9

Bare template matching will eliminate the first of these, since no
sequence of three heads is derivable from the inveritory, but the
second reading, based on MAN CAUSE MAN, is retained, HAN being a

member of both the c¢lasses *P0O and *EN.

The second type of ambiguity resolved includes certain cases of noun-
noun polysemy, since a given verb imposes restrictions on the semantic
classes of nouns with which it may occur. For example, "sport" may
mean 'an organised activity' or 'a certain type of man', giving two
readings for:

my brother 1s a good sport
THIS MAN BE KIND MAN
THIS MAN BE KIND GRAIN

The template associated with BE specifies that the formulae filling
the actor and object roles of the triple must have the same head, so
that it will be unable to match onte the second (MAN BE GRAIN)
reading, and only the 'type of man' reading for '"sport" will remain.
Whether a given instance of noun-noun homography will be resolved at
this stage depends upon the verdb involved. For example, given the two
senses of "ecrook", i.e. 'criminal' and ‘*'shepherd's staff', there will
be two readings for the sentence:

the policeman interrogated the crook
MAN FORCE MAN
MAN FORCE THING

However, both MAN and THING occur in *EN, the class of legal objects
of FORCE, so these two senses will not be resolved at this stage.

The bare templates are the only well-formedness rules in the system,
i.e. the only ones specifylng absolute restrictions on co-occurrence.
The restrictions are very weak, being stated in terms of formulae
heads only. This ensures that even fairly 'deviant' utterances will be
assigned some sort of 'meaning’, and provides the raw material for the
application of preference considerations in the next phase (see 5.).

4.2 Template rankings .

A fragment does not necessarily feature the actor-act-object roles 1in
this c¢anonical order, nor need each role be present. Therefore,
various non-standard and debilitated forms of templates are also
considered during the matching process. These forms are ordered 1into
four ranks, so that the forms in one rank are considered only if there
was no match with a form in the previous rank. When a match with a
non-standard form is found, the equivalent standard form is assigned

as the actual template of the fragment. The ranks are as follows: .

Rank ‘text=-items! standard form
1 N1+V+N2 N1+V+N2

V+N1+N2 N1+V+N2
N1+N2+V N1+V+N2
N1+V N1+V+DTHIS
V+N1 DTHIS+V+N1 -
N1+V+KIND N1+V+KIND
KIND+N1 N1+DBE+KIND

F -~ 10

2 N1+KIND+V N1+V+KIND

V+N1+KIND N1+V+KIND
N1+KIND N1+DBE+KIi\D
N1+N2 N1+DBE+l2

3 V+XIND DTHIS+V+KIN
v DTHIS+V+DTHIS
N1l DTHIS+DBE+NN1
KIND DTHIS+DBE+KIND

Thus a role which is missing in the fragment is filled in the standard
template by the dummy verb DBE or the dummy noun DTHIS as appropriate.

The reasons for various patterns of text-items can be illustrated by
considering some typical results of fragmentation, e.g.:

(JOHN IS) (IN THE HOUSE)
N1l v v N1l

(THE MAN) (IN THE CORNER } (LEFT)}
N1l v Nl \'

(THE OLD COMMA) (FRAIL MAN)
KIND KIND N1

5. Template extension

It is in this phase that the notion of preference is first invoked in
order to effect more extensive disambiguation. What distinguishes the
preference approach from other treatments of ambiguity 1is its active
nature., Wilks 1s committed to the view that it 1is impossible to
develop a single set of well-formedness constraints that would be
both: :

i} strong enough to eliminate all but one analysis of a text
fragment that is ambiguous except in a global context, and

ii) weak enough to provide an analysis for a fragment that is
grammatically 'deviant' in some sense, but whose meaning 1is
'obvicus’.

During template extension, a score is computed which indicates the
degree to which preferences are satisfied, and then an active choice
is made between competing analyses on the basis of this score. Thus
'grammaticality' 1s viewed as a scale of acceptibility in context,
rather than an ‘'all-or-nothing' phenomenom.

