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A b s t r a c t  

Identifying and classifying personal, geographic, in- 
stitutional or other names in a text is an impor- 
tant task for numerous applications. This paper de- 
scribes and evaluates a language-independent boot- 
strapping algorithm based on iterative learning and 
re-estimation of contextual and mOrphological pat- 
terns captured in hierarchically smoothed trie mod- 
els. The algorithm learns from unannotated text and 
achieves competitive performance when trained on a 
very short labelled name list with no other required 
language-specific information, tokenizers or tools. 

1 I n t r o d u c t i o n  

The ability to determine the named entities in a 
text has been established as an important task for 
several natural language processing areas, including 
information retrieval, machine translation, informa- 
tion extraction and language understanding. For the 
1995 Message Understanding Conference (MUC-6), 
a separate named entity recognition task was devel- 
oped and the best systems achieved impressive accu- 
racy (with an F-measure approaching 95%). What 
should be underlined here is that these systems were 
trained for a specific domain and a particular lan- 
gnage (English), typically making use of hand-coded 
rules, taggers, parsers and semantic lexicons. In- 
deed, most named entity recognizers that have been 
published either use tagged text, perform syntactical 
and morphological analysis or use semantic informa- 
tion for contextual clues. Even the systems that do 
not make use of extensive knowledge about a partic- 
ular language, such as Nominator (Choi et al., 1997), 
still typically use large data files containing lists of 
names, exceptions, personal and organizational iden- 
tifiers. 

Our aim has been to build a maximally langnage- 
independent system for both named-entity identi- 
fication and classification, using minimal informa- 
tion about the source language. The applicability of 
AI-style algorithms and supervised methods is lim- 
ited in the multilingual case because of the cost of 
knowledge databases and manually annotated cor- 
pora. Therefore, a much more suitable approach is 

to consider an EM-style bootstrapping algorithm. In 
terms of world knowledge, the simplest and most rel- 
evant resource for this task is a database of known 
names. For each entity class to be recognized and 
tagged, it is assumed that the user can provide a 
short list (order of one hundred) of unambiguous 
examples (seeds). Of course the more examples pro- 
vided, the better the results, but what we try to 
prove is that even with minimal knowledge good re- 
sults can be achieved. Additionally some basic par- 
ticularities of the language should be known: cap- 
italization (if it exists and is relevant - some lan- 
guages do not make use of capitalization; in others, 
such as German, the capitalization is not of great 
help), allowable word separators (if they exist), and 
a few frequent exceptions (like the pronoun "/" in 
English). Although such information can be utilised 
if present, it is not required, and no other assump- 
tions are made in the general model. 

1.1 Word- In te rna l  and  Contextual  
Information 

The algorithm relies on both word internal and 
contextual clues as relatively independent evidence 
sources that drive the bootstrapping algorithm. The 
first category refers to the morphological structure 
of the word and makes use of the paradigm that 
for certain classes of entities some prefixes and suf- 
fixes are good indicators. For example, knowing that 
"Maria", "Marinela" and "Maricica" are feminine 
first names in Romanian, the same classification may 
be a good guess for "Mariana", based on common 
prefix. Suffixes are typically even more informa- 
tive, for example "-escu" is an almost perfect indi- 
cator of a last name in Romanian, the same applies 
to "-wski" in Polish, "-ovic" and "-ivic" in Serbo- 
Croatian, "-son" in English etc. Such morphological 
information is automatically learned during boot- 
strapping. 

Contextual patterns (e.g. "Mr.", "in" and 
"mayor of" in left context) are also clearly crucial 
to named entity identification and classification, es- 
pecially for names that do not follow a typical mor- 
phological pattern for their word class, are of foreign 
origin or polysemous (for example, many places or 
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institutions are named after persons, such as "Wash- 
ington" or "Madison", or, in some cases, vice-versa: 
"Ion Popescu Topolog" is the name of a Romanian 
writer, who added to his name the name of the river 
"Topolog"). 

