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The 1990s have witnessed a resurgence of interest in 1950s-style empirical and statisti- 
cal methods  of language analysis. Empiricism was at its peak in the 1950s, dominat ing 
a broad set of fields ranging from psychology (behaviorism) to electrical engineering 
(information theory). At that time, it was common practice in linguistics to classify 
words not only on the basis of their meanings but  also on the basis of their co- 
occurrence with other words.  Firth, a leading figure in British linguistics during the 
1950s, summar ized  the approach with the memorable  line: "You shall know a word 
by the company  it keeps" (Firth 1957). Regrettably, interest in empiricism faded in the 
late 1950s and early 1960s with a number  of significant events including Chomsky 's  
criticism of n-grams in Syntactic Structures (Chomsky 1957) and Minsky and Papert 's  
criticism of neural networks in Perceptrons (Minsky and Papert  1969). 

Perhaps the most  immediate  reason for this empirical renaissance is the availabil- 
ity of massive quantities of data: more text is available than ever before. Just ten years 
ago, the one-million word Brown Corpus (Francis and Ku~era, 1982) was considered 
large, but  even then, there were much  larger corpora such as the Birmingham Cor- 
pus (Sinclair et al. 1987; Sinclair 1987). Today, many  locations have samples of text 
running into the hundreds  of millions or even billions of words.  Collections of this 
magni tude  are becoming widely available, thanks to data collection efforts such as the 
Association for Computat ional  Linguistics' Data Collection Initiative (ACL/DCI),  the 
European Corpus Initiative (ECI), ICAME, the British National Corpus (BNC), the Lin- 
guistic Data Consort ium (LDC), the Consort ium for Lexical Research (CLR), Electronic 
Dictionary Research (EDR), and standardization efforts such as the Text Encoding Ini- 
tiative (TEI). 1 The data-intensive approach to language, which is becoming known as 
Text Analysis, takes a pragmatic approach that is well suited to meet  the recent empha-  
sis on numerical  evaluations and concrete deliverables. Text Analysis focuses on broad 
( though possibly superficial) coverage of unrestricted text, rather than deep analysis 
of (artificially) restricted domains. 
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The case for the resurgence of empiricism in computational linguistics is nicely 
summarized in Susan Warwick-Armstrong's call-for-papers for this special issue: 

The increasing availability of machine-readable corpora has suggested 
new methods for studies in a variety of areas such as lexical knowl- 
edge acquisition, grammar construction, and machine translation. 
Though common in the speech community, the use of statistical and 
probabilistic methods to discover and organize data is relatively new 
to the field at large. The various initiatives currently under way to lo- 
cate and collect machine-readable corpora have recognized the poten- 
tial of using this data and are working toward making these materials 
available to the research community. Given the growing interest in 
corpus studies, it seems timely to devote an issue of CL to this topic. 

In Section 1, we review the experience of the speech recognition community. Stochastic 
methods based on Shannon's noisy channel model have become the methods of choice 
within the speech community. Knowledge-based approaches were tried during the first 
DARPA speech recognition project in the early 1970s, but have largely been abandoned 
in favor of stochastic approaches that have become the main focus of DARPA's more 
recent efforts. 

In Section 2, we discuss how this experience is influencing the language commu- 
nity. Many of the most successful speech techniques are achieving major improvements 
in performance in the language area. In particular, probabilistic taggers based on Shan- 
non's noisy channel model are becoming the method of choice because they correctly 
tag 95% of the words in a new text, a major improvement over earlier technologies that 
ignored lexical probabilities and other preferences that can be estimated statistically 
from corpus evidence. 

In Section 3, we discuss a number of frequency-based preferences such as collo- 
cations and word associations. Although often ignored in the computational linguistics 
literature because they are difficult to capture with traditional parsing technology, 
they can" easily overwhelm syntactic factors (as any psycholinguist knows). Four arti- 
cles in this special issue take a first step toward preference-based parsing, an empirical 
alternative to the rational tradition of principle-based parsing, ATNs, unification, etc. 

In Section 4, we discuss entropy and evaluation issues, which have become rela- 
tively important in recent years. 

In Section 5, we discuss the application of noisy channel models to bilingual ap- 
plications such as machine translation and bilingual lexicography. 

In Section 6, we discuss the use of empirical methods in monolingual lexicogra- 
phy, contrasting the exploratory data analysis (EDA) view of statistics with other per- 
spectives such as hypothesis testing and supervised/unsupervised learning/training. 
There are five articles in this special issue on computational lexicography, using both 
the exploratory and the self-organizing approaches to statistics. 

1. The Influence from the Speech Community 

1.1 Consensus in Speech Community: Stochastic Methods Are Outperforming 
Knowledge-Based Methods 

Over the past 20 years, the speech community has reached a consensus in favor of em- 
pirical methods. As observed by Waibel and Lee in the introduction to their collection 
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of reprints on speech recognition (Waibel and Lee 1990): 

Chapter 5 describes the knowledge-based approach, proposed in the 1970s 
and early 1980s. The pure knowledge-based approach emulates hu- 
man speech knowledge using expert systems. Rule-based systems 
have had only limited success... Chapter 6 describes the stochastic 
approach... Most successful large-scale systems today use a stochastic 
approach. (Waibel and Lee 1990; p. 4) 

A number of data collection efforts have helped to bring about this change in the 
speech community, especially the Texas Instruments' Digit Corpus (Leonard 1984), 
TIMIT and the DARPA Resource Management (RM) Database (Price et al. 1988). Ac- 
cording to the Linguistic Data Consortium (LDC), the RM database was used by every 
paper that reported speech recognition results in the 1988 Proceedings oflEEE ICASSP, 
the major technical society meeting where speech recognition results are reported. 
This is especially significant given that abstracts for this meeting were due just a few 
months after the release of the corpus, attesting to the speech recognition community's 
hunger for standard corpora for development and evaluation. 

Back in the 1970s, the more data-intensive methods were probably beyond the 
means of many researchers, especially those working in universities. Perhaps some 
of these researchers turned to the knowledge-based approach because they couldn't 
afford the alternative. It is an interesting fact that most of the authors of the knowledge- 
based papers in Chapter 5 of Waibel and Lee (1990) have a university affiliation 
whereas most of the authors of the data-intensive papers in Chapter 6 have an in- 
dustrial affiliation. Fortunately, as a result of improvements in computer technology 
and the increasing availability of data due to numerous data collection efforts, the 
data-intensive methods are no longer restricted to those working in affluent industrial 
laboratories. 

1.2 The Anti-Empiricist Period in Speech Research 
At the time, of course, the knowledge-based approach was not advocated on economic 
grounds. Rather, the knowledge-based approach was advocated as necessary in order 
to deal with the lack of allophonic invariance. The mapping between phonemes and 
their allophonic realizations is highly variable and ambiguous. The p h o n e m e / t / ,  for 
example, may be realized as a released stop in "Tom," as a flap in "butter," or as 
a glottal stop in "bottle." Two different phonemes may lead to the same allophonic 
variant in some contexts. For example, "writer" and "rider" are nearly identical in 
many dialects of American English. Residual differences, such as the length of the 
preconsonantal vowel, are easily overwhelmed by the context in which the word ap- 
pears. Thus, if one says "Joe is a rider of novels," listeners hear "Joe is a writer of 
novels," while if one says "Joe is a writer of horses," listeners hear "Joe is a rider of 
horses." Listeners usually have little problem with the wild variability and ambiguity 
of speech because they know what the speaker is likely to say. 

