
S h a l t 2 - a S y m m e t r i c M a c h i n e T r a n s l a t i o n S y s t e m w i t h

ABSTRACT
Shal l2 is a knowledge-based machine translation sys-

tem with a symmetric architecture. The grammar
rules, mapping rules between syntactic and conceptual
(semantic) representations, and transfer rules for con-
ceptual paraphrasing are all bi-directional knowledge
sources used by both a parser and a generator.

1. Introduction
Shal t2 is a research prototype of a knowledge-based,

multi-domain/multi-lingual MT system. It has two
predecessors, SHALT [~31 (1982-90) and KBMT-89131
(1987-89), which brought us valuable lessons we re-
flected in the design and implementation of Shal t2 . As
a result, Sha l l2 has been designed and implemented
as a symmetric MT system with frame-based concep-
tual representation. The advantages of a symmetric ar-
chitecture coupled with a conceptual representation are
obvious. First, it allows us to maintain single knowl-
edge sources for both parsing and generation. We can
automatically control the coverage and reversibility of
these processes. Second, conceptual structures are a
desirable interface for representing the meaning of sen-
tences, machine-generated output (such as diagnosis by
an expert system), and expressions in graphical lan-
guages. AI-baeed approaches can provide powerful in-
ference methods for identification of a (semi-)equivalent
class of conceptual representations, which corresponds
to a paraphrasing capability. Unlike interlingual MT
systems, our approach relieves the parser of the bur-
den of generating a unique meaning representation of
all equivalent sentences, which becomes harder in pro-
portion to the number of languages the system has to
translate.

2. S h a l t 2 A r c h i t e c t u r e a n d K n o w l -
e d g e S o u r c e s

Shal t2 has five types of knowledge sources: a set
G of syntactic grammar rules (including dictionaries),
a set C of hierarchically defined conceptual primitives
called concept definitions, a set M of mapping rules be-
tween syntactic and conceptual structures, a set P of
conceptual paraphrasing rules, and a set E of cases (a
structurally and conceptually disambiguated set of sam-
ple sentences). These knowledge sources are shared by
three major processes: a parser, a concept mapper, and
a generator. G should be provided for each language,
whereas the set C should be defined for each applica-
tion domain. M, P, and E should be provided for each
pair of a language and a domain.t Figure 1 shows an
overview of the Shall2 architecture.

*fOur theory of multi-domaln translation aims to compose a set
of mapping rules efilclelxtly when Mever~l doma.lnn are combined.
It it expected thffit two ~tJ of mapping rules for • ,ingle language
will differ m~nly is lexieal mipping rules.

Conceptual Transfer
Koichi TAKEDA Naohiko URAMOTO
Tetsuya NASUKAWA TMjiro TSUTSUMI

Tokyo l~esearch Laboratory, IBM Research
5-19 Sanban-cho, Chiyoda-ku, Tokyo 102, Japan

{takeda,uramoto,nasukawa,tsutsumi} ~trl.vnet.ibm.com

|

~ p ~

Figure h Shalt2 Architecture

2.1 S y n t a c t i c G r a m m a r
Shal t2 currently has two English grammars (PEG

and a less competent English grammar) and a Japanese
grammar. The last two grammars are bi-directionai
grammars written in an LFG-llke formalism called a
pseudo-unification grammar (PUG)[x°], and were orig-
inally employed in KBMT-89.tt PEG is not bi-
directional, since it has too many destructive opera-
tions to build or encode record structures, but it is
our primary English grammar for three reasons: (1)
broad coverage, (2) ability to encapsulate structural am-
biguities in a compact parse tree, and (3) compatibil-
ity with other NLP programs that use PEG to analyze
English sentences. Our bi-directional English gram-
mar is following up PEG and will be able to replace
it. The symmetric architecture of Shal t2 , however, al-
lows uni-directional knowledge sources and processes to
be hooked into the system. Their coverage and abil-
ity to parse or generate sentences can be measured in
terms of a set of conceptual representations that they
can relate to syntactic structures.