Clearly, in many: cases, the context for only one 
occurrence of a new word and its morphological in- 
formation is not enough to make a decision. But,  as 
noted in Katz (1996), a newly introduced entity will 
be repeated, "if not  for breaking the monotonous ef- 
fect of pronoun use~ then for emphasis and clarity". 
Moreover, he claims that  the number of instances of 
the new entity is not associated with the document 
length but with the importance of the entity with re- 
gard to the subject/discourse. We will use this prop- 
erty in conjunction with the one sense per discourse 
tendency noted by Gale, Church and Yarowsky 
(1992b), who showed that  words strongly tend to 
exhibit only one sense in a document/discourse. By 
gathering contextual information about the entity 
from each of its occurrences in the text and using 
morphological clues as well, we expect to classify en- 
tities more effectively than if they are considered in 
isolation, especially those that  are very important  
with regard to the' subject. When analyzing large 
texts, a segmentation phase should be considered, so 
that  all the instances of a name in a segment have 
a high probability o f  belonging to the same class, 
and thus the contextual information for all instances 
within a segment c'an be used jointly when making 
a decision. Since the precision of the segmentation 
is not critical, a language independent segmentation 
system like the one presented by Amithay, Richmond 
and Smith (1997) is adequately reliable for this task. 

1.2 T o k e n i z e d  T e x t  vs.  P l a i n  T e x t  

There are two basic alternatives for handling a text. 
The first one is to tokenize it and classify the in- 
dividual tokens or group of tokens. This alterna- 
tive works for languages that  use word separators 
(such as spaces or punctuation), where a relatively 
simple set of separator patterns can adequately to- 
kenize the text. The second alternative is to clas- 
sify entities simply with respect to a given starting 
and ending character position, without knowing the 
word boundaries, but just the probability (that can 
be learned automatically) of a boundary given the 
neighboring contexts. This second alternative works 
for languages like Chinese, where no separators be- 
tween the words are typically used. Since for the 
first class of languages we can define a priori prob- 
abilities for boundaries that  will match the actual 
separators, this second approach represents a gener- 
alization of the one using tokenized text.  

However, the first method, in which the text is 
tokenized, presents! the advantage that  statistics for 
both tokens and types can be kept and, as the re- 
sults show, the statistics for types seem to be more 

reliable than those for tokens. Using the second 
method, there is no single definition of "type", given 
that  there are multiple possible boundaries for each 
token instance, but  there are ways to gather statis- 
tics, such as considering what we may call "probable 
types" according to the boundary probabilities or 
keeping statistics on sistrings (semi-infinite strings). 
Some other advantages and disadvantages of the two 
methods will be discussed below. 

2 T h e  B a s i c  M o d e l  

Before describing the algorithm, we will present a 
brief overview of some of its goals: 

• a language independent core model 

• the ability to exploit basic language-specific fea- 
tures 

• the ability to learn from small named entity lists 
(on the order of 100 total training names) 

• the capability to handle both large and small 
texts 

• good class-scalability properties (the possibility 
of defining as many named entity types as de- 
sired, so that  for different languages or different 
purposes the user can choose different classes of 
words to be recognized) 

• the capability to store the information learned 
from each instance for further use 

Three important  concepts are used in our model: 

2.1 'rrie s t r u c t u r e s  are  u s e d  for b o t h  
m o r p h o l o g i c a l  a n d  c o n t e x t u a l  
i n f o r m a t i o n  

Tries provide an effective, efficient and flexible data  
structure for storing both contextual and morpho- 
logical patterns and statistics. First, they are very 
compact representations. Second, they support a 
natural hierarchical smoothing procedure for dis- 
tributional class statistics. We consider character- 
based tries, in which each node contains a probabil- 
ity distribution (when working with tokenized text,  
two distributions are considered in each node, one for 
tokens and one for types). The distribution stored at 
each node contain the probability of each name class 
given the history ending at that  node. Each distribu- 
tion also has two standard classes, named "question- 
able" (unassigned probability mass in terms of entity 
classes, to be motivated below) and "non-enti ty ' .  

To simplify the notations, we will refer to a start  
and end point bounded portion of text being ana- 
lyzed (in order to determine if it represents a named 
entity or not) as a token. 

Two tries are used for context (left and right) and 
two for internal morphological patterns of tokens. 