In most systems for sentence recognition, such modifications must be 
viewed as a kind of 'noise' that makes it more difficult to hypothesize 
lexical candidates given an input phonetic transcription. To see that 
this must be the case, we note that each phonological rule [in the 
utterance: "Did you hit it to Tom?"] results in irreversible ambiguity--  
the phonological rule does not have a unique inverse that could be 
used to recover the underlying phonemic representation for a lexical 
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item. For example, .. .  [t]he tongue flap ...  could have come from a 
/ t / o r  a / d / .  (Klatt 1980; pp. 548-549) 

The first DARPA Speech Understanding project emphasized the use of high-level con- 
straints (e.g., syntax, semantics, and pragmatics) as a tool to disambiguate the al- 
lophonic information in the speech signal by understanding the message. At BBN, 
researchers called their system HWIM for (Hear What IMean). They hoped to use NLP 
techniques such as ATNs (Woods 1970) to understand the sentences that they were 
trying to recognize even though the output of their front end was highly variable and 
ambiguous. 

The emphasis today on empirical methods in the speech recognition community 
is a reaction to the failure of knowledge-based approaches of the 1970s. It has become 
popular once again to focus on high-level natural language constraints in order to 
reduce the search space. But this time, n-gram methods have become the methods of 
choice because they seem to work better than the alternatives, at least when the search 
space is measured in terms of entropy. Ideally, we might hope that someday parsers 
might reduce entropy beyond that of n-grams, but right now, parsers seem to be more 
useful for other tasks such as understanding who did what to whom, and less useful 
for predicting what the speaker is likely to say. 

1.3 The Raleigh System: A Foundation for the Revival of Empiricism 
In the midst of all of this excitement over high-level, knowledged-based NLP tech- 
niques, IBM formed a new speech group around the nucleus of an existing group 
that was moved from Raleigh, North Carolina, to Yorktown Heights early in 1972. 
The Raleigh group brought to Yorktown a working speech recognition system, that 
had been designed in accordance with prevailing anti-empiricist attitudes of the time, 
though it would soon serve as a foundation for the revival of empiricism in the speech 
and language communities. 

The front end of the Raleigh system converted the speech signal (20,000 samples 
per second) first into a sequence of 80 filter bank outputs (100 80-dimensional vectors 
per second), and then into a sequence of phoneme-like labels (100 labels per second), 
using an elaborate set of hand-tuned rules that would soon be replaced with an auto- 
matically trained procedure. The back end converted these labels into a sequence of 
words using an artificial finite-state grammar that was so small that the finite-state ma- 
chine could be written down on a single piece of paper. Today, many systems attempt 
to model unrestricted language using methods that will be discussed in Section 3, but 
at the time, it was standard practice to work with artificial grammars of this kind. 

When it worked perfectly, the front end produced a transcription of the speech 
signal such as might be produced by a human phonetician listening carefully to the 
original speech. Unfortunately, it almost never worked perfectly, even on so small a 
stretch as a single word. Rapid phones, such as flaps, were often missed; long phones, 
such as liquids and stressed vowels, were often broken into several separate seg- 
ments; and very often phones were simply mislabeled. The back end was designed to 
overcome these problems by navigating through the finite-state network, applying a 
complicated set of hand-tuned penalties and bonuses to the various paths in order to 
favor those paths where the low-level acoustics matched the high-level grammatical 
constraints. This system of hand-tuned penalties and bonuses correctly recognized 35% 
of the sentences (and 77% of the words) in the test set. At the time, this level of perfor- 
mance was actually quite impressive, but these days, one would expect much more, 
now that most systems use parameters trained on real data, rather than a complicated 
set of hand-tuned penalties and bonuses. 
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1.4 The Noisy Channel Model 
Although the penalties and bonuses were sometimes thought of as probabilities, the 
early Raleigh system lacked a complete and unified probabilistic framework. In a rad- 
ical departure from the prevailing attitudes of the time, the Yorktown group turned 
to Shannon's theory of communication in the presence of noise and recast the speech 
recognition problem in terms of transmission through a noisy channel. Shannon's the- 
ory of communication (Shannon 1948), also known as Information Theory, was originally 
developed at AT&T Bell Laboratories to model communication along a noisy channel 
such as a telephone line. See Fano (1961) for a well-known secondary source on the 
subject, or Cover and Thomas (1991) or Bell, Cleary, and Witten (1990) for more recent 
treatments. 

The noisy channel paradigm can be applied to other recognition applications such 
as optical character recognition (OCR) and spelling correction. Imagine a noisy chan- 
nel, such as a speech recognition machine that almost hears, an optical character recog- 
nition (OCR) machine that almost reads, or a typist who almost types. A sequence of 
good text (/) goes into the channel, and a sequence of corrupted text (O) comes out 
the other end. 

I --* Noisy Channel --, 0 

How can an automatic procedure recover the good input text,/,  from the corrupted 
output, O? In principle, one can recover the most likely input, I, by hypothesizing all 
possible input texts,/,  and selecting the input text with the highest score, Pr(I I 0). 
Symbolically, 

-- argmaxPr(I [ O) = argmaxPr(I) Pr(O I I ) 
I I 

where ARGMAX finds the argument with the maximum score. 
The prior probability, Pr(I), is the probability that I will be presented at the input 

to the channel. In speech recognition, it is the probability that the talker utters I; in 
spelling correction (Damerau 1964; Kukich 1992), it is the probability that the typist 
intends to type I. In practice, the prior probability is unavailable, and consequently, 
we have to make do with a model of the prior probability, such as the trigram model. 
The parameters of the language model are usually estimated by computing various 
statistics over a large sample of text. 

The channel probability, Pr(O I I), is the probability that O will appear at the 
output of the channel when I is presented at the input; it is large if I is similar, in 
some appropriate sense, to O, and small, otherwise. The channel probability depends 
on the application. In speech recognition, for example, the output for the word "writer" 
may look similar to the word "rider"; in character recognition, this will not be the case. 
Other examples are shown in Table 1. 

1.5 Training Is Better than Guessing 
Rather than rely on guesses for the values of the bonuses and penalties as the Raleigh 
group had done, the Yorktown group used three levels of hidden Markov models 
(HMMs) to compute the conditional probabilities necessary for the noisy channel. 
A Markov model is a finite state machine with probabilities governing transitions 
between states and controlling the emission of output symbols. If the sequence of state 
transitions cannot be determined when the sequence of outputs is known, the Markov 
model is said to be hidden. In practice, the Forward-Backward algorithm is often used 
to estimate the values of the transition and emission parameters on the basis of corpus 
evidence. See Furui (1989; Appendix D.3, pp. 343-347) for a brief description of the 
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Table 1 
Examples of channel confusions in different applications. 

Application Input Output 

Speech writer rider 
Recognition here hear 

Optical all all (A-one-L) 
Character of o{ 
Recognition form farm 

Spelling government goverment 
Correction occurred occured 

commercial commerical 

Table 2 
Performance after training (Bahl et al. 1975) 

Training Set Size Test Sentences Correctly Decoded Decoding Problems 

0 2/10 8/10 
200 77/100 3/100 
400 80/100 2/100 
600 85/100 1/100 
800 82/100 3/100 

1070 83/100 3/100 

Forward-Backward algorithm, and (Rabiner 1989) for a longer tutorial on HMMs. The 
general procedure, of which the Forward-Backward algorithm is a special case, was 
first published and shown to converge by Baum (1972). 

The first level of the Raleigh system converted spelling to phonemic base forms, 
rather like a dictionary; the second level dealt with the problems of allophonic variation 
mentioned above; the third level modeled the front end. At first, the values of the 
parameters in these HMMs were carefully constructed by hand, but eventually they 
would all be replaced with estimates obtained by training on real data using statistical 
estimation procedures such as the Forward-Backward algorithm. 