In this way, "my car drinks petrol” would be accepted, since there is
no animate entity present to fulfil the preference of "drink" for such
2 subject. '

The EXTEND routine seeks to set up dependencies between the formulae
assoclated with a fragment, adding one to the score for a particular
reading of the fragment for each dependency compatitble with the bare
template corresponding te that reading. The dependencies are of two
types, i.e. dependencies hetween the formulae associated with the bare
template (type A) and dependencies of the other formulae on those of
the bare template (type B).

5.1 type A extension

The formulae for verbal word-senses indicate the preferred
characteristics of their assocliated agents and obJjects as
prepositional (type 2) sub-formulae (see 2.2). Thus, of the two.
interpretations of:

"the policeman interrogated the crook" (see 4.1),

MAN FORCE MAN will be preferred (its score will be higher), since the
formula for "interrogate" has the sub-formula (MAN OBJE).

5.2 type B extension

The permissible forms of dependencies of other formulae on the noun
and verb formulae of the bare template are expressed as a series of
context-free rewrite rules thus:
X =->xy or X => ¥ X

where y is a permissible dependent on an item of type x. The ordering.
of the ditems on the rhs is important. The full 1list is as . follows
(items are given in terms of conventional syntactic categories, though™
it should be remembered that e.g. ADJECTIVE actually means a formula
with the head KIND).

NOUN -> ADJECTIVE NOUN (e.g. "red book")

VERB ~> ADVERRBR VERB (e.g. "opened slowly", after REORDERing})

NOUN -> ARTICLE NOUN (e.g. "the book")}

NOUN -> OF NOUN FO NOUN (e.g. "the house of my father", after
REORDERing)

ADJECTIVE -> ADVERB ADJECTIVE (e.g. "very much")
VERB -> VERB PARTICLE (e.g. "give up")

GIVE ~-> GIVE NOUN (where GIVE is the head of a ditranéitive
verb, e.g. "tell him")

VERB -> AUXILIARY VERB (e.g. "was going")

VERB -> "to" VERB (e.g. "to relax")
When a tense auxiliary is accepted, 1its meaning is incorporated as a
tense marker (PRES, IMPE, PAST or FUTU) into the formula of the main~

verb, and does not contribute to the score.

5.3 Examples and discussion

The rule for extending ditransitive verbs is best illustrated by
example. Bare template matching will result in the alternative
assignment of the roles in the *PO GIVE *EN template, thus:

John gave Mary the book
MAN GIVE MAN
MAN GIVE THING

No rule applies to extend the first of these, but a GIVE type verb may

F - 12

be extended by a NOUN type Tormula immediately to the right which is
not already incorporated in the bare template. Tre second bare
template also permits the incorporation of "the” into z full template,
giving the dependency structure:

John <-> gave <-> book
b 1
|

M;ry the

Each of the '|' dependencies contributes one point to the score, so
the second (MAN GIVE THING) reading has a score of two, and is thus
chosen in preference to the first reading, with a score of zero.

Another example may serve to illustrate some problems cf this approach
to disambiguation. The fragment "the old transport system" will be
immediately recognised by the human reader as a noun phrase. Bare
template matching will have assigned the three alternatives:

the old transport system
FOLK DO GRAIN

KIND GRAIN

KIND GRAIN

The first reading takes "old" as & noun, as in "the old are often
poor"™, and "transport" as an active verb, as in "planes transport
people". The Jlatter two readings will be converted to standard form
{see 4.2) by incorporation of the dummy verb DBE, giving in both cases
the template GRAIN DBE KIND, and corresponding to the readings "system
is o0ld" and "system is transpert" respectively. Leaving aside
consideration of "the", the only one of the three terplates that may
be extended is the second, by the rule which incorporates an adjective
to the left of a noun. This corresponds to the intuitively correct
reading, i.e. "the transport system is cld".

