
A s y m m e t r y in P a r s i n g a n d G e n e r a t i n g w i t h Uni f ica t ion G r a m m a r s :
Case S tud ies F r o m E L U

Graham Russell,* Susan Warwick,* and John Carroll?

* ISSCO, 54 rte. des Acacias ? Cambridge University Computer Laboratory
1227 Geneva, Switzerland New Museums Site, Pembroke Street
russell@divmm.onige.ch Cambridge CB2 3QG

A b s t r a c t

Recent developments in generation algorithms have
enabled work in nnificafion-based computational
linguistics to approach more closely the ideal of
grammars as declarative statements of linguistic
facts, neutral between analysis an0_ synthesis, x-"~-oui
this perspective, however, the situation is still far
from perfect; all known methods of generation
impose constraints on the grammars they assume.

We briefly consider a number of proposals for
generation, outlining their consequences for the
form of grammacs, and then report on experience
arising from the addition of a generator to an exist-
ing unification environment. The algorithm in
question (based on that of Shieber et al. (1989)),
though among the most permissive currently avail-
able, excludes certain classes of parsable analyses.

1. I n t r o d u c t i o n
Parsing and generation me both concerned with the
relation between texts and representations, and in
so far as a grammar defines this relation without
reference to direction, it may be regarded as rever-
sible. Yet, in practice, the program which 'applies'
a grammar for the purpose of parsing is quite dis-
tinct from the one which performs generation.t

The essential difference between parsing and
generating lies in the nature of the input. The text,
as a string of words, traditionally establishes the
starting point of parsing; whether the processing is
top-down or bottom-up, the basis for selecting
grammar roles is information associated with words
in the lexicon. In the case of generation, there is in
general no guarantee that the constituents of an
input representation correspond to words; a portion
of the input may be related directly to a given word,
or it may be the result of combining representations
associated to some sequence of rules, portions of
which me ultimately related to lexical items. For
example, if the sentence John kicked the bucket
receives the semantic representation die(John), it is

i Parsing and generation need not employ dif-
ferent algorithms or control strategies; see Shieber
(1988) for discussion. However, a truly reversible

gram would be an entirely different undergoking
what is described here. One such project is

currently under way at New Mexico State Universi-
ty (Yorick Wilk~, p.c.). 205

relatively easy to see how during parsing the recog-
uilion of kicked and the bucket will provide the
necessary information (from the lexical entry for
kick) to build that represemo~on. "l'ne representa-
tion and the lexical items are in general related not
dhectly, but rather via intennediate syntactic rules,
any of which is able to manipulate the representa-
tion in arbitrary ways; in generation, it is not possi-
ble to identify the correct lexical item without con-
sidering the syntactic rules which may intervene.

The generation problem, then, consists in how
to build a syntactic structure faom an initial
representation, taking it as the root, and extending
the structure 'downward' to the lexicon by select-
ing rules from the grammar and attaching them at
the appropriate points.

Though unification based systems have been in
use for parsing for a number of years, generation
has until recently not attracted comparable atten-
tion; Wedet-lnd (1988), Dymetmaun & lsabelle
(1988) and Shieber (1988) describe tluee systems
of note. Not surprisingly, given the relative infancy
of these explorations, none of these systems is
without problems. The most permissive of the
current proposals appears to be Shieber et al.'s
(1989) revision of the Shieber (1988) algorithm, yet
several plausible grammatical analyses handled by
the parser me beyond the capacity of even
approach.

This paper reports on experience arising from
the addition of a generator component to the FLU 2
environment; the algorithm is a variant of that pro-
posed in Shieber et al. (1989). We first consider
general aspects of adapting unification grammars
initially developed for parsing to their use in gen-
eration. A brief description of the generator in ELU
highlights the differences and improvements we
have adopted. We then demonstrate shortcomings

2 "Environnement Linguistique d'Unification".
Cf. Johnson & Rosner (1989) for a description of
UD (Unification Device) which includes the parser
and facilities such as procedural abswactions and
extended data types (lists and trees) and Estival et
al. (1989) for a description of the extended ELU
system which incorporates the ori~ml UD plus a
generation and translation component.

of this class of generation algorithms on the basis of
two case studies.

