
I

[

A Uniform Architecture for Parsing, Generation and Transfer

Rdmi Zajac
Project POLYGLOSS*

IMS-CL/IfI-AIS, University of Stuttgart
Keplerstrai3e 17, D-7000 Stuttgart 1
zajac@informatik.uni-stuttgart.de

A b s t r a c t

We present a uniform computational
architecture for developing reversible
grammars for parsing and generation, and
for bidirectipnal transfer in MT. We sketch
the principles of a general reversible ar-
chitecture and show how they are real-
ized in the rewriting system for typed fea-
ture structu:res developed at the Univer-
sity of Stuttgart. The reversibility of pars-
ing and gen:eration, and the bidirection-
ality of tralisfer rules fall out of general
properties of the uniform architecture.

1 PRINCIPLES FOR A UNIFORM AR-
CHITECTURE

The principles for a uniform architecture
for pars ing/generat ion and bidirectional trans-
fer are a l r e a d y contained in some P R O L O G
implementat ions: of logic grammars like DCGs.
For example, [Sliieber 88] proposes to apply the
idea of Earley deduction [Perei ra /Warren 83] to
generation. With the noticeable exception of

[Dymetman et al. 90], all of these approaches use
a context-free based mapping to relate a string
of words with a semantic s tructure. Almost all
of these approaches also rely on some specific
propert ies of the grammars intended to be pro-
cessed (semantic heads, guides, leading features,
specific representat ion of subcategorizat ion, etc.).
They are also dependent on the direction in which
they are used: even if the g rammar specifica-
tion is the same, two different compilers gener-
ate two different programs for parsing and gener-
ation. Using the P R O L O G deduction mechanism
to have a simple and direct implementat ion of a
parser /genera tor , one has to solve some problems
due to the P R O L O G evaluation method, for ex-
ample terminat ion on unins tant ia ted goals: goals
have to be evaluated in a different order for pars-
ing and generation. A reordering of goals per-
formed by a rule compiler can be based on a di-
rect specification of the ordering by the grammar
writer [Dymetman/ I sabe l le 88], or can be derived

*Research reported in this paper is partly supported by the German Ministry of Research and Technology (BMFT,
Bundesminister ffir Forschung und Technologic), under grant No. 08 B3116 3. The views and conclusions contained herein
are those of the autl~or and should not be interpreted as representing official policies.

71

by a compiler by analysing the dataflow using only
input /output specifications [Strzalkowski 90].

But if we regard the grammar as a set of con-
straints to be satisfied, parsing and generation dif-
fer only in the nature of the "input", and there is
no reason to use two different programs. An inter-
esting approach which uses only one program is
described in [Dymetman/Isabelle 88]. Within this
approach, a lazy evaluation mechanism, based on
the specification of input /output arguments, is im-
plemented, and the evaluation is completly data-
driven: the same program parses or generates de-
pending only on the form of the input term. Fur-
thermore, a reversible grammar need not to be
based only on constituency. [Dymetman et al. 90]
describes a class of reversible grammars ("Lexi-
cal Grammars") based on a few composition rules
which are very reminiscent of categorial gram-
mars. Other kinds of approaches can also be en-
visaged, e.g. using a dependency structure and
linear precedence relations [Reape 90] (see also
[Pollard/Sag 87]).

From these experiments, we can outline desir-
able properties of a computational framework for
implementing reversible grammars:

A unique general deductive mechanism is
used. Grammars define constraints on the
set of acceptable structures, and there is no
distinction between "input" and "output".

To abolish the input /output distinction, the
same kind of data structure is used to encode
both the string and the linguistic structure,
and they are embedded into one data struc-
ture that represents the relation between the

string and the associated linguistic structure
(c.f. the HPSG sign [Pollard/Sag 87]).

Specific mapping properties, based on con-
stituency, linear precedence or flmctional
composition, are not part of the formalism
itself but are encoded explicitly using the
formalism.

The deductive mechanism should be compu-
tationally well-behaved, especially with re-
spect to completeness.

In the next section, we show how these prop-
erties are realized in the Typed Feature Structure
rewriting system implemented at the University of
Stuttgart 1. We then discuss the parsing and gen-
eration problem, and bidirectionality of transfer in
MT. Assuming that we have the proper machin-
ery, problems in parsing or generation can arise
only because of a deficiency in the grammar2: in
the last section, the termination problem and effi-
ciency issues are addressed.