The advantages of training are apparent in Table 2. Note the astounding improve- 
ment in performance. Despite a few decoding problems, which indicate limitations 
in the heuristic search procedure employed by the recognizer, sentence accuracy had 
improved from 35% to 82-83%. 

Moreover, training turned out to be important for speeding up the search. The first 
row shows the results for the initial estimates, which were very carefully prepared by 
two members of the group over several weeks. Despite all of the careful hand work, 
the search was so slow that only 10 of the 100 test sentences could be recognized. 
The initial estimates were unusable without at least some training. These days, most 
researchers find that they do not need to be nearly so careful in obtaining initial 
estimates. 

Emboldened by this success, the group began to explore other areas where training 
might be helpful. They began by throwing out the phonological rules. Thus, they 
accepted only a single pronunciation for each word. B-u-t-t-e-r had to be pronounced 
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butter and s-o-m-e-t-h-i-n-g had to be pronounced something, and that was that. Any 
change in these pronunciations was treated as a mislabeling from the front end. After 
training, this simplified system correctly decoded 75% of 100 test sentences, which 
was very encouraging. 

Finally, they removed the dictionary lookup HMM, taking for the pronunciation 
of each word its spelling. Thus, a word like t-h-r-o-u-g-h was assumed to have a 
pronunciation like tuh huh ruh oh uu guh huh. After training, the system learned that 
with words like l-a-t-e the front end often missed the e. Similarly, it learned that g's 
and h's were often silent. This crippled system was still able to recognize 43% of 100 
test sentences correctly as compared with 35% for the original Raleigh system. 

These results firmly established the importance of a coherent, probabilistic ap- 
proach to speech recognition and the importance of data for estimating the parameters 
of a probabilistic model. One by one, pieces of the system that had been assiduously 
assembled by speech experts yielded to probabilistic modeling. Even the elaborate set 
of hand-tuned rules for segmenting the frequency bank outputs into phoneme-sized 
segments would be replaced with training (Bakis 1976; Bahl et al. 1978). By the sum- 
mer of 1977, performance had reached 95% correct by sentence and 99.4% correct by 
word, a considerable improvement over the same system with hand-tuned segmenta- 
tion rules (73% by sentence and 95% by word). 

Progress in speech recognition at Yorktown and almost everywhere else as well has 
continued along the lines drawn in these early experiments. As computers increased 
in power, ever greater tracts of the heuristic wasteland opened up for colonization by 
probabilistic models. As greater quantities of recorded data became available, these 
areas were tamed by automatic training techniques. Today, as indicated in the intro- 
duction of Waibel and Lee (1990), almost every aspect of most speech recognition 
systems is dominated by probabilistic models with parameters determined from data. 

2. Part-of-Speech Tagging 

Many of the very same methods are being applied to problems in natural language 
processing by many of the very same researchers. As a result, the empirical approach 
has been adopted by almost all contemporary part-of-speech programs: Bahl and Mer- 
cer (1976), Leech, Garside, and Atwell (1983), Jelinek (1985), Deroualt and Merialdo 
(1986), Garside, Leech, and Sampson (1987), Church (1988), DeRose (1988), Hindle 
(1989), Kupiec (1989, 1992), Ayuso et al. (1990), deMarcken (1990), Karlsson (1990), 
Boggess, Agarwal, and Davis (1991), Merialdo (1991), and Voutilainen, Heikkila, and 
Anttila (1992). These programs input a sequence of words, e.g., The chair will table the 
motion, and output a sequence of part-of-speech tags, e.g., art noun modal verb art noun. 
Most of these programs correctly tag at least 95% of the words, with practically no 
restrictions on the input text, and with very modest space and time requirements. 
Perhaps the most important indication of success is that many of these statistical tag- 
ging programs are now being used on large volumes of data (hundreds of millions of 
words of text) in a number of different application areas including speech synthesis 
(Sproat, personal communication; Liberman and Church 1991), speech recognition (Je- 
linek 1985; Jelinek, Mercer, and Roukos 1991), information retrieval (Salton, Zhao, and 
Buckley 1990; Croft, Turtle, and Lewis 1991), sense disambiguation (Hearst 1991), and 
computational lexicography (Klavans and Tzoukermann 1990a, 1990b; Church and 
Gale 1991). Apparently, these programs must be addressing some important needs of 
the research community or else they wouldn't  be as widely cited as they are. Many of 
the papers in this special issue refer to these taggers. 
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As in speech recognition, data collection efforts have played a pivotal role in 
advancing data-intensive approaches to part-of-speech tagging. The Brown Corpus 
(Francis and Kueera 1982) and similar efforts within the ICAME community, have 
created invaluable opportunities. The Penn Treebank (see the paper by Marcus and 
Santorini 1983) is currently being distributed by the ACL/DCI. The European Corpus 
Initiative (ECI) plans to distribute similar material in a variety of languages. Even 
greater resources are expected from the Linguistic Data Consortium (LDC). And the 
Consortium for Lexical Research (CLR) is helping to make dictionaries more accessible 
to the research community. For information on contacting these organizations, see 
footnote 1. 

2.1 Recasting Part-of-Speech Tagging as a Noisy Channel Problem 
Many of the tagging programs mentioned above are based on Shannon's Noisy Chan- 
nel Model. Imagine that a sequence of parts of speech, P, is presented at the input to 
the channel and for some crazy reason, it appears at the output of the channel in a 
corrupted form as a sequence of words, W. Our job is to determine P given W. 

P --+ Noisy Channel --+ W 

By analogy with the noisy channel formulation of the speech recognition problem, the 
most probable part-of-speech sequence,/~, is given by: 

~P = argmaxPr(P) Pr(W I P ) 
P 

In theory, with the proper choice for the probability distributions Pr(P) and Pr(W I P), 
this algorithm will perform as well as, or better than, any possible alternative that 
one could imagine. Unfortunately, the probability distributions Pr(P) and Pr(W I P) 
are enormously complex: Pr(W I P) is a table giving for every pair W and P of the 
same length a number between 0 and 1 that is the probability that a sequence of 
words chosen at random from English text and found to have the part-of-speech 
sequence P will turn out to be the word sequence W. Changing even a single word 
or part-of-speech in a long sequence may change this number by many orders of 
magnitude. However, experience has shown that surprisingly high tagging accuracy 
can be achieved in practice using very simple approximations to Pr(P) and Pr(W I P). 
In particular, it is possible to replace Pr(P) by a trigram approximation: 

N 

Pr(P1, P2,.. ., PN) ~ I I  Pr(Pi [ Pi-2Pi-1) 
i=i 

and to replace Pr(W ] P) by an approximation in which each word depends only on 
its own part of speech: 

N 

Pr(W1,W2,. . . ,  WN ] P1,P2,.. .  ,PN) "~ HPr (W i  I Pi) 
i=i 

In these equations, Pi is the /th part of speech in the sequence P, and Wi is the /th 
word in W. The parameters of this model, the lexical probabilities, Pr(Wi I Pi), and 
the contextual probabilities, Pr(Pi I Pi-2Pi-1),  a r e  generally estimated by computing 
various statistics over large bodies of text. One can view the first set of parameters as 
a dictionary and the second set of parameters as a grammar. 
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Table 3 
Lexical ambiguity is hard (if we ignore preferences). 