Figure i shows an example of a morphological pre- 
fix trie, which stores the characters of tokens from 
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information stored in a node: 
character("#") 

raw distribution: 
quest I non-entity I person I place I inst 

list o f  (right) context  l inks 

are#a#nice# [ 

Figure 1: Morphological prefix trie for "Alex and 
Anda are a nice couple" 

left to right from given starting points (with optional 
word boundaries indicated by " # " ) .  

Suffix tries (typically more informative) have 
equivalent structure but reversed direction. The left 
and right context tries have the same structure as 
well, but the list of links refers now to the tokens 
which have the particular context represented by the 
path from the root to the current node. For right 
context, the letters are introduced in the trie in nor- 
mal order, for left context they are considered in the 
reversed order (in our example, "Anda"  has as left 
context "dna#xe l a#" ) .  Similarly, nodes of the con- 
text  tries contain links to the tokens that  occurred 
in the particular contexts defined by the paths. Two 
biparti te graph structures are created in this way by 
these links. 

For reasons that  will be explained later, raw 
counts are kept for the distributions. 

The probability of a token/context  as being in 
or indicating a class is computed along the whole 
path from the root to the terminal node of the to- 
ken/context .  In this way, effective smoothing is re- 
alized for rare tokens or contexts. 

Considering a token/context  formed from charac- 

ters l l l2. . . ln,  (i.e. the path in the trie is root - ll  - 
12 - ... - In) the general smoothing model is: 

n 

P(class~l t l l2 . . . In  ) = ~ A~P(class3111t2...li), 
i = 1  

n 

whereas  E [O, 1]and ~ A i = l  
i = 1  

It is reasonable to expect that  smaller lambdas 
should correspond to smaller indices, or even that  
A1 _< A2 _< ... _< An. In order to keep the number of 
parameters low, we used the following model: 

F(class~llal2. . . ln)  = ~F(c lass~l lx  ) 
n 

+ ~ °tn- iF(cclassj[ l l l2""l i )  
i = 2  

where a ,  ~ E (0, 1), ~ having a small value 

The symbol F is used instead of P since we have 
raw distributions (frequencies) and a normalization 
step is needed to compute the final probability dis- 
tribution. 

A simpler model can use just one parameter  (set- 
ting g = an) ,  but this has limited flexibility in op- 
timizing the hierarchical inheritance - the probabil- 
ity of a class given the first letter is often not very 
informative for some languages (such as English or 
Romanian) or, by contrast,  may be extremely im- 
portant  for others (e.g. Japanese). 

2.2 E M - s t y l e  b o o t s t r a p p i n g  

The basic concept of this bootstrapping procedure is 
to iteratively leverage relatively independent sources 
of information. Beginning with some seed names for 
each class, the algorithm learns contextual pat terns 
that  are indicative for those classes and then itera- 
tively learns new class members and word-internal 
morphological clues. Through this cycle, probabil- 
ity distributions for class given token, prefix/suffix 
or context are incrementally refined. More details 
are given when describing stage 2 of the algorithm. 

2.3 U n a s s i g n e d  p r o b a b i l i t y  m ass  as 
o p p o s e d  t o  t h e  c l a s s i c a l  m a x i m u m  
e n t r o p y  p r i n c i p l e  

When faced with a highly skewed observed class dis- 
tribution for which there is little confidence due to 
small sample size, a typical response to this uncer- 
tainty in statistical machine learning systems is to 
backoff or smooth to the more general class distri- 
bution, which is typically more uniform. Unfortu- 
nately, this representation is difficult to distinguish 
from a conditional distribution based on a very large 
sample (and hence estimated with confidence) tha t  

9 2  



just happens to have a similar fairly uniform true 
distribution. One would like a representation that  
does not obscure this distinction, and represents the 
uncertainty of the distribution separately. 

We resolve this lproblem while retaining a sin- 
gle probability distribution over classes by adding 
a separate "questi0nable" (or unassigned) cell that  
reflects the uncertainty of the distribution. Proba- 
bility mass continues to be distributed among the 
remaining class cells proportional to the observed 
distribution in the :data, but with a total sum (< 1) 
that  reflects the confidence in the distribution and 
is equal to 1 - P(q'uestionable). 