2 A R E W R I T E M A C H I N E F O R T Y P E D
F E A T U R E S T R U C T U R E S

The basic motivation behind the Typed Fea-
ture Structure rewriting system is to provide a
language which has the same deductive and log-
ical properties of logic programming languages
such as PROLOG, but which is based on feature
terms instead of first order terms [Ai't-Kaci 84,
A~t-Kaci 86, Emele/Zajac 90a]. Such a language
has a different semantics than the Herbrand se-
mantics: this semantics is based on the notion of
approximation, which captures in a computational

1The TFS system has been implemented by Martin Emele and the author as part of the POLYGLOSS project.
2As it is often the case in generation when using a grammar built initially for parsing.
3See also [Emele/Zajac 90a] for a fixed-point semantics.

72

i

framework the idea that feature structures repre-
sent partial information [Zajac 90b] 3. Of course,
as in PROLOG,i problems of completeness and el- L
ficiency have to be addressed.

The universe: of feature terms is structured in
an inheritance hierarchy which defines a partial
ordering on kinds of available information. The
backbone of the hierarchy is defined by a par-
tial order _< on !a set of type symbols T . To this
set, we add two more symbols: T which repre-
sents complet ly underspecified information, and
l which represents inconsistent information. Two
type symbols have a common most general sub-
type (Greatest Lower Bound - GLB): this sub-
type inherits ale information associated with all
its super-types. We define a meet operation on two
type symbols A and B as A A B = glb(A, B). For-
mally, a type hierarchy defined as a tuple (T, <, A)

i
is a meet semi-lattice. A technicality arises when
two types A and B have more than one GLB: in
that case, the set of GLBs is interpreted as a dis-
junction.

As different shts of attribute-value pairs make
sense for differen~t kind of objects, we divide our
feature terms into different types. Terms are closed
in the sense that ~ach type defines a specific associ-
ation of features iand restrictions on their possible
values) which are I appropriate for it, expressed as a
feature structure '(the definition of the type). Since
types are organized in an inheritance hierarchy,
a type inherits all the features and value restric-
tions from all its 'super-types. This type-discipline
for feature structures enforces the following two
constraints: a term cannot have a feature which

is not appropriate for its type 4 and conversely, a
pair of feature and value should always be defined
for some type. Thus a feature term is always typed
and it is not possible to introduce an arbitrary fea-
ture in a term (by unification): all features added
to some term should be appropriate for its type.
We use the attribute-value matrix (AVM) nota-
tion for feature terms and we write the type sym-
bol for each feature term in front of the opening
square bracket of the AVM. A type symbol which
does not have any feature defined for it is atomic.
All others types are complex.

A type definition has the following form: the
type symbol to be defined appears on the left-
hand side of the equation. The right-hand side
is an expression of conjunctions and disjunctions
of typed feature terms (Figure 1). Conjunctions
are interpreted as meets on typed feature terms
(implemented using a typed unification algorithm
[Emele 91]). The definition may have conditional
constraints expressed as a logical conjunction of
feature terms and introduced by ' : - ' . The right-
hand side feature term may contain the left-
hand side type symbol in a subterm (or in the
condition), thus defining a recursive type equa-
tion which gives the system the expressive power
needed to describe complex linguistic structures.

A subtype inherits all constraints of its super-
types monotonically: the constraints expressed as
an expression of feature terms are conjoined using
unification; the conditions are conjoined using the
logical and operation.

i . 4 C h e c k e d a t c o m p d e t i m e .

73

II: LIST]
APPEND[2: LIST[

. [.3: LISTJ

1: [rest:~

APPEND0 23: [~LIS'I APPENDI/2: [~]LIST

:~ [3: CONS[first:It
[rest:JiM]

:- APPEND :

LIST

NIL NS LIST

Figure 2: Type hierarchy for LIST and A P P E N D (T and .1_ omit ted) .