Notice that this reading has been preferred largely because the bare
template was packed with a dummy symbol, thus leaving more words to be
considered by template extension, thereby contributing to the score
for the reading. But the number of dummies that may be incorporated
into a bare ,template is strictly limited by the ranking of templates
given in section 4.2, for which there appears to be little theoretical
meotivation., It is far from obvious that this sort of approach is geoing
to contribute to the assignment of correct interpretations to
fragments in all cases. For instance, consider a fragment such as "the
poor burnt charcocal", which will probably be treated as a complex noun
phrase, but which 1is more likely to be a complete sentence. The
obliteration of sentence boundaries by fragmentation will seriously
hinder resolution of what is a simple syntactic problem.

In addition, it is unclear whether the internal structure of complex
noun phrases can be correctly assigned by such means., For instance,
consider the fragment: _

"wooden toy manufacturers"”
KIND THING MAN

This will be assigned the two alternative readings of the -rank 1
template KIND + N1, i.e. "toy be wooden", "manufacturers be wooden".
The former 1is a correct reading as far as it goes, ©but’ does not
include the nucleus of the noun phrase, and is therefore an inadequate
parse. It is difficult to see how this could be parsed successfully
within the present PS framework.

F <13

In early documentation, an extra disambiguation routine is described.
This 1s called when two readings for a given fragmert have the same
score, and attempts to establish additional ‘'semantiec overlap',
between actor and object formulae. The example given Is the resolution
- of the ambiguity in:

"the man lost his leg",

where "leg" could be read as a part of the body of a man, or as the
support of an inanimate object. The (MAN PART) sub-formula which
appears in the formula for the former sense has the requisite overlap
with the formula of the actor role, and thus it is this reading which
is chosen.

Although this sort of consideration would appear to be have great
potential, the routine is not mentioned in later system descriptions.
It may have been too difficult to formulate such criteria as to make
them generally applicable (but see the use of 'semantic overlap'
predicates such as PRMKOB and 20BCAS in section 6.4)

6. Generation

Determination of the case relations between fragments, which
constitutes the final stage of disambiguation (in the basic mode of
the system) is effected during the generation of the French output. In
order not to mislead the reader over the interdependence of analysis
and generation, we choose to describe the operation of the generation
routines first.

6.1 Simple stereotypes

In the above description of the system's operation, we have ' talked
about disambiguation between word-senses represented as formulae,
However, as mentioned in section 1, the dictionary associates a list
of stereotypes to each formula., Therefore, in selecting a particular
formula, its associated stereotypes have also been selected. In the
simplest case, there will be a single stereotype which will provide a
unique translation equivalent for the word-sense. Por example, the
analysis routines will have chosen the correct sense of "red" as
indicated by the following formula-stereotype pairs:

(((WHERE SPREAD) KIND) (RED (ROUGE)}))
((((WORLD CHANGE) WANT) MAN) .(RED (SOCIALISTE)))

Thus the basic stereotype evaluation routine $MAP will simply return
the French equivalent when called with whichever of these sense-pairs
remains in the semantic block.

6.2 More complex stereotypes

In the more general case, there may be more than one French equivalent
for a given English. word-sense. There will then be a 1list of
stereotypes, one for each equivalent, and each (except perhaps the
last) incorporating a function over the context in which the word
occurs. The routine $SELECT takes the list as its value and passes
each stereotype in turn to $MAP for evaluation. The first stereotype
whose function evaluates to a non-NIL value will be concatenated by
$MAP to the end of the text-string generated so far, and no subsequent
stereotypes will then be evaluated.

P - 14

For example, the stereotype for "advise" has the following form:

(ADVISE (CONSEILLER (PREOB A MAN })
(CONSEILLER)}

PREOB is a function which returns its first parameter, a PFrench
preposition (here "i") followed by the translation of the object (by
recursive call) if that object has as its head the second parameter
{here MAN). Thus if the object was "children", as in "I advised my
children", the value of the stereotype would be "conseiller & mes
enfants”. If the sentence was "I advised patience”, PREOB would
evaluate to NIL, s0 the first stereotype would fail. The second would
then be evaluated, giving "conselller”". The higher level generation
function from which ($SELECT ADVISE) was called would then take care
of the generation of "patience", for which no special action would be
needed.