This approach has the advantage of explicitly rep- 
resenting the uncertainty in a given class distribu- 
tion, facilitating the further development of an in- 
teractive system, while retaining a single probabil- 
ity distribution that  simplifies trie architecture and 
model combinatiofi. Incremental learning essentially 
becomes the process of gradually shifting probabil- 
ity mass from questionable/uncertain to one of the 
primary categories. 

3 T h e  A l g o r i t h m  

The algorithm can! be divided into five stages, which 
are summarized below. 

S tage  0: build the initial training list of class 
representatives 

S tage  1: read the text and build the left and right 
morphological and context tries 

S tage  2: introduce the training information in 
the tries and re-estimate the distributions by boot- 
strapping 

S tage  3: identify and classify the named entities 
in the text using competing classifiers 

S tage  4: update the entity and context training 
space, using the new extracted information 

Stage O: 
This stage is performed once for each lan- 

gnage/task and cbnsists of defining the classes and 
filling in the initial class seed data with examples 
provided by the user. The list of class training names 
should be as unambiguous as possible and (ideally) 
also relatively common. It is also necessary to have a 
relatively large unannotated text for bootstrapping 
the contextual models and classifying new named en- 
tities. Examples Of such training seeds and text for 
Romanian language are given in Tables 1 and 21 . For 
the primary experiments reported in this paper, we 
have studied a relatively difficult 3-way named entity 
partition between:First (given) names, Last (family) 
names and Place 'names. The first two tend to be 
relatively hard to distinguish in most languages. A 

1The text refers %0 the mayor of a small town of Alba 
county, who was so drunk while officiating at a wedding that 
he shook the bride's hand and kissed the groom. 

simpler person/place-based distinction more compa- 
rable to the MUC-6 EMAMEX task is evaluated in 
Table 3(d). 

T r a i n i n g  D a t a  (seed wordlists): 
F.NAME L.NAME PLACE 
Andrei 
Adam 
Alexandru 
Aurel 
Bogdan 
Cosmin 
Constantin 
C~t~lin 
Costin 
Claudiu 

Table 

Iliescu 
Popescu 
Ionescu 
Nitu 
T~nase 
Tudose 
Rotariu 
Ciurea 
Bucur 
Gherman 

Abrud 
Alba-Iulia 
Arad 
Bac~u 
Botosani 
Bucuresti 
Brasov 
Br~ila 
Buz~u 
Calafat 

h Sample training wordlists for Romanian 

Ta r g e t  E v a l u a t i o n  Text  
(labels not used for training) 

Primarul comunei <place> Rosia Montane 
</place> judetul <place> Alba </place> 
<fname> David </fname> <iname> Botar 
</iname> a intrat in legend~ datori%~ unor 
intimpl~ri de-a dreptul penibile, relatate in 
"Evenimentul zilei". Practic, primul gospodar 
al celei mai bogate comune in aur din < p l a c e >  
Munti i  Apuseni < / p l a c e >  este mai tot timpul 
beat-crit~, drept pentru care, la oficierea unei 
c~s~torii, a s~rutat mina mirelui, a strins mina 
miresei si a intocmit certificat de deces in locul 
celui de c~s~torie. Recent, <fname> Andrei 
</fname> <iname> P~tunescu </iname> fiul 
poetului, a intentionat s~ achizitioneze gospod~ria 
unei bucurestence care se stabilise de o vreme 
in <place> Rosia MontanK </place> La 
prim~trie ~ns~, turmentatul  primar 1-a trimis pe 
fiul lui <fname> Adrian </fname> <iname> 
P~unescu </iname> s~-i cumpere ceva de b~ut, 
pentru a se putea concentra ~ndeajuns asupra 
hirtiilor tranzactiei imobiliare. 
<fname> LUCIAN </fname> 
<iname> DOBRATER </iname> 

Table 2: Sample test data for Romanian 

Stage 1: 
There are two ways to start this stage, either by 

tokenizing the text or considering it in raw form. 
When tokenization is used, each token is inserted 

in the two morphological tries: one that  keeps the 
letters of the tokens in the normal (prefix) order, 
another that  keeps the letter in the reverse (suffix) 
order. For each letter on the path, the raw distribu- 
tions are changed by adding the a priori probability 