A set of type definitions defines an inheri-
tance hierarchy of feature terms which specifies
the available approximations. Such a hierarchy is
compiled into a rewrit ing system as follows: each
direct link between a type A and a subtype B
generates a rewrite rule of the form A[a] ~ B[b]
where [a] and [b] are the definitions of A and B,
respectively.

The interpreter is given a "query" (a feature
te rm) to evaluate: this input te rm is already an
approximat ion of the final solution, though a very
rough approximation. The idea is to incremen-
tally add more information to tha t t e rm using the
rewri te rules in order to get step by step closer
to the solution: we stop when we have the best
possible approximation.

A rewrite step for a te rm t is defined as follows:
if u is a subterm of t of type A and there exists a
rewrite rule A[a] ~ B[b] such tha t A[a] N u ~ _l_,
the r ight-hand side B[b] is unified with the sub-

te rm u, giving a new te rm t' which is more spe-
cific than t. This rewri te step is applied non-
deterministically everywhere in the te rm until no
fur ther rule is applicable 5. Actually, the rewriting
process stops ei ther when all types are minimal
types or when all subterms in a te rm correspond
exactly to some approximat ion defined by a type
in the hierarchy. A t e rm is "solved" when any sub-
te rm is either more specific than the definition of
a minimal type, or does not give more information
than the definition of its type.

This defines an i f and only if condition for a
t e rm to be a solved-form, where any addition of
information will not bring anyth ing new and is
implemented using a lazy rewriting strategy: the
application of a rule A[a] ~ B[b] at a subterm u
is actually tr iggered only when A[a] N u U d[a].
This lazy rewrit ing s t ra tegy implements a fully
data-driven computa t ion scheme and avoids use-
less branches of computat ion. Thus, there is no

5Conditions do not change this general scheme and are omitted from the presentation for the sake of simplicity. See
for example [Dershowitz/Plaisted 88], and [Klop 90] for a survey.

74

LIST

LIST

A P P E N D : LIST /
: LISTJ

[i: A P P E N D :LIST I
LISTJ

> NIL

, CONS[first: T T]
[rest: LIS

A P P E N D 0 :

[i A P P E N D 1 :

NIL
LIST

~rst:[]
CONS rest:El

[] LIST

CONS[first:IX]
[rest:[]

A P P E N D 2:

I_ a:

Figure 3: Rewrite rules for LIST and A P P E N D .

need to have a special t r ea tment to avoid what cor-
responds to the evaluation of un-instant ia ted goals
in PROLOG, since a general t r ea tmen t based on

i

the semantics oflthe formalism itself is built in the
evaluation s t ra tegy of the interpreter .

The choice of which subterm to rewrite is
only par t ly driven by the availability of infor-
mat ion (using the lazy rewrit ing scheme). When
there are several subterms that could be rewrit-
ten, the computa t ion rule is to choose the outer-
most ones (inner-most strategies are usually non-
terminat ing) 6. Such an outer-most rewrit ing strat-
egy has interesting terminat ion properties, since
there are problems where a TFS program will
te rminate when the corresponding PROLOG pro-
gram will not z.

For a given subterm , the choice of which rule to

apply is done non-deterministically, and the search
space is explored depth-first using a backtrack-
ing scheme. This s t ra tegy is not complete, though
in association with the outer-most rule and with
the lazy evaluation scheme, it seems to terminate
on any "well-defined" problem, i.e. when terms
introduced by recursive definitions during exe-
cution are strictly decreasing according to some
mesure (for example, see the definition of guides
in [Dymetman et al. 90] for the parsing and gener-
ation problems). A complete breadth-first search
s t ra tegy is planned for debugging purposes.

The interpreter described above is implemented s
and has been used to test several models such
as LFG, HPSG, or DCG on toy examples
[Emele/Zajac 90b, Emele et al. 90, Zajac 90a].

8This outer-mos t rewriting strategy is similar to hyper-resolution in logic programming. The lazy evaluation mech-
anism is related to the 'freeze' predicate of, e.g. Prolog-II and Sicstus Prolog, though in Prolog, it has to be called
explicitly.

7e.g. the problem: of left-recursive rules in naive PROLOG implementations of DCGs
SA prototype version is publically available.