2. Generating with Unification Gram-
mars
The goal of employing a single, minimally aug-
mented, grammar for both parsing and generation
has become more accessible with the introduction
of declaratve grammar formalisms (cf. Kay, 1985).
In the context of machine translation, for which the
ELU system has been developed, the use of the
same grammar for both tasks is highly desirable;
indeed much of the work on bidirectional grammars
has been carried out in centres working on MT (cf.
Busemann, 1987; van Nonrd, to appear;, Dymet-
mann & Isabelle, 1988; and Wedekind, 1988).
Regardless of the application, however, the ability
to generate with a grammar is extremely useful as a
method of checking its adequacy.

Despite the objective of reversibility, all of the
systems mentioned here impose generation-specific
restrictions on their grammars, either by limiting
the form of possible rules or by augmenting them
with annotations. DymeUnann & Isabelle (1988)
require the grammar writer to specify for each role
the order in which daughters should be generated;
however, an order that might be correct when gen-
erating from one structure can lead to non-
terminating search with another. Busemann (1987)
and Saim-Dizier (1989) describe methods of gen-
eration which rely on the parsing of a control struc-
ture using a specialized grammar to build the syn-
tax of a sentence; it is questionable to what extent
the latter two systems can be considered to operate
with bidirectional grammars.

Constraints imposed by Wedekind (1988) and
van Noord (to appear) exclude certain linguistic
analyses from generation. In order tO overcome the
high degree of non-determinism inherent in the
top-down approach, Wedekind stipulates that a
daughter of a rule must be 'connected' (i.e. that its
semantics must be instantiated) before it can be
generated from. Less restrictively, van Noord
stipulates similar constraints on rules, i.e. that if the
semantics of the mother node is known, then the
semantics of the head daughter is instantiated, and
additionally that if the syntax of the semantic head
is known, then the semantics of each daughter is
known. These restrictions limit the class of possi-
ble analyses, excluding accounts appropriate to
LFG (Kaplan and Bresnan, 1982), HPSG (Pollard
& Sag, 1987) and UCG (7_eevat et al., 1987).

The disparate state of progress in parsing and
generation raises important issues concerning the
adequacy of grammatical descriptions and the com-
putational tools that interpret them. A situation
exists in which a grammar may be 'correct' for
analysis, but 'incorrect' for generation.
Significantly, this may be the case even when the
restrictions and annotations mentioned above are
taken into account. Grammatical analyses
developed in a purely parsing environment cannot

206

always be transferred slraightforwardly into a for-
mat suitable for generation. Two types of conclu-
sion may be drawn from this: failures may be
ascribed to inadequacies of current generator tech-
nology, or the grammatical analyses in question
may be re-evaluated. Practical remedies will
involve two related strands of research; improving
methods of generation so as to IDinimiTe restric-
tions on the form of grammars that can be gen-
erated fzom, and identifying problematic properties
of grammars. It is the second of these which the
present paper chiefly addresses, though we also
remark, in the next section, on some enhancements
to the Shieber et al. (1989) algorithm that have been
incorporated in the ELU generator.

3. The Generator in ELU
In this section we describe the generation algorithm
in ELU, and discuss in what respects it differs from
that described by Shieber et al. (1989). 3 Two
notions central to this method of generation are that
of the 'pivot', and that of partitioning the grammar
intO 'chaining' and 'noD-chaining ' rules. Loosely,
the 'pivot' of a structure to be generated from is the
lowest node in a path down semantic heads of rules
at which the semantics of the current generation
root structure remain~ unchanged. A ch~inlng lille
is one in which the semantics of the object associ-
ated with the right-hand side category that has been
declared as the head unifies with that of the left-
hand side category. Other rules are non-chaining
roles. Rules that apply between the root and the
pivot are, by definition, chaining rules; further, any
rule which can be attached below the pivot is, by
definition, a non-chaining rule. Rules are parti-
tioned into these two groups drain 8 grammar com-
pilaton.