6.3 Control of generation

The top-level control function for generation examines each fragment
in turn. Its action depends on the form of the template assoclated
with the fragment, as follows, where V is any verb except BE, .DBE, PBE
or PDO, *REAL is any noun head or KIND, and *ANY is *REAL or DTHIS:

1. N1 + V + ®ANY simple active sentence
Nl + BE + KIND "

2. DTHIS + V + *ANY action without subject, or infinitive
Nl + DBE + DTHIS subject without action

4, DTHIS + PDO + *REAL prepositional phrase
DTHIS + PBE + *REAL "

Each template type is associated with a (high-level) stereotype. In
the case of a type 1 template, the stereotype is INDCL, which calls
the function CLAUSE-GROUP. The latter merely calls $SELECT for each
word of the fragment in turn.

Notice that in the case of the stereotype for "advise" above (6.1)
PREOB effected the translation of the object by a recursive call to
$SELECT. The generation routines maintain housekeeping information to
indicate what has already bveen translated. In general, the stereotype
for almost any word can take control over the translation of other
words, even those in different fragments, so that the whole process of
generation involves a complex control passing back and forth bhetween
stereotypes.

If the full sentence to be translated was:
"I advised my children to leave'",
then the fragment "to leave" would be translated correctly as ‘'de
partir" by the default stereotype associated with an infinitive (type
2) template, i.e. (DE (INFVP)). However, the sentence:
"I urged my children to leave"

would require the translation "a partir". In this case, the stereotype
for "urge" would take over the generation for the infinitival fragment

P - 1R

thus:
{ URGE (EXHORTER {(DTROB MAN)} { FIND-LINK VP) @ (A (INFVP))))

DIROB will translate "my children” as a direct object. FIND-LINK then.
searches through the text representation for a fragment of type VP.

If this is found, "urge" becomes the mark of the VP fragment, i.e. the

word on which the VP has a dependency. The "urge" stereotype then

halts (indicated by @). When control arrives at this fragment (which

may not be contiguous - "I urged my children, who I love, to leave"),

a check is made to see if the stereotype for its mark, 1i.e. '"urge",

has been halted. If so, then control returns to (A (INFVP)),

generating "& partir", and the actual stereotype for "to leave" will

never be consulted.

Translation of the sentence:
"I drink wine out of a glass" as:
"Je bois du vin dans une verre"
is achieved by a halting stereotype for "drink" thus:

(DRINK (BOIRE (PROBJE { FLOW STUFF)) (FIND-LINK PR) @
(PREOB DANS THING)

where PROBJE is a function which returns the translation of its object
only if its argument is found in the object formula. Since wine is a
liquid, (FLOW STUFF)} occurs, and PROBJE evaluates to "vin". (Concord
routines applied later will take care of generating "du vin"). PFIND~-
LINK searches for a fragment having a prepositional (type 4) template,
and "drink" becomes the mark of this fragment. The subsequent pattern
of control 1is then analogous to that for "urge" above.

Wilks claims that this treatment is necessary because the translation
of "out of" or "from" as "dans" is 'specific to the occurrence of
certain French words, such as "boire", rather than to the application
of certain concepts'. But this would appear to bBe an over-
simplification, given the plausible translations of:
"I drink water out of the well"” as "Je bois de 1'eau du puit”,

and:

"I steal the book from the room" as "Je vole le livre dans la chambre”.

6.4 Paraplates

Usually, the translation of a preposition will not be dictated by the
stereotype for 1its mark, but by paraplates associated with the .
preposition. In general, by the time control arrives at the
prepositional fragment, 1ts mark will not have been determined. It is
the function of a paraplate to locate i% in a previous fragment, to
ascertain the case relationship of the prepositional fragment to the
mark, and to generate the appropriate transliation for the preposition.
Thus a paraplate is merely a stereotype which specifies, 1in &addition
to the generation functions, predicates on the items in the fragment
containing the possible mark, and the case tie to be assigned if these
predicates evaluate to T.