75

3 P A R S I N G , G E N E R A T I O N , A N D BIDI -
R E C T I O N A L T R A N S F E R

3.1 P a r s i n g / g e n e r a t i o n

A grammar describes the relation between
strings of words and linguistic structures. In or-
der to implement a reversible grammar, we have
to encode both kinds of structure using the same
kind of data structure provided by the TFS lan-
guage: typed feature structures. A linguistic struc-
ture will be encoded using features and values, and
the set of valid linguistic structures has to be de-
clared explicitly. A string of words will be encoded
as a list of word forms, using the same kind of def-
initions as in Figure 1.

To abolish the distinction between "input" and
"output", the relation between a string and a lin-
guistic structure will be encoded in a single term
with, for example, two features, s t r i n g and syn
and we can call the type of such a structure SIGN 9.

The type SIGN is divided into several subtypes
corresponding to different mappings between a
string and a linguistic structure. We will have at
least the classifcation bewteen phrases and words.
The definition of a phrase will recursively relate
subphrases and substrings, and define the phrase
as a composition of subphrases and the string
as the concatenation r of substrings. The formal-
ism does not impose constraints on how the re-
lations between phrases and strings are defined,
and the grammar writer has to define them ex-
plicitly. One possibility is to use context-free like
mappings, using for example the same kind of
encoding as in DCGs for PATR-like gramars or

tIPSG [Emele/Zajac 90b]. But other possibilities
are available as well: using a kind of functional
composition reminiscent of categorial grammars
as in [Dymetman et al. 90], or linear precedence
rules [Pollard/Sag 87, Reape 90].

For example, a rule like [Shieber 86] l°

N P V P :
(S head)= (YP head)
(S headform) = finite
(UP syncat f irst) = (NP)
(VP syncat rest) -- (end).

is encoded in TFS using a type S for the sentence
type with two features np and vp for encoding the
constituent structure, and similarly for NPs and
VPs. The string associated with each constituent
is encoded under the feature s t r i n g . The string
associated with the sentence is simply the concate-
nation of the string associated with the VP and
the string associated with the NP: this constraint
is expressed in a condition using the APPEND rela-
tion on lists (Figure 4).

The difference between the parsing and the
generation problem is then only in the form of the
term given to the interpreter for evaluation. An
underspecified term where only the string is given
defines the parsing problem:

An underspecified term where only the seman-
tic form is given defines the generation problem:

9This is of course very reminiscent of HPSG, and it should not come as a surprise: HPSG is so far the only formal
linguistic theory based on the notion of typed feature structures [Pollard/Sag 87]. A computational formalism similar to
TFS is currently under design at CMU for implementing HPSG [Carpenter 90, Franz 90].

1°Using a more condensed notation for lists with angle brackets provided by the TFS syntax: a list
CONS[first : Mary, r e s t : CONS[first : s i n g s , r e s t : NIL]] is written as <Mary s ings>.

76

[r 111
S head: |tran.:/a.g,: .T. R / / /

L Larg2: CORSWALLJ j j

is also specified in the condition part, and these
contrastive definitions are defined separately from
the lexical definitions.

In both cases , the same interpreter uses the
same set of rewrite rules to fill in "missing in-
formation" according to the grammar definitions.
The result in both cases is exactly the same: a fully
specified term containing the string, the semantic
form, and also all other syntactic information like
the constituent Structure (Figure 5).

The transfer problem for one direction or the
other is stated in the same way as for parsing or
generation: the input term is an under-specified
"bilingual sign" where only one structure for one
language is given. Using the contrastive grammar,
the interpreter fills in missing information and
builds a completely specified bilingual sign 11 .

3.2 B i - d i r e c t i o n a l t rans fer in M T

We have sketrched above a very general frame-
work for specifying mappings between a linguis-
tic structure, effcoded as a feature structure and
a string; also encoded as a feature structure. We
apply a similar technique for specifying MT trans-
fer rules, which we prefer to call "contrastive
rules" since there is no directionality involved
[Zajac 89, Zajac;90a].