Once the chaining rules have been identifed, the
grammar compiler computes the possible sequences
of such rules alon 8 a path through their mothers and
semantic heads. The result is a 'teachability table',
each of whose elements is a pair of restrictor value
sets4 representing classes of FSs which can occur at
the top and bouom of such a path; in each case, the
'bottom' restrictor set characterizes a pivot. A res-
trictor set is also computed for each lexical stem, in
order to retrieve words efficiently during genera-
tion

The generation algorithm uses the distinction
between chaining and non-chaining rules as well as

3 Our discussion will therefore assume familiari-
ty with this paper.

4 Restrictors are attributes selected by the writer
of a grammar as being maximally distinctive; when
two FSs are to be unified, their respective restrictor
values axe first checked for compatibility, so as to
eliminate the cost of an attempted nnificaton which
is bound to fail. See Shieber (1985).

that between head and non-head dauglzers, the
reachability table for chaining rules, the semantic
portion of the FS to be generated fi~m 5, and the
restrictors for lexicon stems. The algorithm is:
1. Take all grammar rules declared as 'initial' (or

all rules in the grammar if no such declaration
has been made); for each of these rules whose
mother unifies with the input FS, apply the role
top-down, building FSs for each of the
daughters, and, starting with the head daughter,
execute step 2 for each one. If generation firom
the daughters is successful, compute all possible
word-forms (as constrained by the locally avail-
able syntactic information) for each lexical stem
generated.

2. Create a pivot COnSisting of just the semantic
portion of the current FS. Non-determiniejc-
ally perform steps 2a and 2b:
a. Fmd a lexical stem which unifies with the

pivot, making sure Coy checking with the
reachability table) that the FS resulting from
the unification can be linked through seman-
tic heads of just chaining rules up to the
current FS.

b. Fmd a non-chaining rule which can have the
pivot as mother, similarly making sure that
the FS resulting from the unification of the
pivot and the mother can be linked up to the
current FS. Recursively (through 2) gen-
erate the rule's daughters, starting with the
head daughter.

3. Link the pivot up to the current FS through
semantic beads of just chaining rules (at each
stage, before adding a new rule in the chain,
checking with the teachability table that further
linking will be possible) and then recursively
(through 2) generate the non-bead Os, ghters of
these rules.

In this algorithm non-cbaining roles are used top-
down, while chaining rules are used bottom-up.
Linking information is used both to check the appli-
cability of a lexical stem or a non-chainlng role
when generating top-down from a pivot, and also to
control search when generating bottom-up, by
ensuring that the left-hand side of any role con-
sidered still lies on a possible path through chaining
rules to the current FS.

One innovation of the ELU generator is that the
notion 'semantic bead' is interpreted rather dif-
ferently; whereas the earlier work simply defines
the semantic bead of a rule as the daughter whose
semantics unifies with that of the left-hand side, and
thus leaves the notion undefined for non-chalnlng
rules, that described here permits the grammar
writer to identify one daughter in each rule as the

5 The relevant paths being determined by the
user's declaration

semantic head. A role in which a O~ghter sluues
the semantics of the mother can thus be made into a
chaining rule or a non-chaining rule, according to
whether that daughter is identified as the semantic
head, and a rule that would otherwise have multiple
semantic heads can be assigned just one. 6 A rule in
which there is no such daughter will remain a non-
chaining rule, but may nevertheless be annotated
with a similar specification. The rationale is two-
fold: the ability to coerce what would otherwise be
a chaining rule to a non-chaining rule grallts the
grammar writer more control over generation, and
the ability to specify one daughter as semantic~dly
more si£nlf~mnt than the others may be exploited in
order to direct the attention of the generator
towards !hat daughter.

A second difference is the order of events in
bottom-up generation. Instead of generating firom
the non-head daughters of each chaining rule as it is
attached, the pivot is firm linked to the root, so that,
if backtracking is forced, effort will not have been
spent on processing StrU~h-e that must be dis-
carded.

Finally, on each occasion that top-down genera-
tion is initiated, an auempt is made to add a lexical
item below the current root, rather than extending
the path by application of non-chainlng rules until
no such rule is applicable. Here, the motivation is
that lexical information may be made available as
soon as possible without forcing the grammar
writer to adopt analyses that will produce bottom-
up generation. This is important because global
syntactic properties of a sentence are ofteu deter-
mined by lexical information.