Word Part-of-Speech Tags 

More Likely Less Likely 

I pronoun noun (letter of alphabet) 
see verb noun (the Holy See) 
a article noun (letter of alphabet) 
bird noun verb 

2.2 Why Traditional Methods Have Failed 
Traditional methods have tended to ignore lexical preferences, which are the single- 
most important source of constraint for part-of-speech tagging, and are sufficient by 
themselves to resolve 90% of the tags. Consider the trivial sentence, "I see a bird," 
where every word is almost unambiguous. In the Brown Corpus (Francis and Ku~era 
1982), the word "I" appears as a pronoun in 5,131 times out of 5,132 (~ 100%), "see" 
appears as a verb in 771 times out of 772 (~ 100%), "a" appears as an article in 22,938 
times out of 22,944 (~ 100%) and "bird" appears as a noun in 25 times out of 25 
(~ 100%). However, in addition to the desired tag, many dictionaries such as Web- 
ster's Ninth New Collegiate Dictionary (Mish 1983) also list a number of extremely rare 
alternatives, as illustrated in Table 3. These alternatives can usually be eliminated on 
the basis of the statistical preferences, but traditional parsers don't, and consequently 
run into serious difficulties. Attempts to eliminate unwanted tags on syntactic grounds 
have not been very successful. For example, I/noun see~noun a/noun bird~noun, cannot 
be ruled out as syntactically ill-formed, because the parser must accept sequences of 
four nouns in other situations: city school committee meeting. Apparently, syntactic rules 
are not nearly as effective as lexical preferences, at least for this application. 

The tradition of ignoring preferences dates back to Chomsky's introduction of the 
competence approximation (Chomsky 1957, pp. 15-17). Recall that Chomsky was con- 
cerned that approximations, such as Shannon's n-gram approximation, which was very 
much in vogue at the time, were inappropriate for his needs, and therefore, he intro- 
duced an alternative with complementary strengths and weaknesses. The competence 
approximation is more appropriate for modeling long-distance dependences such as 
agreement constraints and wh-movement, but at the cost of missing certain crucial 
local constraints, especially the kinds of preferences that are extremely important for 
part-of-speech tagging. 

2.3 Using Statistics to Fit Probabilistic Models to Data 
Probabilistic models provide a theoretical abstraction of language, very much like 
Chomsky's competence model. They are designed to capture the more important as- 
pects of language and ignore the less important aspects, where what counts as im- 
portant depends on the application. Statistics are often used to estimate the values of 
the parameters in these probabilistic models. Thus, for example, we might estimate 
the probability distribution for the word Kennedy in the Brown Corpus by modeling 
the distribution with a binomial, and then use the frequency of Kennedy in the Brown 
Corpus (140) to fit the model to the data. 
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The classic example of a binomial process is coin tossing. Suppose that the coin 
comes up  heads with probability p. Then the probability that it will come up  heads 
exactly m times in n tosses is 

n / pro(1 -P)"-~" 
m 

Here 
( n )  

m ' 

which is called the binomial coefficient, is the number  of ways the m positions can be 
chosen from the n coin tosses. It is equal to 

n! 
m!(n - m)!' 

where  n! (n factorial) is equal to 1 x 2 x . . .  x n. For example,  tossing a fair coin three 
times (n = 3, p = 1/2) will result in 0, 1, 2, and 3 heads with probabili ty 1/8, 3/8, 
3/8, and 1/8, respectively. This set of probabilities is called the binomial distribution 
for n and p. The expected value of the binomial distribution is np and the variance is 
0 .2 • np(1 - p). Thus, tossing a fair coin three times will p roduce  an average of 3/2 
heads with a variance of 3/4. 

H o w  can the binomial be used to model  the distribution of Kennedy? Let p be the 
probabili ty that a word  chosen at r andom in English text is Kennedy. We can think of 
a series of words  in English text as analogous to tosses of a coin that comes up  heads 
with probability p: the coin is heads if the word  is Kennedy, and is tails otherwise. 
Of course, we don ' t  really know the value of p, but  in a sample of n words,  we 
should expect to find about  np occurrences of Kennedy. There are 140 occurrences of 
Kennedy in the Brown Corpus,  for which n is approximately  1,000,000. Therefore, we 
can argue that 1,000,000p must  be about  140 and we can make an estimate, ~, of p 
equal to 140/1,00G000. If we really believe that words  in English text come up  like 
heads when  we flip a biased coin, then ~ is the value of p that makes the Brown 
Corpus as probable as possible. Therefore, this method  of estimating parameters  is 
called maximum likelihood estimation (MLE). For simple models,  MLE is very  easy to 
implement  and produces  reasonable estimates in m an y  cases. More elaborate methods  
such as the Good-Turing Method (Good 1953) or Deleted Estimation (,Jelinek and Mercer 
1980, 1985) should be used when  the frequencies are small (e.g., less than 10). 

It is often convenient  to use these statistical estimates as if they are the same as the 
true probabilities, but  this practice can lead to trouble, especially when  the data don ' t  
fit the model  very  well. In fact, content words  don ' t  fit a binomial very  well, because 
content words  tend to appear  in "bursts." That is, content  words  are like buses in 
N ew York City; they are social animals and like to travel in packs. In particular, if the 
word  Kennedy appears  once in a unit of text (e.g., a paragraph,  a discourse, or a genre), 
then it is much  more likely than chance to appear  a second time in the same unit  of 
text. Function words  also deviate from the binomial,  though for different reasons (e.g., 
stylistic factors ment ioned in Biber's paper). 

These bursts might  serve a useful purpose.  People seem to be able to use these 
bursts to speed up  reaction times in various tasks. Psycholinguists use the term priming 
to refer to this effect. Bursts might  also be useful in a number  of practical applications 
such as Information Retrieval (IR) (Salton 1989; Frakes and Baeza-Yates 1992). There 
have been a number  of at tempts over  the years to model  these bursts. The negative 
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binomial distribution, for example, was explored in considerable detail in the classic 
study of the authorship of the Federalist Papers, Mosteller and Wallace (1964), a must- 
read for anyone interested in statistical analyses of large corpora. 

We can show that the distribution of Kennedy is very bursty in the Brown Corpus by 
dividing the corpus into k segments and showing that the probability varies radically 
from one segment to another. For example, if we divide the Brown Corpus into 10 
segments of 100,000 words each, we find that the frequency of Kennedy is: 58, 57, 2, 12, 
6, 1, 4, 0, 0, 0. The variance of these 10 numbers is 539. Under the binomial assumption, 
we obtain a very different estimate of the variance. In a sample of n = 10G 000 words, 
with ]~ = 140 per million, we would expect a variance of n]~(1 - ]~) ~ 14. (The variance 
of the binomial is approximately the same as the expected value when p is small.) The 
large discrepancy between the empirically derived estimate of the variance (539) and 
the one based on the binomial assumption (14) indicates that the binomial assumption 
does not fit the data very well. 

3. Preference-Based Parsers 

When the data don't fit the model very well, we may wish to look for alternative 
models. Four articles in this special issue propose empirical alternatives to traditional 
parsing methods based on the competence model. As we have seen, the competence 
model doesn't fit the part-of-speech application very well because of the model's fail- 
ure to capture certain lexical preferences. The model also runs into trouble in a number 
of other NLP applications. Consider, for example, the problem of deciding between 
the words form and farm in the OCR application (mentioned in Section 1.4) when they 
appear in the context: 

pure ( farm 
form ) of 

Most people would have little difficulty deciding that form was the intended word. 
Neither does an OCR system that employs a trigram language model, because prefer- 
ences, such as collocations, fall naturally within the scope of the n-gram approximation. 
Traditional NLP techniques, on the other hand, fail here because the competence ap- 
proximation does not capture the crucial collocational constraints. 

Lexicographers use the terms collocation, co-occurrence, and lexis to describe various 
constraints on pairs of words. The words strong and powerful are perhaps the canonical 
example. Halliday (1966; p. 150) noted that although strong and powerful have similar 
syntax and semantics, there are contexts where one is much more appropriate than 
the other (e.g., strong tea vs. powerful computers). 