Although the syntactic structures of PEG and PUG
grammars differ, they are integrated into a single
syntactic representation called Dependency Structures
(DSs) [s]. Roughly speaking, a DS is a tree-like structure
with a set of nodes and a set of ares, which correspond to
maximal projections of syntactic constituents and gram-

t-f The Eagfish version was originally written by GLteg et al. 12l
but wan notbi-directional. The Jap~mese gr~.nmax was originally
written by Mitamura and T~keda[2]. The Shall2 verlions of
these PUG graxama~ have been modified conBiderably to allow
them to handle coordinations, compaxativ~, and so on.

ACIES DE COLING-92. NANTES. 23-28 AOLrT 1992 I 0 3 4 PROC. OF COLING-92. NANTES. AUG. 23-28. 1992

tactical relationships, respectively. Some grammatical
formalisms such as Constraint Dependency G r a m m a r 14]
postulate DSs as syntactic representations to which a
constraint satisfaction algorithm [~1 can be applied in or-
der to resolve syntact ic /semant ic ambiguities efficiently.
In the following, we show a P E G parse tree and a PUG
f-structure, which will have the same DS, for the simple
sentence "Insert a diskette into the drive."

" PEG Parse Tree:
(IMPR (VERB* 'Insert' (insert PS))

(NP (DET (ADJ* 'a' (a BS)))
(NOUN* 'diskette' (diskette SG)))

(PP (PREP ~into')
(DET (ADJ* 'the' (the BS)))
(NOUN 'drive' (drive SG)))

(PUNC ' . '))

F-structure in the PUG English grammar:
((ROOT insert) (CAT v) (SUBCAT trans)
(FORM inf) (MOOD imp) (TENSE pros)
(0BJ ((ROOT diskette) (CAT n)

(DET indef) (NUM sg)))
(PPADJUNCT (((ROOT drive) (CAT n)

(DET def) (NUM sg)))))

DS:
insert (CAT v, SUBCAT traus,

MOOD imp, TENSE pros)
DOBJECT

diskette (CAT n, DET indof, NUM sg)
PPADJUNCT

drive (CAT n, PREP into, DET def, NUM ag)

The reader *nay no*lee tha t the above sentence
should really have ambiguities in prepositional phrase
a t tachment , which result in two conflicting depen-
dencies "insert -PPADJUNCT- drive" and "diskette -
PPADJUNCT- drkve" in a single DS. We will discuss
the handling of such ambiguities in Section 3.

2.2 C o n c e p t D e f i n i t i o n s
A set of conceptual primitives is called a Natural Lan-

guage (NL) class system[hi, and is maintained as an
e It 171 object-oriented knowledge base under l~ram K' . The

NL class system consists of a set of constant classes,
three meta-classes, and virtual classeo with an exclusive
inheritance mechanism discussed below.

Each class represcnts a concept in the real world. A
class hms zero or more slots, which describe the fillers it
may use to represent a compound concept. NL objects
are particular instances of NL classes. There are is-a
and parl-of relationships defined over the NL classes.
For example,

(deTclass *insert
(is-a (value *action))
(:agent (sem *human *system))
(:theme (sem *physical-object))
(:goal (sem *location *physical-object)))

defines a class *insert with an is-a link to a class *action,
and three slots - :agent, :theme, and :goal. The (value
. . .) facet shows an actual filler of the slot, while the
(see . . .) facet shows the selectional restrictions on the
slot.

A class inherits each slot definition from its super-
class(on), tha t is, the fillers of the is-a slot, uuless the
slot is redefined. A class can have more than one im-
mediate superclass, but we restrict its inheritance to
be exclusive rather than general multiple inheritance.

Tilat is, au instance of a claim c~s inherit slot definitions
from only one of its imraediate superclaaqes. The idea
behind exclusive inheritance is to realize certain iden-
tity of verbal and nominal word senses without mixing
the slot definitions of both. For example, most verbs
have nominal counterpar ts in a natural language, such
as '~insert" and "insertion." Such a pair usually shares
slot definitions (:agent, :tlmmc, and :goal) and selec-
tional restrictions, except tha t "insert" inherits tense,
aspect, and modality from its "verbal" superclazs but
not cardinality, ordinal, and definiteness (that is, the
quality of being indefinite or definite) from its "nom-
inal" superclazs, al though these features are inherited
by "insertion." The following class definitions

(defclass *physical-action
(is-a (value *predicate)))

(defclass *mental-object
(is-a (value *object)))

(defclass *action
(in-u (value *physical-action

*mental-object)))

allow every instance of subclasses of *action to inherit
slot definitions from either *physical-action or *mental-
object . Exclusive inheritance also contributes to per-
formance improvement of the parser since it allows us
to reduce the number of possible superclasses from an
exponential number to a linear number.