4. G r a m m a r s f o r G e n e r a t i o n

4.1. I n t r o d u c t i o n

In this section we examine more closely interac-
tions between generator and grammar. These fall
under two headings: (i) the presence of now
deterwini.~m in the grammar, and (ii) the role of
lexicalism.

One aspect of non-detetmini.qm in generation,
that of the ordering of role application, is partially
overcome in FLU by the user specification of the
bead daughter. Non-determinism with respect to
the order of solving constraint equations is less well
understood. The use of restrictors helps to reduce
the number of feature structures to be considered.

6 Thus circumventing a problem noted by
Shieber et al. (1989, f~4) in connection with such
rules. Van Noord (p.c.) stipulates that any daughter
which has the same semantics as the mother, but is
not the semantic bead, may not branch: this con-
straint is clearly too strong, precluding, among oth-
er things, linguistically motivated accounts of coor-
dination.

207

However, in FLU, the use of relational abstractions
as a generalization of temj~late facilities increases
the problem considerably/Relational abstractions
permit the grammar writer to augment the phrase
structure rules with statements which may receive
multiple definitions in terms of constraint equa-
tions; the 'Linear Precedence' definition in (2)
below is an example. This facility is a standard
ELU device for collapsing what would in an unex-
tended PATR-like formalLqr¢ he several distinct
rules, thereby capturing linguistic generalizations
that would otherwise go unexpressed.

It is particularly impoRant to control non-
determinism in generation, since, at least when pro-
cessing is initiated, there is relatively little informa-
tion available to direct the search. Expanding multi-
ple definitions as they are encountered would give
rise to an n~cceptable number of alternatives,
many of which might he identical, and often the
information from the abstraction is not required
until all but one of the alternatives have been
excluded by other factors. This is not always the
case, however, and when exceptions occur their
effect may be drastic. We now describe one such
exception to demonstrate how an elegant analysis
for parsing is unsuitable for generation.

4.2. A g r a m m a r for F r e n c h clitics
A common technique in modem lexically-oriented
grammars, and one which reflects and extends the
traditional notion of 'valency', is to encode infor-
marion about the various phrases with which a verb
combines in items on a subcategorization list. The
grammar then enforces a match between a member
of the list and a phrase which is to combine with
some projection of the verb and removes the item
from the list. When a sentence is complete, i.e. the
verb has 'found' all necessary phrases, a grammar
may require that the list he empty, or perhaps that
any remaining item is in some way specified as
optional. See e.g. Shieber (1986) and Pollard and
Sag (1987) for applications of this method.

A complete grammar of French must account
for the position and ordering of clitic pronouns.
These precede the verb, while other complement
phrases follow. Moreover, they appear in a fixed
order, as shown in (1):

(1) me le lui y en
te la leur
se les
nous
vons

Up to three clitics may occur, but for the sake of
this discussion, we consider only the simpler case

7 Cf. Johnson & Rosuer (1989) for a fuller
description of relational abstractions.

of two critics as complement phrases to the verb. s
There are of course many ways of accounting for
their distribution; 9 the subcategorization list device
seems a natural solution, since any complement
phrase may be realized as a critic. The grammar
rule in (2) introduces up to two clitics before the
verb, their relative order determined by a relational
abstraction which is defined by a number of
clauses, each clause licensing one of the possible
clitic sequences.

(2) vplus -> CI1 C12 I-IV
H'recede(Cll,O_2)
List = <HV subcat> - - CII
<vplus subcat> = List - - C12

Precede(X,Y)
<X person> = first/second
<Y person> -- third

Ptecede(X,Y)
<X case> = accusative
<Y case> = dative

Some remarks on notation will be helpful: calls to
relational abstractions are indicated by the exclama-
tion mark, feature-value disjunction is indicated by
the slash, and an equation of the form
'X = Y - - Z ' , where X and Y are lists, nnifies X
non-detenninistically with the result of extracting
one instance of Z from Y.

The effect of this rule, then, is to associate a
pair of clitics with a verb, checkln~ that they are
correctly ordered, and unifying the subcategoriza-
tion list of the left-hand side category with a copy
of that of the head verb from which objects unify-
ing with each of the clitlcs have been removed.