93 



Probability distribution order: 
node non- n a m e ~ ~  

I N 10.1,110.3810.2710.=1 0.2 I 

[ A 10.07110.0410.6310.2210.04 I 

[ i  Io.1511o.o31o.271o.551 o I 

I u 10.07110.2210.5510.1210.04 [ 

I c 10.05110-2110.7010.031 0 I 

I s Io.olll 0 10.99] 0 I 0 I 

I E l o l l  0 I a I 0 1 0 1  

• z~,~°"311°° ' l°sTI  ° I ° I 

I E 10.99110;011 0 I 0 I 0 I 

I T10.99110.011 o l 0 1 0 1  

I s 10.99110.011 0 I 0 I 0 I 

("sterian" subtree) 

I L Io.,11 0 I 0 Io.s7[ 0 ] 

I U Io.1311 0 I 0 10.87I 0 I 

I f  10.1311 0 I 0 [o.a71 0 [ 

("iulian" subtree) 

("-escu" subtree) 

Figure 2: An example of normalized but unsmoothed distributions from the suffix morphological trie for 
Romanian. The paths shown are for Iulian, a "first name" entity, contained in the training word list; Ster/an 
a "last name", not in the training data; and a partial path for the tokens ending in -escu. 

of the token belonging to each class (language depen- 
dent information may be used here). For example, 
in the case of Indo-European languages, if the token 
starts with an upper-case letter, we add 1 full count 
(all probability mass) to the "questionable" sum, as 
this entity is initially fully ambiguous. If the to- 
ken starts with lower-case (and hence is an unlikely 
name) in this case we add the bulk of the proba- 
bility mass 6 (e.g.6 t> 0.9) to "non-entity" and the 
remainder (1-5) to "questionable" (otherwise unas- 
signed). Other language-specific orthographic clues 
could potentially affect this initial probability mass 
assignment. 

When no tokenization is applied, we have to con- 
sider possible starting and ending points. Therefore, 
the strings (which, for simplicity, we will refer as 
well as tokens) introduced in the prefix morpholog- 
ical trie and the ones introduced in the suffix trie 
may differ. 

The left context of each token is introduced, let- 
ters in reverse order, in the left context trie, with 
pointers to the token in the morphlogical prefix trie; 
the right context of each token is introduced, in nor- 
mal order, in the right context trie, keeping pointers 
to the token in the suffix trie. The distributions 
along the paths are modified according to the a pr/- 
ori distribution of the targeted token. 

Stage 2: 
This stage is the core bootstrapping phase of the 

algorithm. In essence, as contextual models become 
better estimated, they identify additional named en- 
tities with increasing confidence, allowing reestima- 
tion and improvement of the internal morphological 
models. The additional training data that this yields 
allows the contextual models to be augmented and 
reestimated, and the cycle continues until conver- 
gence. One approach to this bootstrapping process 
is to use a standard continuous EM (Expectation- 
Maximization) family of algorithms (Baum, 1972; 
Dempster et al., 1977). The proposed approach out- 
lined below is a discrete variant that is much less 
computationally intensive, and has the advantage 
of distinguishing between unknown probability dis- 
tributions and those which are simply evenly dis- 
tributed. The approach is conservative in that it 
only utilizes the class estimations for newly classified 
data in the retraining process if the class probabil- 
ity passes a confidence threshold, as defined below. 
The concept of confidence threshold can be captured 
through the following definitions of dominant and 
semi-dominant. 

Let us consider a discrete finite probability distri- 
bution P = (Pl, ...,Pn). We say that P has a domi- 
nant if there is an i in {1...n} such that pi > 0.5, or 
in other words if 

n 

~ P j  <Pi- 
j=l 
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We say that  P has an a-semi-dominant with re- 
spect to an event k, where a > 1, if it does not have 
k as dominant and there exist i in {1...n} such that  

n 

j : l  

jCk 

A few commentsi about these definitions are nec- 
essary: it can be .easily observed that  not every 
distribution has a dominant, even though it has a 
maximum value. The second definition, of a-semi- 
dominant, makes sense if we consider a particular 
event k that  is not relevant (or the result cannot be 
measured). By rembving this event and normalizing 
the rest of the values, we obtain a new distribution 
(of size n-l)  having i an a-dominant.  