There are three recta-classes in NL classes - *vat,
*set, and *fun - to represent concepts tha t are not in-
eluded in the normal class hierarchy. The first, *vat, is
a variable tha t ranges over a set of NL classes, which
are constants. Pronouns and question words in natural
languages usually carry this kind of incomplete concept.
The second, *set, is a set constructor tha t can represent
a coordinated s t ructure in natural languages. The third,
*fun, is a function from NL objects to NL objects. It
captures the meaning of a so-called sentiofunction word.
For example, in some usages, the verb " take" does not
really indicate any specific action until it gets an argu-
ment such as "a walk," "a rest," "a look." It is therefore
well characterized as a function.

Since we allow only exclusive inheritance, the NL
class system certainly lacks the ability to organize
classe~ front various viewpoints, unlike ordinary multi-
pie inheritance. Virtual classes are therefore introduced
to compensate for this inability. I~br example,

(de~velass *option
(dsf (*math-coprocessor

*hard-disk *software)))
(ds£vclass *male-thing

(dsf (equal :sex *male)))

shows two types of virtual classe, *option and *male-
thing. The *option consists of the classes *math-
coprocessor, *hard-disk, and *software. The *male-
thing is a class tha t includes instances of any class with
the :sex slot filled with *male. Note tha t the main-
tainabili ty of a class hierarchy drastically declines if we
allow classes such as *option to be "ac tua l" rather than
virtual, as we will have many is-a links from anything
t ha t could be an option. The second type of virtual
class helps incorporate an-called semantic features into
the NL class system. Existin~ machine-readable dictio-
naries (for example, LDOCEt el) often have entries with
semantic features such as HUMAN, LIQUID, and VF~
HICLE tha t may not fit into a given ontological class
hierarchy. A virtual class definition

AcrEs DE COL1NG-92, NAlVtES, 23-28 ^OUr 1992 1 0 3 5 PRec. ol. COLING-92, NAIVrES, Auo. 23-28. 1992

(de:f v c l a o s *haman
(def (equal :haman * t r u e)))

with semantic restrictions (:agent (sere *human)) make
it possible to integrate such entries into the NL class
system.

The NL class system currently includes a few thou-
sand concepts extracted from the personal-computer
domain. The word senses in the SHALT dictionary
(about 100,000 entries) and the LDOCE (about 55,000
entries) have been gradually incorporated into the NL
class system.

2.3 M a p p i n g R u l e s

Mapping rules define lexlcal and structural correspon-
dences between syntactic and conceptual representa-
tions. A lexical mapping rule has the form

(emap *insert
<=i=> insert ((CAT v) (SUBCAT trans))
(role =sQm (*physical-action))
(:agent =syn (SUBJECT))
(:theme =syn (DOBJECT))
(:goal =syn (PPADJUNCT

((PREP into) (CAT n)))))

where a transitive verb "insert" maps to or from an in-
stance of*insert with its exclusive superclass *physical-
action. The three slots for st,'uctural mapping between
concepts (:agent, :theme, and :goal) and grammatical
roles (SUBJECT, DOBJECT, and PPADJUNCT) are
also defined in this rule. The :agent filler, for exam-
ple, should be an instance tha t is mapped from a syn-
tactic SUBJECT of the verb "insert." The :goal filler
must be a prepositional phrase consisting of a noun with
the preposition "into." The fragments of syntact ic fea-
ture structures following a lexical word or a grammat-
ical function in a mapping rule specify the minimum
structures tha t subsume feature structures of candidate
syntactic constituents. These structural mappings are
specific to this instance.