The problem emerges when information
assumed to he held in the subcategorizafion list of
'vplus' is required in order to control further gen-
eration. For example, if 'vplus' appears as sister to
another complement phrase, and the same pro-
cedure of unifying the latter with an item on the list
takes place, then because the generator has
suspended expansion of non-determini.~tic abstrac-
lions, the subcategorization list itself will he unin-
stantiated, and therefore no information regarding
the semantics of the complement phrase will he
available to restrict top-down generation.

s This is something of an oversimplification, as
not only complement phrases, but also adverbials
and parts of complement phrases are realized as cli-
tics. See Grimshaw (1982) for a partial LFG ac-
count of these phenomena. We also ignore the is-
sue of negation, which considerably complicates
the clitic-aux-verb structure.

9 The categorial treatment proposed in Baschung
et al. (1987) not only makes use of order of argu-
ments, but also codes each clitic for all possible
combinations.

208

Modifications to the syntactic constituency
assumed bere do not affect the principle; as long as
the instanfiation of so central an element of the
grammar as the subcategorization list is delayed,
the problem will remain. An alternative type of
analysis would remove the non-determinism from
the grammar by factoring it out into a larger
nomber of rules. This solution is not without its
own disadvantages; the number of distinct rules
needed by a full treatment of French critics,
integrated with the placement of the various nega-
tive panicles and auxiliaries, should not be underes-
timated. We postpone further discussion of non-
determini.~m and delay until the conclusion and turn
now to the problem of empty semantic heads, an
important problem for bead-driven generation algo-
rithms. 1o

4.3. Empty Semantic Heads
In German and Dutch, there are two positions in a
sentence where tensed verbs may appear: in second
position of a main clause, and in final position of a
subordinate clause. Once again, a multitude of ana-
lyses are possible within ELU grammars. One
approach is to control the distribution of verbs with
grammar rules specific to clause-type; this solution
gives rise to what might be felt to be an unaccept-
able degree of duplication in the grammar. A more
elegant approach, successful for parsing, exploits
the possibility of assoc/ating a word or phrase
appearing in one position within a sentence with a
'gap' elsewbere.

The latter analysis will be recognized as a vari-
ant of a standard Govermnent-Binding treatment, in
which a tensed verb in a main clause is 'raised'
from an 'underlying' sentence-final position to a
'surface' second position (see e.g. Haider (1985),
Platzack (1985) for discussion of this class of ana-
lyses). The dependency may be implemented by
the use of a feature, say 'v2', whose value in a
verb-second construction is a feature structure
representing the verb to be raised, and in other con-
stmctions an atomic constant such as 'none', which
serves to block the dependency. At the extraction
site, any value of 'v2' other than 'none' may be
cashed out as an empty production. Information
regarding the various syntactic properties of the
raised verb is passed in the normal fashion between
the verb's true position and the extraction site,
wbere it is able to exert the same constraints upon
complement phrases that a lexically-realiTed verb
would.

The simplified rule set given in (3) will serve as
a basis for discussion. Recall that the generator
operates by partitioning the rules of the grammar

1o This problem is alluded to in Shieber et al.
(1989, fn.4) and is discussed in a draft of an ex-
panded version of the paper.

209

into classes to be applied top-down (non-ch~inlng
rules - here 'S-gap' and 'V2') and bottom-up
(chaining rules - here 'TOP', 'S' and 'V').
Bottom-up generation is only practical if the input
structure to that phase of generation contains
sufficient information, e.g. the verb with its sub-
categorization list.

(3) # Rule TOP
TOP -> XP I-I_S

<* cat> = top <* head> = <H_S head>
<XP cut> = np <H_S subcat> = [XP]
<H_S cat> = sbar

#Rule V2
Sbar -> H_V2 S

<* cat> = sbar <H_V2 cat> - v
<S cat> = s <* subcat> = <S suboat>
<S v2> = H_V2 <* bead> = <S bead>
<H_V2 head syn vfonn> = finite

#Rule S
S -> XPH_S

<S cat>ffis <XP cat> = ap
<H_S cat> = s <* v2> = <H_S v2>
<* subcat> = <H_S subcat> - - XP
<* head> = <I-IS head>