The idea is rather simple: assume we are work-
ing with linguistic structures similar to LFG's
functional structures for English and French
[Kaplan et al. 8~]. We define a translation rela-
tion as a type TAU-LEX with two features, eng for
the English structure and f r for the French struc-
ture. This "bilingual sign" is defined on the lexical
structure: each shbtype of TAU-LEX defines a lexi-
cal correspondence between a partial English lexi-
cal structure and. a partial French lexical structure
for a given lexical equivalence. Such a lexical con-
trastive definition also has to pair the arguments
recursively, and this is expressed in the condition
part of the definltion (Figure 6). The translation
of syntactic features, like tense or determination,

4 T H E T E R M I N A T I O N P R O B L E M A N D
E F F I C I E N C Y I S S U E S

For parsing and generation, since no constraint
is imposed on the kind of mapping between the
string and the semantic form, termination has
to be proved for each class of grammar and
the for the particular evaluation mechanism used
for either parsing or generation with this gram-
mar. If we restrict ourselves to class of grammars
for which terminating evaluation algorithms are
known, we can implement those directly in TFS.
However, the TFS evaluation strategy allows more
naive implementations of grammars and the outer-
most evaluation of "sub-goals" terminates on a
strictly larger class of programs than for corre-
sponding logic programs implemented in a con-
ventional PROLOG. Furthermore, the grammar
writer does not need, and actually should not, be
aware of the control which follows the shape of the
input rather than a fixed strategy, thanks to the
lazy evaluation mechanism.

tIPSG-style grammars do not cause any prob-
lem: completeness and coherence as defined
for LFG, and extended to the general case

11See also [Reape ',90] for a "Shake'n'Bake" approach to MT (Whitelock).

77

by [Wedekind 88], are implemented in HPSG
using the "subcategorization feature principle"
[Johnson 87]. Termination conditions for parsing
are well understood in the framework of context-
free grammars. For generation using feature struc-
tures, one of the problems is that the input could
be "extended" during processing, i.e. arbitrary
feature structures could be introduced in the se-
mant ic par t of the input by unification with the
semantic part of a rule. However, if the semantic
part of the input is fully speficied according to a
set of type definitions describing the set of well-
formed semantic structures (and this condition is
easy to check), this cannot arise in a type-based
system. A more general approach is described in
[Dymetman et al. 90] who define sufficient prop-
erties for terminat ion for parsing and generation
for the class of "Lexical Grammars" implemented
in PROLOG. These properties seem generalizable
to other classes of grammars as well, and are also
applicable to TFS implementations. The idea is
relatively simple and says that for parsing, each
rule must consume a non empty part of the string,
and for generation, each rule must consume a non
empty part of the semantic form. Since Lexical
Grammars are implemented in PROLOG, left-
recursion must be eliminated for parsing and for
generation, but this does not apply to TFS imple-
mentat ions.

Terminat ion for reversible transfer grammars is
discussed in [van Noord 90]. One of the problems
mentioned is the extension of the "input", as in
generation, and the answer is similar (see above).
Itowever, properties similar to the "conservative
guides" of [Dymetman et al. 90] have to hold in
order to ensure termination.

The lazy evaluation mechanism has an al-
most optimal behavior on the class of prob-

lems that have an exponential complexity
when using the "generate and test" method
[van Hentenryck/Dincbas 87, A[t-Saci/Meyer 90].
It is driven by the availability of information: as
soon as some piece of information is available, the
evaluation of constraints in which this information
appears is triggered. Thus, the search space is ex-
plored "intelligently", never following branches of
computat ion that would correspond to uninstan-
ciated PROLOG goals. The lazy evaluation mech-
anism is not yet fully implemented in the current
version of TFS, but with the partial implementa-
tion we have, a gain of 50% for parsing has already
been achieved (in comparison with the previous
implementat ion using only the outer-most rewrit-
ing strategy).

The major drawback of the current implemen-
tat ion is the lack of an efficient indexing scheme
for objects. Since the dictionaries are accessed us-
ing unification only, each entry is tried one after
the other, leading to an extremely inefficient be-
havior with large dictionaries. However, we think
that a general indexing scheme based on a com-
bination of methods used in PROLOG implemen-
tations and in object-oriented database systems is
feasible.