Psycholinguists have a similar concept, which they call word associations. Two fre- 
quently cited examples of highly associated words are: bread~butter and doctor~nurse. 
See Palermo and Jenkins (1964) for tables of associations, measured for 200 words, 
factored by grade level and sex. In general, subjects respond more quickly to a word 
such as butter when it follows a highly associated word such as bread. 

Some results and implications are summarized from reaction-time ex- 
periments in which subjects either (a) classified successive strings of 
letters as words and nonwords, or (b) pronounced the strings. Both 
types of response to words (e.g., BUTTER) were consistently faster 
when preceded by associated words (e.g., BREAD) rather than unas- 
sociated words (e.g, NURSE). (Meyer, Schvaneveldt, and Ruddy 1975; 
p. 98) 
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Table 4 
The trigram approximation in action (Jelinek 1985). 

Word Rank More likely alternatives 

We 9 The This One Two A Three Please In 
need 7 are will the would also do 
to 1 
resolve 85 
all 9 
of 2 
the 1 
important 657 
issues 14 

have know do ... 
the this these problems ... 
the 

document question first ... 
thing point to ... 

These constraints are rarely discussed in computational linguistics because they are 
not captured very well with traditional NLP techniques, especially those based on the 
competence approximation. Of course, it isn't hard to build computational models that 
capture at least some of these preferences. Even the trigram model, despite all of its 
obvious shortcomings, does better than many traditional methods in this regard. The 
power of the trigram approximation is illustrated in Table 4 for the sentence fragment, 
We need to resolve all of the important issues..., selected from a 90 million-word corpus of 
IBM office correspondences. Each row shows the correct word, the rank of the correct 
word as predicted by the trigram model, and then the list of words judged by the 
trigram model to be more probable than the correct word. Thus, We is the 9 th most 
probable word to begin a sentence. At this point in the sentence, in the absence of any 
other context, the trigram model is as good as any model we could have. Following We 
at the beginning of the sentence, need is the 7 th most probable word, ranking behind 
are, will, the, would, also, and do. Here, again, the trigram model still accounts for all 
of the context there is and so should be doing as well as any model can. Following 
We need, to is the most probable word. Although by now, the trigram model has lost 
track of the complete context (it no longer realizes that we are at the beginning of a 
sentence), it is still doing very well. 

Table 4 shows that the trigram model captures a number of important frequency- 
based constraints that would be missed by most traditional parsers. For example, the 
trigram model captures the fact that issues is particularly predictable in the collocation: 
important issues. In general, high-frequency function words like to and the, which are 
acoustically short, are more predictable than content words like resolve and important, 
which are longer. This is convenient for speech recognition because it means that the 
language model provides more powerful constraints just when the acoustic model is 
having the toughest time. One suspects that this is not an accident, but rather a natural 
result of the evolution of speech to fill the human needs for reliable communication 
in the presence of noise. 

• The ideal NLP model would combine the strengths of both the competence ap- 
proximation and the n-gram approximation. One possible solution might be the Inside- 
Outside algorithm (Baker 1979; Lari and Young 1991), a generalization of the Forward- 
Backward algorithm that estimates the parameters of a hidden stochastic context-free 
grammar, rather than a hidden Markov model. Four alternatives are proposed in these 
special issues: (1) Brent (1993), (2) Briscoe and Carroll (this issue), (3) Hindle and Rooth 
(this issue), and (4) Weischedel et al. (1993). Briscoe and Carroll's contribution is very 
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much in the spirit of the Inside-Outside algorithm, whereas Hindle and Rooth's con- 
tribution, for example, takes an approach that is much closer to the concerns of lexi- 
cography, and makes use of preferences involving words, rather than preferences that 
ignore words and focus exclusively on syntactic structures. Hindle and Rooth show 
how co-occurrence statistics can be used to improve the performance of the parser on 
sentences such as: 

( w a n t e d )  
She placed the dress on the rack. 

put 

where lexical preferences are crucial to resolving the ambiguity of prepositional phrase 
attachment (Ford, Bresnan, and Kaplan 1982). Hindle and Rooth show that a parser 
can enforce these preferences by comparing the statistical association of the verb- 
preposition (want... on) with the association of the object-preposition (dress... on), when 
attaching the prepositional phrase. This work is just a first step toward preference- 
based parsing, an empirically motivated alternative to traditional rational approaches 
such as ATNs, unification parsers, and principle-based parsers. 

4. Entropy 

How do we decide if one language model is better than another? In the 1940s, Shan- 
non defined entropy, a measure of the information content of a probabilistic source, 
and used it to quantify such concepts as noise, redundancy, the capacity of a commu- 
nication channel (e.g., a telephone), and the efficiency of a code. The standard unit of 
entropy is the bit or binary digit. See Bell, Cleary, and Witten (1990) for a more dis- 
cussion on entropy; Section 2.2.5 shows how to compute the entropy of a model, and 
Section 4 discusses how Shannon and others have estimated the entropy of English. 

From the point of view of speech recognition or OCR, we would like to be able 
to characterize the size of the search space, the number of binary questions that the 
recognizer will have to answer on average in order to decode a message. Cross entropy 
is a useful yardstick for measuring the ability of a language model to predict a source 
of data. If the language model is very good at predicting the future output of the 
source, then the cross entropy will be small. No matter how good the language model 
is, though, the cross entropy cannot be reduced below a lower bound, known as the 
entropy of the source, the cross entropy of the source with itself. 

One can also think of the cross entropy between a language model and a proba- 
bilistic source as the number of bits that will be needed on average to encode a symbol 
from the source when it is assumed, albeit mistakenly, that the language model is a 
perfect probabilistic characterization of the source. Thus, there is a close connection 
between a language model and a coding scheme. Table 5 below lists a number of 
coding schemes along with estimates of their cross entropies with English text. 

The standard ASCII code requires 8 bits per character. It would be a perfect code 
if the source produced each of the 2 s = 256 symbols equally often and independently 
of context. However, English is not like this. For an English source, it is possible to 
reduce the average length of the code by assigning shorter codes to more frequent 
symbols (e.g., e, n, s) and longer codes to less frequent symbols (e.g., j, q, z), using a 
coding scheme such as a Huffman code (Bell, Cleary, and Witten 1990; Section 5.1.2). 
Other codes, such as Lempel-Ziv (Welch 1984; Bell, Cleary, and Witten, Chapters 8-9) 
and n-gram models on words, achieve even better compression by taking advantage of 
context, though none of these codes seem to perform as well as people do in predicting 
the next letter (Shannon 1951). 
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Table 5 
Cross entropy of various language models. 