#Rule V
S -> H_V

<S cat> = s <* head> = <H_V bead>
<H_V cat> = v <* subcat> = <H_V subcat>

Rule S-gap
S - > -

<S cat> = s <S bead> = <V2 head>
<S v2> ffi V2 <S subcat> = <V2 subcat>

The verb-raising analysis sketched here has the
unfortunate property of supplying the generator
with a semantic bead (the verb gap) about which
nothing is known. At the stage when top-down
processing has identified the verb gap as the start-
ing point fog boUom-up generation, the input
featm'e structure is underspecified. In particular,
the subeategorization list of the missing verb is
-ninstalltiated, and in the grammar in question, it is
the length of this list which controls invocation of
the recumive role 'S'. No bindings can be found,
and the generator suspends evaluation of that equa-
tion in the hope, in-founded on this occasion, that
information not yet present will later allow its solu-
tion. The result is tha t 'S ' is repeatedly added
above 'S-gap', in a non-termlnating attempt to
ensure completeness of the search.

Van Noord (1989) describes two solutions to
this problem, both of which are additions to the ori-
ginal program, and whose only motivation (so far)
is to overcome this specific problem. The first,
somewhat ad-hoc, solution allows the verb to have
as one of its morphological realizations the empty
string. Since word forms are generated at the end
of processing by a morphological front-end, the
generator can posit the same word in both positions

(for the purpose of relrieving its subcategorizafion
behaviour f~om the lexicon, for example). The
morphological component then generates one
empty string and one full word according to the
position of the verb (i.e. in a main or subordinate
clause). "['nis mechani.~n is not available in ELU.
The second solution adds an additional 'connect'
clause in the Prolog program, specific to gaps, in
order to assure that the gap is first instanfiated
before further processing; this solution raises the
issue of I~ming programs to treat specific problems
as they are encountenxL

There are other constructions which raise the
same kind of problem; the fronting of apparently
non-constitnent verbal sequences in German (Ner-
boone, 1986) introduces more complex dependen-
cies, while in English the phenomena of Gapping
and Verb-Phrase Ellipsis both manifest themselves
syntactically in the absence from a sentence of a
verb and possibly other material. Here, the
difficulty is, if anything, greater, as the dependen-
cies in question are anaphoric in nature, rather than
syntactic.

5. Conclusion
We have seen, in the preceding section, how in
order to write grammars suitable for use with the
generator, one must either modify the technical
aspects of the grammar or dispense with cemfin
classes of grammatical analysis (losing the benefits
of relational abstraction on one hand, and lexical-
ism on the other, for example). Both of these may
be interpreted as restricting the freedom of the
grammar writer. The problematic case illustrated in
section 4.2 raises the issue of non-deterrolni~m, a
potential pitfall for all unification-based systems.
In parsing, the result may be long processing limes,
but when generating with algorithms of this class,
the consequence is often non-tern~inafion. As
Shieber et al. (1989, fn.4) observe, failure to choose
the right daughter as the starting point for recursive
generation may prevent tenuinafion.

The desire to exploit the power of unification by
using the lexicon as a repository of essentially syn-
tactic (beyond pure semantic) information is
natural, and has been encouraged by the success in
theoretical linguistics of grammatical formalisms
which employ such techniques. Yet the use of
these techniques in grammar writing, which are
highly attractive from the point of view of economy
and expressive power, deprives the generator of
information that is, strictly speaking, syntactic.
Semantic heads alone are not sufficient to drive the
generation process, if syntactic information cannot
also be made available. Our interim conclusion is
that strong versions of the lexicalist position do not
appear to be compatible with our current generator,
at least for a number of cases. This is not to say
that it should be abandoned - the benefits in terms
of clarity and economy are probably too great - but
some care is needed if it is to be exploited effec- 210
lively.

Given that work on this type of generation is in
its early stages, it is to be hoped that confimfing
research will enable less restricted grammars to be
written. Nevertheless, the currently available facili-
ties have been employed successfully in general,
mJking it possible to envisage defining the 'ade-
quacy' of a grammar in terms of its behavior both
in parsing and in generation.

References
Baschung, K, G.G. Bes, A. Corluy, and T. Guillotin

(1987) "Auxiliaries and Critics in French UCG
Grammar". Proceedings of the Third Confer-
ence of the European Chapter of the Associa-
tion for Computational Linguistics, Copen-
hagen, Denmark, April lst-3rd 1987: 173-178.