C O N C L U S I O N

We have described a uniform constraint-based
architecture for the implementat ion of reversible
unification grammars. The advantages of this ar-
chitecture in comparison of more traditional logic
(i.e. PROLOG) based architectures are: the in-
p u t / o u t p u t distinction is truly abolished; the eval-
uation terminates on a strictly larger class of prob-
lems; it is directly based on typed feature struc-
tures, not first order terms; a single fully data-
driven constraint evaluation scheme is used; the

78

I

constraint evaluation scheme is directly derived
from the semantics of typed feature structures.
Thus, the TFS i language allows a direct imple-
mentat ion of reyersible unification grammars. Of
course, it does not dispense the grammar designer
with the proof O f general formal properties that
any well-behaved grammar should have, but it
does allow the g rammar writer to develop gram-
mars without thinking about any notion of control
or input /output : distinction.

R e f e r e n c e s

[A[t-Kaei 84] Hassan Ai't-Kaei. A Lattice Theoretic
Approach to Computation based on a Calculus of
Partially Ordered Types Structures. Ph.D Disserta-
tion, University of Pennsylvania.

[Ai't-Kaci 86] Hassan Ait-Kaei. "An Algebraic Seman-
tics Approach to the Effective Resolution of Type
Equations". Theoretical Computer Science 45, 293-
351.

[Ai't-Kaei/Meyer 90] Hassan Ai't-Kaei and Richard
Meyer. "Wild_E.IFE , a user manual". PRL Technical
Note 1, Digital~Equipement Corporation, Paris Re-
search Laboratory, Rueil-Malmaison, France, 1990.

[Calder et al. 89] ~Jonathan Calder, Mike Reape and
Henk Zeevat. "An algorithm for generation in uni-
fication grammars". Proc. of the 4th Conference of
the European Chapter of the Association for Compu-
tational LinguiStics, 10-12 April 1989, Manchester.

[Carpenter 90] Bob Carpenter. "Typed feature struc-
tures: inheritance, (in)equality and extensionality".
Proc. of the Workshop on Inheritance in Natural
Language Processing, Institute for Language Tech-
nology and AI, Tilburg University, Netherlands, Au-
gust 1990.

[Dershowitz/Plais~ed88] N. Dershowitz and D.A.
Plaisted. "Equational programming". In Hayes,
Michie and Riehards (eds.). Machine Intelligence 11.
Clarendon Press, Oxford, 1988.

[Dymetman/Isabelle 88] Marc Dymetman and Pierre
Isabelle. "Reversible logic grammars for machine
translation". Proc. of the 2nd International Con-
ference on Theoretical and Methodological Issues
in Machine Translation of Natural Language, June
1988, Pittsburgh.

[Dymetman et al. 90] Mare Dymetman, Pierre Is-
abelle and Francois Perrault. "A symmetrical ap-
proach to parsing and generation". Proe. of the 13th
International Conference on Computational Lin-
guistics - COLING'90, Helsinki, August 1990.

[Emele 91] Martin Emele. "Unification with lazy non-
redundant copying". 29th Annual Meeting of the
ACL, June 1991, Berkeley, CA.

[Emele/Zajac 90a] Martin Emele and Rdmi Zajac. "A
fixed-point semantics for feature type systems".
Proe. of the 2nd Workshop on Conditional and
Typed Rewriting Systems - CTRS'90, Montreal,
June 1990.

[Emele/Zajae 90b] Martin Emele and Rdmi Zajac.
"Typed Unification Grammars". Proe. of the 13th
International Conference on Computational Lin-
guistics - COLING'90, Helsinki, August 1990.

[Emele et al. 90] Martin Emele, Ulrich Heid, Stefan
Momma and Rdmi Zajac. "Organizing linguistic
knowledge for multilingual generation". Proe. of
the 13th International Conference on Computational
Linguistics - COLING'90, Helsinki, August 1990.

[Franz 90] Alex Franz. "A parser for HPSG". CMU re-
port CMU-LCL-90-3, Laboratory for Computational
Linguistics, Carnegie Mellon University, July 1990.

[Isabelleet al. 88] Pierre Isabelle, Mare Dymetman
and Eliot Maeklovitch. "CRITTER: a translation
system for agricultural market reports.". Proc. of
the 12th International Conference on Computational
Linguistics - COLING'88, August 1988, Budapest.