The structural mapping rule

(emap *physical-action <=s=>
(:mood =syn (MOOD))
(:time =syn (TENSE)))

specifies that the conceptual slots :mood and :time map
to or from the grammatical roles MOOD and TENSE,
respectively. Unlike the s tructural mapping in a lexi-
cal mapping rule, these slot mappings can be inherited
by any instance of a subclass of *physical-action. The
*insert instance defined above, for example, can inherit
these :mood and :time mappings. Given a dependency
structure (DS), mapping rules work as distr ibuted con-
straints on the nodes and arcs in the DS in such a way
tha t a conceptual representation R is au image of the DS
iff R is the minimal representation satisfying all the lex-
ical and structural mappings associated with each node
and arc. On the other hand, given a conceptual repre-
sentation K, mapping rules work inversely as constraints
on 1% to define a minimal DS tha t can be mapped to 1%.
Thus, assuming tha t lexieal mapping rules are similarly
provided for nouns (diskette and drive) and feature val-
ues (imp, pros, and so on), we will have the conceptual

representation~

~Conceptual representation of a sentence consists of instances
of classes. We use a hyphen and a number following ~ c|a~s name
(*insert-l, *imp-l, ...) when it is necessaxy to show instaJlces
explicitly. Otherwise, we idtntlfy class na~nes and instance names.

(*insert-I
(:mood (*imp-l))
(:time (*pros-l))
(:theme (*diskette-I (:def (*indef-l))

(:ham (*sg-l))))
(:goal (*drive-i (:dof (*def-l))

(:hUm (* s g - 2)))))

for tile sample sentence and its DS shown earlier in this
section.

2.4 C o n c e p t u a l P a r a p h r a s i n g Ru les
We assume tha t a source language sentence and

its translation into a target language frequently have
slightly different conceptual representations. An adjec-
tive in English might be a eonjugable verb in trans-
lation. These differences result in added/missing in-
formation in the corresponding representations. The
conceptual paraphrasing rules describe such equiva-
lence and seml-equivalence among conceptual represen-
tations. These rules are sensitive to the target language,
but not to the source language, since the definition of
equivalence among conceptual representations depends
on the cultural and pragmatic background of the lan-
guage in which a translation has to be expressed. An
example of a paraphrasing rule is

(oquiv (*equal (:agent (*X (:hUm (*V))))
(:theme (*Y/*porson

(:def *indef)
(:sum (*W)))))

(*Z/*ac%ion (: a g e n t (*X) (:num (*V))))
(s u c h - t h a t (human iza t ion *Z *Y)

(sibling *V *W)))

where *Y/*person specifies *Y to be an instance of any
subclass of *person, *equal is roughly the verb "be,"
humanization is a relation tha t holds for pairs such ms
(*singer, *sing) and (*swimmer, *swim), and sibling
holds for two instances of the same class. Intuitively,
this rule specifies an equivalence relationship between
sentences such as "Tom is a good singer" and "Tom
sings well," as the following bindings hold:

(*equal (:mood (*dec)) (:time (*pros))
(:agent (*tom (:num (*sg))))
(:theme (*singer (:property (*good))

(:dof (*indof))
(:aura (* s g)))))

(* s ing (:mood (*dec)) (: t i m e (*p ros))
(: a g e n t (*tom (:num (* s g))))
(: p r o p e r t y (*good)))

whore *X = *tom, *Y = * s i n g e r , *Z = * s i n g ,
*V = *sg, and *W = *sg

All the instances tha t have no binding in a rule must
remain unchanged as the same slot fillers (e.g., *dec and
*pros), while some fillers tha t have bindings in a rule
may be missing from a counterpar t instance (e.g., *indef
and *W above). Note tha t *good has lexical mappings
to the adjective "good" and the adverb "well."

2.5 C a s e B a s e
A case base is a set of DSs with no syntact ic /semant ic

ambiguities. A conceptual representation for a DS can
be computed by a top-down algorithm tha t recursively
tries to combine an instance mapped from the root node
of a DS with an instance of each of its subtrees. The arc
from the node to a subtree deternfiues the conceptual
slot name.

We have already built a case base that includes
about 30,000 sentences from the IBM Dictionary of

ACRES DE COLING-92. NANTES, 23-28 AOUl 1992 1 0 3 6 PrisE, oF COLING-92, NANTES. AUG. 23-28, 1992

teAT v , keteBPc~
theme OBJECT " : location--ln -- theme ECT ~ PPADJONCT

• "*'-... / " (CAT n)
diskette
ICAT n) :iocatlon-{n ~ - ~ - - ~

Only relevant hfformation is slmwn. Mapping constraints
(e.g. :Umme = DOBJECT) are actually associated for each
pall" of instances.