Bmsnan, J. (ed.) (1982) The Mental Representation
of Grammatical Relations. Cambridge, MA:
MIT Pmm.

Busemann, S. (1987) "Generienmg mit GPSG".
KIT-Report 49, Techni~che Universit~t Berlin.

Dymelman, M. & P. Isabelle (1988) "Reversible
Logic Grammars for Machine Translation".
Proceedings of the 2nd International Confer-
ence on Theoretical and Methodological Issues
in Machine Translation of Natural Languages,
Camegie-Mellon University, Pittsburgh, USA.

Estival, D., A. Ballim, G. Russell, and S. Warwick
(1989) "A Syntax and Semantics for Feanue-
Structu~ Transfer". MS, ISSCO.

Grimshaw, J. (1982) "On the Lexical Representa-
tion of Romance Reflexive Clitics", in Bresnan
(ed.): 87 - 148.

Haider, H. (1985) "V-Second in German", in H.
Haider and M. Prinzhom (eds.) Verb Second
Phenomena in Germanic Languages: 49 - 75.
Dordrecht: Foris.

Johnson, R. and M. Rosner (1989) "A Rich
Environment for Experimentation with
Unification Grammars". Proceedings of the
Fourth Conference of the European Chapter of
the Association for Computational Linguistics,
Manchester, UK, April 10th-12th 1989:
182-189.

Kaplan, R.M. and J. Breanan (1982) "Lexical-
Functional Grammar:. A Formal System for
Grammatical Representation", in Bresnun (ed.):
173-281.

Kay, M. (1985) "Parsing in Functional Unification
Grammar", in D. Dowry, L. Kamunen, and A.
Zwicky (eds.) Natural Language Parsing.
Cambridge: Cambridge University Press:
251-278.

Nerbonne, J. (1986) "'Phantoms' and German
Fronting: Poltergeist Constituents?". Linguis-
tics 24-5, 857-870.

van Noord, G. (to appear) "Bottom Up Genemtinn
in Unification-based Formalisms", in C. Mell-
ish, R. Dale, and M. Zock (eds.) Proceedings of
the Second European Workshop on Natural
Language Generation.

Platzack, C. (1985) "A Survey of Generative Ana-
lyses of the Verb Second Phenomenon in Ger-
manic". Nordic Journal of Linguistics 8:
49-73.

Pollard, C. and I.A. Sag (1987) Information-Based
Syntax and Semantics, Volume 1: Fundamen.
ta/s. CSLI Lecture Notes no. 13

Saint-Dizier, P. (1989) "A Generation Method
Based on Principles of Government-Binding
Theory". Paper presented at the Second Euro-

211

pean Natural Language Generation Wmkshop,
Edinburgh, April 1989.

Shieber, S.M. (1985) "Using Restriction to Extend
Parsing Algorithms for Complex-l~ttme-Bued
Forfoali~ms". Proceedings of the 23rd Annual
Meeting of the Association for Computational
Linguistics:. 145-152.

Shieber, S.M. (1986) An Introduction to
Unifration-Based Approaches to Grammar.
CSLI l.,~tu~ Notes no. 4.

Shieber, S.M. (1988) "A Uniform Ardfiteotme for
Prosing and Generation". Proceedings of the
12th International Conference on Computa.
tionai Linguistics, Budapest, Hungary:
614--619.

Shieber, S.M., van Noord, G., R.C. Moore, and
EC.N. Pexeira (1989) "A Semantic-Head-
Driven Algorithm for Unification-Based For-
malisms". Proceedings of the 27th Annual
Meeting of the Association for Computational
Linguis~cy. 7-17.

Wedekind, J. (1988) "Generation as Stmoture-
Driven Derivation". Proceedings of the 12th
International Conference on Computational
Linguistics, Budapest, Hungmy: 732-737.

Zeevat, I-L, E. Klein, and J. Calder (1987)
"Unification Categorial Grammar". Categorial
Grammar, Unification Grammar, and Parsing,
Edinburgh Working Papers in Cognitive Sci-
ence, Volume 1. Cenue for Cognitive Science,
University of Edinburgh: 195-222