Model Bits / Character 

ASCII 
Huffman code each char 
Lempel-Ziv (Unix TM compress) 
Unigram (Huffman code each word) 
Trigram 
Human Performance 

8 
5 
4.43 
2.1 (Brown, personal communication) 
1.76 (Brown et al. 1992) 
1.25 (Shannon 1951) 

The cross entropy, H, of a code and a source is given by: 

H(source, code) = - ~ ~ Pr(s, h I source) log 2 Pr(s I h, code) 
s h 

where  Pr(s, h I source) is the joint probabili ty of a symbol  s following a history h given 
the source. Pr(s I h, code) is the conditional probabili ty of s given the history (context) 
h and the code. In the special case of ASCII, where  Pr(s I h, ASCII) = 1/256, we can 
actually carry out  the indicated sum, and find, not surprisingly, that ASCII requires 8 
bits per character: 

256 1 1 
H(source, ASCII = - ~ 256 1Og2 ~ = 8 

S~I 

In more difficult cases, cross ent ropy is est imated by a sampling procedure.  Two in- 
dependent  samples of the source are collected: $1 and $2. The first sample, $1, is used 
to fit the values of the parameters  of the code, and second sample, $2, is used to test 
the fit. For example, to determine the value of 5 bits per character for the Huf fman  
code in Table 5, we counted the number  of times that each of the 256 ASCII characters 
appeared in $1, a sample of N1 characters selected from the Wall Street Journal text 
distributed by the ACL/DCI.  These counts were used to determine Pr(s I h, code) (or 
rather Pr(s I code), since the Huffman code doesn ' t  depend  on h). Then we collected a 
second sample, $2, of N2 characters, and tested the fit wi th  the formula: 

N2 

1 i~=llOg2Pr(S2[i]lcode ) H(source, code) ~ - 

w h e r e  S 2 [i] is the/th character in the second sample. It is impor tant  in this procedure  to 
use two different samples of text. If we were to use the same sample for both testing 
and training, we would  obtain an overly optimistic estimate of how well the code 
performs. 

The other codes in Table 5 make better use of context (h), and therefore, they 
achieve better compression. For example,  Huffman coding on words  (a unigram model)  
is more than twice as compact  as Huffman coding on characters (2.1 vs. 5 bits/char.).  
The unigram model  is also more  than twice as good as Lempel -Ziv  (2.1 vs. 4.43 b i t s /  
char.), demonstra t ing that compress, a popular  Unix TM tool for compressing files, could 
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Table 6 
Summary of two approaches to NLP. 

Rationalism Empiricism 

Well-known Advocates: 
Model: 
Contexts of Interest: 
Goals: 

Linguistic Generalizations: 

Parsing Strategies: 

Applications: 

Chomsky, Minsky 
Competence Model 
Phrase Structure 
All and Only 
Explanatory 
Theoretical 
Agreement and 

Wh-movement 
Principle-Based 
CKY (Chart), ATNs, 

Unification 
Understanding 
Who did what to whom 

Shannon, Skinner, Firth, Harris 
Noisy Channel Model 
N-grams 
Minimize Prediction Error (Entropy) 
Descriptive 
Applied 
Collocations and Word Associations 

Preference-Based 
Forward-Backward, Inside--Outside 

Recognition 
Noisy Channel Applications 

be improved by a factor of two (when the files are in English). The tr igram model,  the 
method  of choice in speech recognition, achieves 1.76 bits per character, outperforming 
the practical alternatives in Table 5, but  falling half a bit shy of Shannon's  estimate of 
human  performance.  2 

Someday parsers might help squeeze out some of this remaining half bit between 
the tr igram model  and Shannon's  bound,  but  thus far, parsing has had little impact. 
Lari and Young (1991; p. 255), for example, conducted a number  of experiments with 
stochastic context-free grammars  (SCFGs), and concluded that "[t]he experiments on 
word recognition showed that al though SCFGs are effective, their complex training 
routine prohibits them from directly replacing the simpler HMM-based recognizers." 
They then proceeded to argue, quite sensibly, that parsers are probably more appropri-  
ate for tasks where  phrase structure is more directly relevant than in word recognition. 
In general, phrase structure is probably more important  for unders tanding who did 
what  to whom,  than recognizing what  was said. 3 Some tasks are probably more ap- 
propriate for Chomsky 's  rational approach to language and other tasks are probably 
more appropriate  for Shannon's  empirical approach to language. Table 6 summarizes  
some of the differences between the two approaches. 

5. Machine Translation and Bilingual Lexicography 

IS machine translation (MT) more suitable for rationalism or empiricism? Both ap- 
proaches have been investigated. Weaver (1949) was the first to propose an information 
theoretic approach to MT. The empirical approach was also practiced at Georgetown 
dur ing the 1950s and 1960s (Henisz-Dostert,  Ross Macdonald,  and Zarechnak 1979) 
in a system that eventual ly became known as SYSTRAN. Recently, most  work  in MT 

2 In fact, the trigram model might be even better than suggested in Table 5, since the estimate for the 
trigram model in Brown et al. (1992) is computed over a 256-character alphabet, whereas the estimate 
for human performance in Shannan (1951) is computed over a 27-character alphabet. 

3 Lari and Young actually looked at another task involving phonotactic structure where there is also 
good reason to believe that SCFGs might be able to capture crucial linguistic constraints that might be 
missed by simpler HMMs. 
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has tended to favor rationalism, though there are some important exceptions, such as 
example-based MT (Sato and Nagao 1990). The issue remains as controversial as ever, 
as evidenced by the lively debate on rationalism versus empiricism at TMI-92, a recent 
conference on MT. 4 

The paper by Brown et al. (1990) revives Weaver's information theoretic approach 
to MT. It requires a bit more squeezing and twisting to fit machine translation into the 
noisy channel mold: to translate, for example, from French to English, one imagines 
that the native speaker of French has thought up what he or she wants to say in 
English and then translates mentally into French before actually saying it. The task of 
the translation system is to recover the original English, E, from the observed French, 
F. While this may seem a bit far-fetched, it differs little in principle from using English 
as an interlingua or as a meaning representation language. 

E --* Noisy Channel --* F 

As before, one minimizes one's chance of error by choosing E according to the formula: 

= argmaxPr(E) Pr(F]E)  
E 

As before, the parameters of the model are estimated by computing various statistics 
over large samples of text. The prior probability, Pr(E), is estimated in exactly the same 
way as discussed above for the speech recognition application. The parameters of the 
channel model, Pr(F [ E), are estimated from a parallel text that has been aligned by 
an automatic procedure that figures out which parts of the source text correspond to 
which parts of the target text. See Brown et al. (1993) for more details on the estimation 
of the parameters. 

The information theoretic approach to MT may fail for reasons advanced by Chom- 
sky and others in the 1950s. But regardless of its ultimate success or failure, there is a 
growing community of researchers in corpus-based linguistics who believe that it will 
produce a number of lexical resources that may be of great value. In particular, there 
has been quite a bit of discussion of bilingual concordances recently (e.g., Klavans 
and Tzoukermann 1990a, 1990b; Church and Gale 1991), including the 1990 and 1991 
lexicography conferences sponsored by Oxford University Press and Waterloo Univer- 
sity. A bilingual concordance is like a monolingual concordance except that each line 
in the concordance is followed by a line of text in a second language. There are also 
some hopes that the approach might produce tools that could be useful for human 
translators (Isabelle 1992). 

There are three papers in these special issues on aligning bilingual texts such as 
the Canadian Hansards (parliamentary debates) that are available in both English and 
French: Brown et al. (1993), Gale and Church (this issue), and Kay and R6senschein 
(this issue). Warwick-Armstrong and Russell have also been interested in the alignment 
problem (Warwick-Armstrong and Russell 1990). Except for Brown et al., this work is 
focused on the less controversial applications in lexicography and human translation, 
rather than MT. 