F - 16

For example, the list of paraplates for "with™ i1s as follows:

PRMKOB *ENT) (POSS
PRMARK *DO) (TNST
PRMARK *ENT) (POSS

PREOB A *ENT))
PREOB AVEC THING))
PREOB A *REAL))

.
T T T,
L
L p—

The predicate PRMKOB searches for a mark in the previous two
fragments, examining only those formulae whose heads are in the class
of its argument *ENT, 1i.,e. THING, MAN, FOLK, BEAST, or WORLD. It
returns T only if the formula for the object of the preposition can be
a part of the entity which 1s the candidate mark. The case relation
between the fragments has been resolved as POSS, PREOE then generates
the correct translation ("&" for "with”) for a sentence such as:

"he hit the boy with the wooden leg",

since the formula for "leg" contains the sub-formula (MAN PART). If
PRMKOB fails, as in the case of

"he hit the boy with a stick",

the second paraplate is tried. The predicate PRMARK searches for a
mark with its argument as head (here any verb, indicated by *D0}. If -
it succeeds, and the object of the preposition is a physical object
(PREOB THING), then the case relation is INST, and "avec" is correctly
generated, In the case of failure of both of these, the third
paraplate specifies weaker conditions, that the object of the
preposition 1is in *REAL i.e. any nominal, and assumes the latter is
related by case POSS. This will cope with sentences such as:

"he hit the boy with the blue shirt".

Paraplates may also help to resolve outstanding word-sense ambiguity.
For example, the paraplates for "in" are as follows (the French
equivalents have been omitted for ease of explanation):

((PRMARK (MOVE CAUSE))} (20BCAS INST GOAL) (TO) (PROBJE CONT THING })
({PRMARK *DO) (20BHEAD) (LOCA})
((PRMARK (MOVE CAUSE))} (TO) { PROBJE CONT THING))

20BCAS and 20BHEAD are predicates that compare the formulae which
occupy the object role in the templates assigned to the current
(prepositional) fragment and the mark fragment. 20BCAS is T if they
contain the same subformulae indicated by the arguments - in this
case, the same INSTrument or GOAL. 20BHEAD is T if they have the same
head. The first sterectype would succeed for the "in" of:

"I put the key in the lock",

given the 'door fastener' sense of "lock", since "key" and "lock” both
have a sub-formula indicating their GOAL 1is to close .something.
Therefore the 'canal' reading of "lock", which may still be present in
the text representation at this point, will now be eliminated. The
ambiguity of "table" ('list' or 'flat object') in:

- . "he put the fork in the table"
will be resolved successfully by the second paraplate, as the 'flat

object' reading will have the same head - THING - as the formula for
“fork".

F - 17

Similarly:
"I put the number in the table"

will be resolved correctly, as the 'list’' reading hzs the head SIGN, .
the same as that for "number". The third paraplate 1s a weaker version
of the first, 1i.e without the 20BCAS predicate, which will cope with
more general examples of "in" as the direction case marker.

Note that the ordering of paraplates is crucial, in that the earlier
ones specify stronger conditions, 1i.e. more preferred case relations,
and only if these conditions are not filled are less preferred
relations accepted (i.e. the later paraplates evaluated).

7. Anaphora resolution

T.l Basic mode resclution

The stereotype for a pronoun Iinitiates a search for possible
antecedents in the preceding fragments. Alternative antecedents
represent alternative readings for the fragment containing the
pronoun. This ambiguity may be resolvable from simple preference
considerations such as those described in section 5.1. For example,
given the sentence:

"give the bananas to the monkeys although they are not ripe
because they are very hungry",

there will be two readings for each fragment containing an occurrence
of "they", corresponding to the bare templates:

1 i BANANAS ARE RIPE
ii MONKEYS ARE RIPE

2 i BANANAS ARE HUNGRY
i1 MONKEYS ARE HUNGRY

The formulae for "ripe" and "hungry" contain an indication that they
prefer to be applied to plantlike and animate things respectively, and
thus the correct resolutions 1li and 2ii will be chosen.