[Johnson 87] Mark Johnson. "Grammatical relations
in attribute-value grammars". Proe. of the West
Coast Conference on Formal Linguistics, Vol.6,
Stanford, 1987

79

[Kaplan et al. 89] Ronald M. Kaplam, Klaus Netter,
Jfirgen Wedekind, Annie Zaenen. "Translation by
structural correspondences". Proc. of the 4th Euro-
pean A CL Conference, Manchester, 1989.

[Klop 90] Jan Willem Klop. "Term rewriting systems".
To appear in S. Abramsky, D. Gabbay and T.
Maibaum. Handbook of Logic in Computer Science,
Vol.1, Oxford University Press.

[Newman 90] P. Newman. "Towards convenient bi-
directional grammar formalisms". Proc. of the 13th
International Conference on Computational Lin-
guistics - COLING'90, August 1990, Helsinki.

[Pereira/Warren 83] Fernando C.N. Pereira and David
Warren. "Parsing as deduction". Proc. of the 21st
Annual Meeting of the ACL, 15-17 June 1983, Cam-
bridge, MA.

[Pollard/Sag87] Carl Pollard and Ivan A. Sag.
Information-Based Syntax and Semantics. CSLI
Lecture Notes 13, Chicago University Press, 1987.

[Pollard/Moshier 89] Carl Pollard and Drew Moshier.
"Unifiying partial descriptions of sets". In P. Hanson
(ed.) Information, Language and Cognition, Van-
couver Studies in Cognitive Science 1, University of
British Columbia Press, Vancouver.

[Reape 90] Mike Reape. "Parsing semi-free word or-
der and bounded discontinuous constituency and
"shake 'n' bake" machine translation (or 'genera-
tion as parsing')". Presented at the International
Workshop on Constraint Based Formalisms for Nat-
ural Language Generation, Bad Teinach, Germany,
November 1990.

[Russell et al. 90] Graham Russell, Susan Warwick
and John Carroll. "Asymmetry in parsing and gen-
eration with unification grammars: case studies from
ELU". Proc. of the 28th A nnual Meeting of the A CL,
6-9 June 1990, Pittsburgh.

[Shieber 86] Stuart Shieber.
An Introduction to Unification-based Grammar For-
malisms. CSLI Lectures Notes 4, Chicago University
Press, 1986.

[Shieber 88] Stuart Shieber. "A uniform architecture
for parsing and generation". Proc. of the 12th Inter-
national Conference on Computational Linguistics -
COLING'88, August 1988, Budapest.

[Shieber et al. 89] Stuart Shieber, Gertjan van Noord,
Robert Moore and Fernando Pereira. "A uniform ar-
chitecture for parsing and generation". Proc. of tile
27th Annual Meeting of the ACL, 26-27 June 1989,
Vancouver.

[Strzalkowski 90] Tomek Strzalkowski. "How to invert
a natural language parser into an efficient gener-
ator: an algorithm for logic grammars". Proc. of
the 13th International Conference on Computational
Linguistics - COLING'90, August 1990, Helsinki.

[van Hentenryck/Dincbas 87] P. van Hentenryck and
M. Dincbas. "Forward checking in logic program-
ming". Proc. of the 4th International Conference on
Logic Programming, Melbourne, May 1987.

[van Noord 90] Gertjan van Noord. "Reversible unifi-
cation based machine translation". Proc. of the 13th
International Conference on Computational Lin-
guistics - COLING'90, August 1990, Helsinki.

[Wedekind 88] Jiirgen Wedekind. "Generation as
structure driven generation". Proc. of the 12th Inter-
national Conference on Computational Linguistics -
COLING'88, August 1988, Budapest.

[Zajac 89] R6mi Zajac. "A transfer model using a
typed feature structure rewriting system with in-
heritance". Proc. of the gTth Annual Meeting of the
A CL, 26-27 June 1989, Vancouver.

[Zajac 90a] Rdmi Zajac. "A relational approach to
translation". Proc. of the 3rd International Con-
ference on Theoretical and Methodological Issues in
Machine Translation of Natural Language, 11-13
June 1990, Austin.

[Zajac 90b] R~mi Zajac. "Computing partial informa-
tion using approximations - Semantics of typed
feature structures". Presented at the International
Workshop on Constraint Based Formalisms for Nat-
ural Language Generation, Bad Teinach, Germany,
November 1990.

80