4 Requests for a tape of the debate should be sent to the attention of Pierre Isabelle, CCRIT, TMI-92, 1575 
boul. Chomedey, Laval (Quebec), H7V 2X2, Canada. Copies of the TMI proceedings can be obtained by 
writing to CCRIT or sending e-mail to tmi@ccrit.doc.ca. 
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6. Monolingual Lexicography, Machine-Readable Dictionaries (MRDs), 
and Computational Lexicons 

There has been a long tradition of empiricist approaches in lexicography, both bilingual 
and monolingual, dating back to Johnson and Murray. As corpus data and machine- 
readable dictionaries (MRDs) become more and more available, it is becoming easier 
to compile lexicons for computers and dictionaries for people. This is a particularly 
exciting area in computational linguistics as evidenced by the large number of con- 
tributions in these special issues: Biber (1993), Brent (1993), Hindle and Rooth (this 
issue), Pustejovsky et al. (1993), and Smadja (this issue). Starting with the COBUILD 
dictionary (Sinclair et al. 1987), it is now becoming more and more common to find 
lexicographers working directly with corpus data. Sinclair makes an excellent case for 
the use of corpus evidence in the preface to the COBUILD dictionary: 

For the first time, a dictionary has been compiled by the thorough 
examination of a representative group of English texts, spoken and 
written, running to many millions of words. This means that in ad- 
dition to all the tools of the conventional dictionary makerswwide 
reading and experience of English, other dictionaries and of course 
eyes and ears--this dictionary is based on hard, measurable evidence. 
(Sinclair et al. 1987; p. xv) 

The experience of writing the COBUILD dictionary is documented in Sinclair (1987), 
a collection of articles from the COBUILD project; see Boguraev (1990) for a strong 
positive review of this collection. At the time, the corpus-based approach to lexicogra- 
phy was considered pioneering, even somewhat controversial; today, quite a number 
of the major lexicography houses are collecting large amounts of corpus data. 

The traditional alternative to corpora are citation indexes, boxes of interesting 
citations collected on index cards by large numbers of human readers. Unfortunately, 
citation indexes tend to be a bit like butterfly collections, full of rare and unusual 
specimens, but severely lacking in ordinary, garden-variety moths. Murray, the editor 
of the Oxford English Dictionary, complained: 

The editor or his assistants have to search for precious hours for exam- 
ples of common words, which readers passed by. . .  Thus, of Abusion 
we found in the slips about 50 instances; of Abuse not five. (James Au- 
gustus Henry Murray, Presidential Address, Philological Society Trans- 
actions 1877-9, pp. 571-2, quoted by Murray 1977, p. 178) 

He then went on to say, "There was not a single quotation for imaginable, a word used 
by Chaucer, Sir Thomas More, and Milton." From a statistical point of view, citation 
indexes have serious sampling problems; they tend to produce a sample that is heavily 
skewed away from the "central and typical" facts of the language that every speaker 
is expected to know. Large corpus studies, such as the COBUILD dictionary, offer 
the hope that it might be possible to base a dictionary on a large and representative 
sample of the language as it is actually used. 

6.1 Should a Corpus Be Balanced? 
Ideally, we would like to use a large and representative sample of general language, 
but if we have to choose between large and representative, which is more important? 
There was a debate on a similar question between Prof. John Sinclair and Sir Randolf 
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Table 7 
Coverage of imaginable in various corpora. 

Size (in millions) Corpus raw freq freq/million 

1 Brown Corpus 0 0 
1 Bible 0 0 
2 Shakespeare 0 0 
7 WSJ 41 5.9 

10 Groliers 5 0.5 
18 Hansard 15 0.8 
29 DOE 5 0.2 
46 AP 1988 36 0.8 
50 AP 1989 39 0.8 
56 AP 1990 21 0.4 
47 AP 1991 19 0.4 

Quirk at the 1991 lexicography conference sponsored by Oxford University Press and 
Waterloo University, where the house voted, perhaps surprisingly, that a corpus does 
not need to be balanced. Although the house was probably predisposed to side with 
Quirk's position, Sinclair was able to point out a number of serious problems with the 
balancing position. It may not be possible to properly balance a corpus. And moreover, 
if we insist on throwing out idiosyncratic data, we may find it very difficult to collect 
any data at all, since all corpora have their quirks. 

In some sense, the question comes down to a tradeoff between quality and quan- 
tity. American industrial laboratories (e.g., IBM, AT&T) tend to favor quantity, whereas 
the BNC, NERC, and many dictionary publishers, especially in Europe, tend to favor 
quality. The paper by Biber (1993) argues for quality, suggesting that we ought to use 
the same kinds of sampling methods that statisticians use when studying the econ- 
omy or predicting the results of an election. Poor sampling methods, inappropriate 
assumptions, and other statistical errors can produce misleading results: "There are 
lies, damn lies, and statistics." 

Unfortunately, sampling methods can be expensive; it is not clear whether we can 
justify the expense for the kinds of applications that we have in mind. Table 7 might 
lend some support for the quantity position for Murray's example of imaginable. Note 
that there is plenty of evidence in the larger corpora, but not in the smaller ones. Thus, 
it would appear that "more data are better data," at least for the purpose of finding 
exemplars of words like imaginable. 

Similar comments hold for collocation studies, as illustrated in Table 8, which 
shows mutual information values (Fano 1961; p. 28) 

Pr(x~ y) 
I(x;y) = log 2 Pr(x) Pr(y) 

for several collocations in a number of different corpora. Mutual information compares 
the probability of observing word x and word y together (the joint probability) to the 
probability of observing x and y independently (chance). Most of the mutual informa- 
tion values in Table 8 are much larger than zero, indicating, as we would hope, that 
the collocations appear much more often in these corpora than one would expect by 
chance. The probabilities, Pr(x) and Pr(y), are estimated by counting the number of 
observations of x and y in a corpus, f(x) and f(y), respectively, and normalizing by N, 
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Table 8 
Collocations in different corpora. 

Size Corpus strong strong strong strong strong 
(in millions) support economy winds man enough 

1 Brown Corpus 5.1 (1) - -  8.3 (1) - -  7.3, 
1 Bible - -  - -  - -  3.4 (7) - -  
2 Shakespeare . . . .  6.5 (4) 
7 WSJ 5.5 4.9 6.5 (7) 4.7 6.5 

10 Groliers 5.8 3.8 (3) 8.3 4.2 (3) 8.3 
18 Hansard 6.2 6.4 - -  - -  7.0 
29 DOE 4.5 4.3 (4) 7.7 - -  7.4 
46 AP 1988 6.3 6.3 8.5 4.0 7.0 
50 AP 1989 6.3 4.7 8.4 1.8 (7) 7.3 
56 AP 1990 6.5 3.7 8.3 2.4 (9) 7.5 
47 AP 1991 7.0 3.4 8.7 2.0 (6) 7.3 

the size of the corpus.  The joint probability, Pr(x, y), is es t imated by  count ing the num-  
ber of t imes that x is immedia te ly  fol lowed by  y in the corpus,  f(x, y), and  normal iz ing  
by  N. Unfortunately,  mutua l  informat ion values become unstable if the counts  are too 
small. For this reason, small  counts (less than 10) are shown  in parentheses.  A dash is 
used when  there is no evidence for the collocation. 

Like Table 7, Table 8 also shows that "more  data are better  data." That  is, there 
is p lenty  of evidence in the larger corpora,  but  not  in the smaller  ones. "Only  a large 
corpus  of natural  language enables us to identify recurring pat terns  in the language 
and to observe collocational and  lexical restrictions accurately . . . .  " (Hanks 1990; p. 36) 

However ,  in order  to make  use of this evidence we  have  to find ways  to com- 
pensate  for the obvious  problems of work ing  with unbalanced data. For example ,  in 
the Canadian  Hansards ,  there are a n u m b e r  of unwan ted  phrases  such as: "House  of 
Commons , "  "free trade agreement ,"  "honour  and  du ty  to present ,"  and "Hear!  Hear!"  
Fortunately, though,  it is extremely unlikely that these unwan ted  phrases  will appea r  
much  more  often than chance across a range of other corpora  such as Depar tmen t  
of Energy (DOE) abstracts or the Associated Press (AP) news. If such a phrase  were  
to appea r  relatively often across a range of such diverse corpora,  then it is p robably  
wor thy  of fur ther  investigation. Thus, it is not required that the corpora  be balanced, 
but  ra ther  that their quirks be uncorrelated across a range of different corpora.  This 
is a much  weaker  and more  realistic requi rement  than the more  s tandard  (and more  
idealistic) practice of balancing and  purg ing  quirks. 