7.2 Extended mode resolution

If the 'superficial' conceptual information contained in the relevant
formulae is inadequate to resolve anaphora, the system enters extended
mode. This proceeds by an extraction of various template-like forms
from the relevant text templates {(i.e. those containing possible-
antecedents and that containing the pronoun itself), followed by an
attempt to relate the extracted f{forms by means of common-— .
sense inference rules {CSIRs).

T.2.1 Extractions

Extractions are obtained by:

i) unpacking the case ties from the formulae involved., Por
instance, the formula for "drink" specifies ((}MAN PART) TO) as
the destination of the object of "drink", and (SELF IN) as a
result of the action. Therefore, the fragment (X DRINK Y) gives

F - 18

the extractions:

[Y DIRE (to) X-PART J and [¥ IN (in) X]
ii) insertions of +the mark of a preposition into the
prepositional fragment, e.g. (X DRINK Y) (DTHIS DIRE(from) Z)

gives the extraction [Y DIRE (from) Z], consistent with the
case determined by paraplate application.

Thus, from the text:
"John drank whisky from a glass and it felt warm in his stomach",

which will have the basic template structure (lexical items are given
rather than formula heads for clarity):

Tla JOHN DRINK WHISKY
Tlob DTHIS DIRE (from) GLASS
Tle ?1IT FEEL WARM
Tld DTHIS IN (in) STOMACH

will be derived the following extractions:

Ela WHISKY DIRE {(to} JOHN + PART from Tla by 1
Elb WHISKY IN (in) JOHN from Tla by i
Elc WHISKY DIRE {(from) GLASS from Tla & Tlb by ii
Eld ?IT IN (in) JOHN + STOMACH from Tlc & Tld by ii

From this pool of template forms, Wilks claims that Eld may be fuzz
matched directly onto Elb, thus resolving "it” as “"whisky" T{this
assumes that "his" has already been resolved as "John‘s". Since this
is the shortest possible chain between a template form containing the
anaphor and one <c¢ontaining a possible antecedent, it will Dbe
preferred. Only if this 'zero-point' strategy fails will inferences be
employed.

Inferences will be needed for resolving "it" in the text:
"John drank the whisky on the table and it was good"

which will have the following templates:

T2a JOHN DRINK WHISKY
T2b DTHIS LOCA {on) TABLE
T2¢ ?1T BE GOQD

and give rise to the following extractions:

E2a WHISKY DIRE (to) JOHN + PART from T2a by i
E2b WHISKY IN (in) JOHN from T2a by i
E2¢ WHISKY LCCA (on) TABLE . from T2a & T2b by ii

T.2.2 Common-sense inference rules

CSIRs are rules relating two templates by a one (->) or two (<=>)
way inference.. They are intended only to correspond to 1likely
sequences of cause and effect, rather +than deductions that are
necessarily true. ’

CSIRs may contain variables (expressed as integers), and restrictions
on these (the restrictions need be stated on one side of the rule

- 19

only).

The common sense notion that if some thing 1is good, some animate
creature wants 1t, and vice versa, is expressed by the following:

CSIR 1 (1 BE {GOOD KINLC)) «<=> ((*AN 2) (WANT) 1)

While if some animate creature causes some real thing to be in itself,
then it wiil Jjudge that thing:

CSIR 2 ((*AN 1)(SELF IN) (MOVE CAUSE)}) (*REAL 2)) -> (1 (*JUDGE) 2)
The class *JUDGE includes WANT, FEEL etc.

7.2.3 Inferencing

The process of inferencing proceeds from both ends of the chain, 1i.e.
from the template containing the anaphor, and from those containing
the possible antecedents. All inference rules contzining an action
sub-formula which appears in these templates are applied, and the
shortest chain is considered to have resolved the anaphor correctly.