Figure 2: SamI)le DS with Mapping Constraints

Computing [x]. Selected sentences in the],DOCE have
also been added to the case base. The sentences in
the LDOCE define word senses or show sample usages
of each entry. Though composed of a limited vocabu-
lary, they are often syntactically/semantically ambigu-
ous and it is time-consuming for users to build the
case base completely manually. Therefore, the Shal t2
parser is used to develop the case base. Starting with
a small, manually crafted "core" ease base, e~ch new
sentence is analyzed and disambiguated by the parser
to generate a DS, which is corrected or otodified by the
user and then added to the case base. As the size of
the case base grows, tim prot)ortion of human correc-
tions/modifications decreases, since the output of the
parser becomes more and more accurate. Wise process
is called knowledge bootstrapping and is discussed by
Nagao [6] in more detail. Mapping coustraints, howevcr,
are associated with only a part of the case base, because
the NL class system and the mapping rules arc not yet
complete.

3. P m ' s e r

The Shal l2 parser first generates a DS with packed
structural ambiguities for a given inlmt sentence. It
actually calls a PEG parser or ' lbmita's LR-parser [12]
for PUG, and then calls a DS converter to map a PEG

parse tree or a PUG feature structurc~ to a DS. Next,
mapping rules arc applied to the DS so that lexical
and structural mappings are associated with each node
and arc in the DS. Figure 2 shows a DS with map-
ping constraints for the sentence "Keep the diskette in
the drive," where the verb "keep" has tive word senses:
*execute, *guard, *hold, *employ, and *own. It is clear
that we will end up with ten distinct conceptual repre-
sentations if we evaluate all tim mapping rules, and in
general, combinatorial explosion could easily make the
parser impractical. Viewing the mapping rules as coo-
stralnts rather titan procedural rules is the key to our
parser, and is called delayed composition of conceptual
representation.

A sentence analyzer called SENA [x41 disambiguates
the DS by using a constraint solver JAUNT[S] and a

"~Tomlta~s lucid amhigulty packing [12] is used to obtain a fea-
ture structure with packed atructurM ambiguities.

case base. JAUNT applies grammatical constraints (for
instance, nlodifier-modifiee links between nodes do not
cross one another) and semantic constraints (such as

selectional restrictions,t~ functional control, and other
NL object identity constraints detected by the context
analyzer) uniformly to a DS that has ambiguities, and
calculates pairwise consistency efficiently for each com-
bination of nodes. Finally, the case base provides prefo
erential knowledge to favor one pair of nodes over all
other consistent pairs. The disambiguation process call
be summarized as follows:

1. For each conflicting arc in the DS, calculate the
"dlstauce" [6] between the two nodes in the arc by
using a case base.

2. Leave tile ,xrc with the minimal distance and elimi-
nate all the other conflicting arcs. Each NL object
associated with a matching node in the case base
also gives a higher preference to the same class of
instance over the other instances in a node.

3. Propagate the deletion of arcs to other nodes and
arcs in the DS. Eliminate nodes and arcs that are
no longer valid in the DS.

4. Apply the above steps until there are no conflicting
arc~ in the DS.

The resulting 1)S has 11o structural ambiguity. B.e-
madling lexical ambiguities are similarly resolved, be-
cause we can also determine which pair of NL objects
connected with an arc has the minimal distance in the
case base. Our case base for cmnputer manuals would
support the "diskette -PPADJUNCT- drive" arc and
the *hold-1 instance with diskette as its DOBJECT.
Therefore, the parser will eventually return

(*hold-1
(: ~cheme (*diske~;t e

(: l o c a t i o n - i n (* d r i v e)))))

as a disambiguated result. Nagao [e} discusses snore so-
phisticated techniques such as scheduling sets of arcs to
bc disambiguated, backtracking, and relaaation of case
base matching by means of an is-a hierarchy.

Finally, a context analyzer is called to resolve
auaphora, identity of definitc nouns, and implicit iden-
tity between NL objects. It stores the DS in the working
space, where references to preceding instances are repre-
sented by the links between instances in the DSs. These
inter-sentential links are used to determine the scopes
of adverbs such as "also" and "only".