6.2 Lexicography and Exploratory Data Analysis (EDA) 
Statistics can be used for m a n y  different purposes .  Traditionally, statistics such as 
Student ' s  t-tests were  deve loped  to test a particular hypothesis .  For example,  suppose  
that we  were  concerned that  strong enough shouldn ' t  be considered a collocation. A t- 
test could be used to compare  the hypothesis  that strong enough appears  too often to be 
a fluke against  the null hypothesis that the observat ions can be at tr ibuted to chance. The 
t-score compares  the two hypotheses ,  by  taking the difference of the means  of the two 
probabi l i ty  distributions, and  normal iz ing  appropr ia te ly  by  the variances,  so that  the 
result can be in terpreted as a n u m b e r  of s tandard  deviations.  Theoretically, if the t-score 
is larger than 1.65 s tandard  deviations,  then we ought  to believe that the co-occurrences 
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are significant and we can reject the null hypothesis with 95% confidence, though in 
practice we might look for a t-score of 2 or more standard deviations, since t-scores 
are often inflated (due to certain violations of the assumptions behind the model). See 
Dunning (this issue) for a critique of the assumption that the probabilities are normally 
distributed, and an alternative parameterization of the probability distributions. 

t = mean (Pr(strong, enough)) - mean(Pr(strong)) mean (Pr(enough)) 
x/~r2(pr(strong, enough)) + cr2(pr(strong)Pr(enough)) 

In the Brown Corpus, it happens that f(strong, enough) = 11, f(strong) = 194, f(enough) 
= 426, and N = 1,181,041. Using these values, we estimate t ~ 3.3, which is larger 
than 1.65, and therefore we can confidently reject the null hypothesis, and conclude that 
the co-occurrence is significantly larger than chance. The estimation uses the approx- 
imation, cr2(pr(strong, enough)) ~ f(strong, enough)/N 2, which can be justified under 
appropriate binomial assumptions. It is also assumed that cra(pr(strong) Pr(enough)) is 
very small and can be omitted. 

f(stTonx,enouS h ) f(strong) f(~,ough) 
t ~  N N N ~3.3  

Although statistics are often used to test a particular hypothesis as we have just seen, 
statistics can also be used to explore the space of possible hypotheses, or to discover 
new hypotheses (supervised/unsupervised learning/training). See Tukey (1977) and 
Mosteller and Tukey (1977) for two textbooks on Exploratory Data Analysis (EDA), 
and Jelinek (1985) for a very nice review paper on self-organizing statistics. Both the 
exploratory and self-organizing views are represented in these special issues. Puste- 
jovsky et al. (1993) use an EDA approach to investigate certain questions in lexical 
semantics. Brent (1993), in contrast, adopts a self-organizing approach to identify sub- 
categorization features. 

Table 9 shows how the t-score can be used in an exploratory mode to extract large 
numbers of words from the Associated Press (AP) news that co-occur more often with 
strong than with powerful, and vice versa. It is an interesting question whether collo- 
cations are simply idiosyncratic as Halliday and many others have generally assumed 
(see Smadja [this issue]), or whether there might be some general principles that could 
account for many of the cases. After looking at Table 9, Hanks, a lexicographer and 
one of the authors of Church et al. (1991), hypothesized that strong is an intrinsic 
quality whereas powerful is an extrinsic one. Thus, for example, any worthwhile politi- 
cian or cause can expect strong supporters, who are enthusiastic, convinced, vociferous, 
etc., but far more valuable are powerful supporters, who will bring others with them. 
They are also, according to the AP news, much rarer--or at any rate, much less often 
mentioned. This is a fascinating hypothesis that deserves further investigation. 

Summary statistics such as mutual information and t-scores may have an impor- 
tant role to play in helping lexicographers to discover significant patterns of collo- 
cations, though the position remains somewhat controversial. Some lexicographers 
prefer mutual information, some prefer t-scores, and some are unconvinced that ei- 
ther of them is any good. Church et al. (1991) argued that different statistics have 
different strengths and weaknesses, and that it requires human judgment and explo- 
ration to decide which statistic is best for a particular problem. Others, such as Jelinek 
(1985), would prefer a self-organizing approach, where there is no need for human 
judgment. 
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Table 9 
An example of the t-score (Church et al. 1991). 

Strong w Powerful w 
t strong w powerful w w t strong w powerfulw w 

12.42 161 0 showing -7.44 1 56 than 
11.94 175 2 support -5.60 1 32 figure 
10.08 550 68 , -5.37 3 31 minority 
9.97 106 0 defense -5.23 1 28 of 
9.76 102 0 economy -4.91 0 24 post 
9.50 97 0 demand -4.63 5 25 new 
9.40 95 0 gains -4.35 27 36 military 
9.18 91 0 growth -3.89 0 15 figures 
8.84 137 5 winds -3.59 6 17 presidency 
8.02 83 1 opposition -3.57 27 29 political 
7.78 67 0 sales -3.33 0 11 computers 

7. C o n c l u s i o n  

The flourishing renaissance of empiricism in computational linguistics grew out of the 
experience of the speech recognition community during the 1970s and 1980s. Many of 
the same statistical techniques (e.g., Shannon's Noisy Channel Model, n-gram mod- 
els, hidden Markov models (HMMs), entropy (H), mutual information (I), Student's 
t-score) have appeared in one form or another, often first in speech, and then soon 
thereafter in language. Many of the same researchers have applied these methods to 
a variety of application areas ranging from language modeling for noisy channel ap- 
plications (e.g., speech recognition, optical character recognition [OCR], and spelling 
correction [Damerau 1964; Kukich 1992]), to part-of-speech tagging, parsing, transla- 
tion, lexicography, text compression (Bell, Cleary, and Witten 1990) and information 
retrieval (IR) (Salton 1989; Frakes and Baeza-Yates 1992). 

Empiricism is, of course, a very old tradition. Back in the 1950s and 1960s, long 
before the speech work of the 1970s and 1980s, there was Skinner's Behaviorism in 
Psychology, Shannon's Information Theory in Electrical Engineering, and Harris' Dis- 
tributional Hypothesis in American Linguistics and the Firthian approach in British 
Linguistics ("You shall know a word by the company it keeps"). It is possible that 
much of this work was actually inspired by Turing's code-breaking efforts during 
World War II, but we may never know for sure given the necessity for secrecy. 

The recent revival in empiricism has been fueled by three developments. First 
computers are much more powerful and more available than they were in the 1950s 
when empiricist ideas were first applied to problems in language, or in the 1970s and 
1980s, when data-intensive methods were too expensive for researchers working in 
universities. Second, data have become much more available than ever before. As a 
result of a number of data collection and related efforts such as ACL/DCI, BNC, CLR, 
ECI, EDR, LDC, ICAME, NERC, and TEI, most researchers should now be able to 
make use of a number of very respectable machine-readable dictionaries (MRDs) and 
text corpora. (See footnote 1 for information on contacting many of these organiza- 
tions.) Data-intensive methods are no longer restricted to those working in affluent 
industrial laboratories. Third, and perhaps most importantly, due to various political 
and economic changes around the world, there is a greater emphasis these days on 
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deliverables and evaluation. Data collection efforts have been relatively successful in 
responding to these pressures by  delivering massive quantities of data. Text Analysis 
has also prospered because of its tradit ion of evaluating performance with theoretically 
motivated numerical  measures such as entropy. 
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