In the case of:
"John drank the whisky on the table and it was good",

the inference chain will proceed as follows:

1 JOHN DRINK WHISKY T2a

2 JOHN CAUSE-TO-MOVE-IN-SELF WHISKY eq. to T2a v

3 JOHN *JUDGE WHISKY by CSIR 1 from 2 v

4 JOHN WANT WHISKY by *JUDGE > WAIT from 3 v
and by CSIR 2 from 5 -

5 "WHISKY BE GOOD substitution for ?IT in & ~

6 ?IT BE GOOD T2¢

At step U4 the forward and backward inference chains converge,
confirming the hypothesis of step 5, that "it" refers to the "whisky".
Were other CSIRs present, alternative chains might be derivable, but
the one given will almost certainly be the shortest.

8. FEvaluation of PS8

Wilks pre-empts much of the criticism that could be levelled at the PS
system by repeatedly stating that he would not defend various aspects
of it, such as the detailed contents of dictionaries and rules, or the
particular control structure of the programs. However, 1in order to
give an idea of the system's strong and weak points, I discuss in turn
each component of the system in which the knowledge used for -
translation resides, attempting to evaluate the form in which it
occurs., '

l. Dictionary

Wilks claims that his is essentially a dictionary-based system, and it
is true that the form of the dictionary entries is one of its
significant innovative aspects. Their significance lies, as Wilks
point out, not in the particular set of primitives from which they are
constructed, but in the way these may be structured within formulae to
give as much information about a word-sense as could be considered

F - 20

useful for understanding. The primitive vocabulary 1s not intended to
be capable of representing the differences between any two or more
lexical 1items in any language, e.g. between "hammer" and "mallet".
There 1s no unique mapping from formula to lexeme for a given
language.

2. *={lasses

The *-classes of nouns and verbs (*¥ENT, *JUDGE etc.} are used
throughout the system, 1i.e. in dictionary entries, Dbare templates,
stereotypes, CSIRs. They appear to be introduced whenever cor =nient,
on an ad hoc Dbasis. Since they perform the 1important le of
structuring the set of primitives in a useful and very Jju. “i=*>7-.
way, it 1s surprising that they are not given a more formal b

3. Fragmentation

Since the fragmentation procedure is barely described, it is di:Iicult
to assess. It 1s in this that the majority of the purely syntactic
knowledge which the system uses 1s concentrated, and one of Wilks'
strong claims 1s that such knowledge is not really important. What is
obvious 1is that the representational facilities used in later stages
of the system would not be capable of expressing syntactic
distinctions of subtlety, and therefore there would be little point in
computing them. Whether PS 1s really capable of handling such
phenomena as coordination accurately is not apparent.

4, Bare templates

The inventory of bare templates is not intended to be other than a
very coarse means of disambiguation. If it were possible to define
new sub-classes of primitives, 1its role could be refined. However, it
is the coarseness of . the sub-classes which provides the weak
constraints on grammaticality that are necessary for the preference
approach to be effective. Therefore there would be little point in
improving the 1level of detail of 1linguistic knowledge that L1s
expressed in the form of bare templates.

5. Extension rules/template rankings

The rather unclear manner in which the extension rules interact with
the rankings of template forms has already been mentioned above (5.3).
In fact, since the rankings are crucial to the disambiguatlon process,
it. would be helpful if they were given a stronger theoretical basis.
It is not obvious that a table of rankings would be applicable in
describing other languages with more free word order, since one would
have te distinguish ©between non-standard forms resulting from
fragmentation and those with significant semantic content.

The fact that the syntactic information about the SL which has been
found necessary for translation is represented in diverse ways, 1i.e.
in fragmentation, formula heads, template rankings and type B
extension rules, would make adding to it very difficult. .

In addition, this ad hoc approach to syntax must exaggerate the
problems of ambiguity, since, after all, it is the role of syntax-to
distinguish between utterances which may make reference to identical
lexical concepts and yet have totally different meanings.