For example, if the phrase "role of an operator" ap-
pears in a text, the word "operator" could be a person
who operates a machine or a logical operator for com-
putation, but no sufficient information is available to
resolve this ambiguity at this moment. In such cases,
creating referential links in a forest of DSs could lead
us to find evidence for disamblguating these two mean-
ings. The scope of an adverb, such as "also," is de-
termined by identifying repeated NL objects and newly
introduced NL objects, where the latter are more likely
to fall within the scope of the adverb.

The context analyzer uses a similar method to deter-
mine lexical ambiguities that were not resolved by the
sentence analyzer wlmn the case base failed to provide
enough information.

?~We use about 20 of the semantic features described in the
LDOCE. The restrictions imposed by the features are ra ther
"loose," and are used to eliminate only unlikely combinations of
word senses,

Aches DE COL1NG-92. NANII~S, 23-28 AO~r[1992 l 03 '7 PRO{:, O1: COLING-92. NANTES, AUO. 23-280 1992

4. Concept Mapper

Given a conceptual representation, which is an out-
put from the parser, and a target language, the c o n c e p t
m a p p e r tries to discover another conceptual represea-
tation that has a well-defined mapping to a DS while
keeping the semantic content as intact as possible. This
process is called c o n c e p t u a l t rans f e r . If the given con-
eeptual representation already has a well-defined map-
ping to a DS, the concept mapper does nothing and
Shal t2 works like an interlingual MT system. It is im-
portant that conceptual transfer should be related with
the mapping to a DS, because there are generally many
conceptual representations with a similar semantic con-
tent. The existence of well-defined mapping not only
guarantees that the generator can produce a sentence
in the target language, but also effectively eliminates
unsuccessful paraphrasing.

111 addition to the paraphrasing rules mentioned ear-
lier, the concept mapper uses the following genera] rules

for conceptual transferJ The paraphrasing rules are
composed to make a complex mapping.

* Projection: Map an NL object w i t h a filled slot s
to an instance of the same class with the unfilled
slot s. Projection corresponds to deletion of a slot
8.

s Generalization: Map an NL object of a class X to
an instance of one of the superclasses of X.

e Specialization: Map an NL object of a class X to
an instance of one of the subclasses of X.

As an example, a projection rule is frequently used when
we translate English nouns into Japanese ones, as in the
following examp:

diskette (* d i s k e t t e (:sum (* s t)))
d i s k e t t e s (* d i s k e t t e (:num (*pl)))
a d i s k e t t e (* d i s k e t t e (:num (* s t))

(: de f (*indeX)))
the d i s k e t t e s (* d i s k e t t e (:num (*pl))

(:def (*def)))
~ 4 A ~ r 7 ~ (* d i s k e t t e)

Here, the four English noun phrases above are usually

translated by the same Japanese noun phasef~ (the fifth
one), which does not carry any information on mum
and :def. We provide a paraphrasing rule for trans-
lation in the opposite direction such that for any in-
stance of the *object can obtain appropriate :sum and
:def fillers. The parser, however, is responsible for de-
termining these fillers in most cases. In general, the
designer of semi-equivalent rules for translation in one
direction has to provide a way of inferring missing infor-
mation for translation in the opposite direction. Gen-
eralization and specialization rules are complementary
and can be paired to become equivalent rules when a
specialization rule for any instance of a class z is un-
ambiguous. That is, without losing any fillers, one can
always choose an instance of a subclas~ V to which z can
be uniquely mapped. A generalization from e~ch ~ to z
provides the opposite mapping.

~Theee are ~emi-equivMent rules. Equivalent rules have higher
priority when the tulsa axe to be applied.

~fOne exception is that deictic noun phrases are translated
when we use the ~apanme counterpart "-~¢3 ~ for the determiner
"the".

5. Grammar-Based Sentence Genera-
tor

Recent investigation of unification grammars and
their bi-direetionality Its, 9,]0] has enabled us to design
and implement a grammar-based generator. Our gen~
crater uses a PUG grammar, which is also used by the
parser, to traverse or decompose a feature structure ob-
tained from a D$ in order to find a sequence of grammar
rule applications, which eventually lead to lexical rules
for generating a sentence. The generation algorithm is
based primarily on Wedekind's algorithm, but h merit-
tied for PUG.