F-21

6. Stereotypes and paraplates

In generation, the pervasive notion of preference iz realised as a
linear ordering on stereotypes. Thus the choice of the appropriate one
is intimately bound up with the others which are preser.t. Add to this
the highly procedural nature of individual stereotypec and the fact
that determination of case ties is alsc interleaved with stereotype
application, and it becomes obvious that the linguistic knowledge in
this part of the system would be very difficult to refiIne and extend.

7. CSIRs

The extended mode and the use of CSIRs represents an Interesting and
extensible approach to the problem of real-world knowledge. The fact
that the text is represented as a sequence of messages having a very
similar structure - that of the template - and with the relevant
information easily accessible (in terms of the * clasces) enables the
causal relationships expressed as CSIEs to be stated simply and
applied in a chained fashion.

Wilks conjectures that the maximum number of CSIRs which would need to
be applied to resolve anaphora is two. However, this would almost
certainly be inadequate for other understanding tasks such as question -
answering. If 1t were necessary to deal with long chains and many
inference rules, the problems of imposing an organisation on the rules
so that heuristics could be defined would have to be faced.

9.35oftware and hardware details

PS is programmed in LISP 1.6 (the fragmentation, bare template
matching and extension routines) and MLISP 2 (the generation and
extended mode routines). The program swaps in two large core images of
46k and 50k and two small ones of 5k each.

The diétionary comprises 500 entries. A paragraph of text takes about
6 c¢pu seconds to process, but if inferencing is required, a quite
simple sentence may take as long.

10, Pinal comments

If Wilks' ideas on dictionary organisation and common~sense knowledge,
plus an implementation of preference which dces not depend on
enumeration of alternatives, could. be combined with a more
theoretically based treatment of syntactic phenomena and a less
procedural approach to target language generation, it would represent
a significant advance in the state-of-the-art in MT. ZHowever, it is
not immmediately apparent that Iincreasing the power of the -
representation to include syntactic details would not have an adverse
effect on the complexity of expression of semantic =and real-world .
knowledge. :

P . 22

1l. References

The PS system was developed over several years, and the literature
reflects this., The dictionary, fragmentation routines, bare templates
and extension are introduced in 1. References 2 and 3 f{essentially the
same paper) discuss these in more detail and introduce the notions of
stereotype and paraplate. 4 discusses the generation component
(written by Annette Herskovits) in greater detail. 5 and 6 start to
address the problems of incorporating real-world Kknowledge, and 7
describes a solution in the form of CSIRs. 8 discusses the
imposition of a thesaurus-like organisation over dictionary entries,
and the use of frame-like knowledge structures. These ideas are not
implemented, so we have not considered them here.

1. "Grammar, meaning, and the machine analysis of lznguage" {(1972),
Routledge and Kegan Paul, London.

2. "The Stanford Machine Translation Project"” (1972} 1in R.Rustin
(ﬁd.) "Natural Language Processing", Algorithmics, New York, pp.
243 -~ 290. -

3. "An Artificial Intelligence approach to Machine Translation"
(1973) in R.Schank and K.M.Colby (eds.) "Computer models of
thought and language”, Freeman, San Francisco, pp. 114 - 151.

4., "An intelligent analyser and generator for natural language"
(1973), in A.Zampolli and N.Calzolari (eds.) "Computational and
Mathematical Linguistics", Proceedings of the ICCL, Pisa, pp 741 -
768. {with Annette Herskovits)

5. "An intelligent analyser and understander of English" (1975)
Communications of the ACM, wol. 18, no. 5, pp. 264 -~ 2T4.

6. "Preference Semantics” (1975) in E. L.Keenan (ed.) "The formal
: semantics of natural language", C.U.P., Cambridge, pp. 329 -~ 350.

7. "A preferential pattern~seeking semantics for natural language
inference" (1975) Artificial Intelligence 6, pp. 53 - T4.

8. "Making preferences more active" (1978) Artificial Intelligence
11, pp. 197 - 223.

F - 23