The current implementation of our generator lacks
subtle control of word ordering, honorific expressions,
and style preference. We are developing a set of dis -
c o u r s e p a r a m e t e r s to a~ociate preferences with gram-
mar rules to be tried, so that specific expressions are
favored by the parameter settings.

A c k n o w l e d g m e n t

Yutaka Tsutsumi built an initial version of concep-
tual definitions. Katashi Nagao originally designed and
implemented the disambiguation algorighm of the sen-
tence analyzer. His continuous efforts to build a large-
scale ease base and to improve the disambiguation al-
gorithm have been continued by the Shal t2 group. Hi-
roshi Maruyama enhanced his constraint solver for our
project, which has led us to a constraint propagation
method with delayed composition of conceptual repre-
sentations. Michael McDonald read through an early
draft of this paper and gave us many suggestions on
technical writing. We thank them all.

R e f e r e n c e s
1) IBM Corp. "Dictionary off Computing" (gth Edition). SC20-

1999-07, 1987.
2) D. Gates, K. Takeda, T. Mitamur&, L. LevLn, and M. Kee. "Anab

y=i, and Generation Grammar". M~ehine T~,n=latio,, 4(1)153-
9S t March 1989.

3) K. Goodman and S. Nirenburg, editors. "The K B M T Project: A
Coze Study in Kno~ledse-B~#ed Me, chine ~an#|al lon n. Mor-
gan Kaufmann Pubi~herw, San Matzo, California, 1991.

4) H. Maruyama. "Structural Disambiguation with Constraint
PropagationS. In Prec. el the £8th Anntml Meetin 9 of ACL,
volume 31 pages 31-38, June 1990.

5) H. Maruyama. "JAUNT: A Constraint Solver for Disjunctive
Feature Structures". Technical Report PDfOO59, Tokyo ~ a r c h
Lab., IBM Reaearchj 1991.

6) K. Nagao. "Dependency Analyzer: A Knowledge-Baaed Ap-
proach to Structural Dmambiguation". In prec. of Ihe 13th
lnlern¢tlonal Con]erence on Comput¢tional Ling,lille*, pagen
484-489, Aug. 1990.

7) E. Nyberg. "The FrameKit Uler% Guide Version 2.0". Technical
Report CMU-CMT-88-MEMO, Center for Machine Translation,
Carnegie Mellon Univereity, March 1988.

8) Procter P. Lo,t#man Dictionarp el Contemporar~ 1English.
Longman Group Limited, Harlow and London~ England, I978.

9) S.M. Shieher, F. C. I"4. Pereira, G. van Noord, and R. C. Moore.
"Semantle-Head-Driven Generation". Computational Linsni#-
|icJ, 19(1):30-42, March 1990.

1O) K. Takeda. =Bi-DireetlonalGrammarlfor MachineTranalation".
In Pros. of Seoul International Conference on Natural Lan.
guase Proce,Jin~, page~ 1~2~197, Seoul, Korea, 1November I990.

11) K. Takeda. UD~ign~ng Natural Language Objects n. In Prec.
oJ £nd lnlernationgl SFmpo*i~m on Databame S~/Jtem* for Ad.
vaneed Appllcationlt pagem 444-448, Tokyo, Japan, April 1991.

12) M. Tomlta. "Effleienl Parsln 9 for N¢tural Language: A Fts t
Algor~th~]or Practical Sp*leml n. Kluwer Academic Publi0here,
Beaten, MA, 198S.

13) T. Ttutgurnl. "A Prototype Engllsh-Japanene Machine Tr~nsi~-
tips System for Tranalatln 8 IBM Computer Minuals". In prec.
of the l l t h lnternation¢l ConJerenee on Computation¢l Ligtt.
i/tieJ, Auguut 1986.

14) N, Uramoto. "I~xical and Structural Disarnbiguation Using an
Example*Brute". In Prec. of the Sad Ja~n-A~J tml ia Joint
.qytnpo#iu~t on NLP, pages 1nO-160, Oct. 1991.

15) J, Wedekind, =Generation as Structure Driven Derivatlon". In
P ~ e . of the l£th International Conference on Computational
Ligui*iiem , page= 732-737 t August 1988.

ACRES DE COLING-92, NANTES, 23-28 AOt~T 1992 i 0 3 8 PROC. OV COLING-92, NANTES, AUG. 23-28, 1992