The core of stage 2 is the bootstrapping procedure. 
The known names (either from the original training 
list or otherwise learned data) are inserted sequen- 
tially into the morphological tries, modifying the 
probability distributions of the nodes on the paths 
accordingly (the data  structure is illustrated in Fig- 
ures 1 and 2) . If the new distribution in one of the 
nodes on the path of a known token gains a dominant 
(for example "placer') then the effect of this change is 
propagated by reestimating other node distributions 
given this change .  Each distribution on the con- 
text paths in which that  token occurred in the text  
is modified, by subtracting from the "questionable" 
mass a quantity proportional to the number of times 
the respective token was found in that  context and 
adding it to the dominant-position (e.g. "place") 
mass. For the newly obtained distributions that  
gained a dominant :(in our example "place") in the 
context trie, the bootstrapping procedure is called 
for all tokens that  Occurred in tha t  context, and so 
on, recursively. Here it is very important  that  we 
consider raw distributions and not normalize them. 
For example, if word "Mariana" occurs x times with 
the right context "merge" (meaning "goes") and the 
distribution for "rhariana#" has now been identi- 
fied with the dominant "first name",  then x units 
from the "questionable" mass can be moved to "first 
name" mass along the path of "merge#" in the right 
context trie. If semi-dominants are used instead of 
dominants then we have to account for the fact that  
the semi-dominants may change over time, so the 
probability mass must be moved either from "ques- 
tionable" position Or previous semi-dominant posi- 
tion, if a semi-dominant state has been reached be- 
fore. 

It may be easily observed that  stage 2 has a se- 
quential characteristic, because the updating is done 
after reading each name incrementally. When us- 
ing dominants the Order does not affect the process, 
because of the face that  once a dominant state is 

reached, it cannot change to another dominant state 
in the future (probability mass is moved only from 
"questionable"). In the case of semi-dominants, the 
data  ordering in the training file does influence the 
learning procedure. 

The more conservative strategy of using domi- 
nants rather then semi-dominants has, on the other 
hand, the disadvantage of cancelling or postponing 
the utilisation of many words. For example, if both 
"questionable" and "first name" have 49% of the 
mass then subsequent reestimation iterations are not 
initiated for this data, even though the alternative 
name classes are very unlikely. 

Considering those advantages and disadvantages, 
we used the less conservative semi-dominant ap- 
proach as the default model. 

Stage 3: 
In this stage the text is re-analysed sequentially, 

and for each token (given a start-end point pair) 
a decision is made. Here the bipartite structure 
of the two pairs of tries has a central role: dur- 
ing stage 2, the left context and prefix tries inter- 
act with each other and so do the right context and 
suffix tries, but there's no interference between the 
two pairs during the bootstrapping stage. There- 
fore, for each instance of a token in the text,  four 
classifiers are available, a different one given by each 
trie. The decision with regard to the presence of 
an entity and its classification is made by combin- 
ing them. Comparative trials indicate that  higher 
performance is achieved by initially having the clas- 
sifters vote. Results indicate that  the most accurate 
classifications are obtained from the two indepen- 
dently bootstrapped morphological tries (they incor- 
porate the morphological information about the to- 
ken to be classified, and, during the bootstrapping, 
they also incorporate information from all the con- 
texts in which the token occurred). If the two agree 
(they have semi-dominants and they are the same) 
then the corresponding class is returned. Otherwise, 
agreement is tested between other paired indepen- 
dent classifiers (in order of empirically measured re- 
liability). If no agreement is found, then a simple 
linear combination of all four is considered for the 
decision. This approach yields 6% higher F-measure 
than the simple interpolation of classifiers for the 
default parameters. 

Stage ~ : 
The newly classified tokens and contexts are saved 

for future use as potential seed data in subsequent 
named-entity classification on new texts. 

4 R e s u l t s  

The basic measures for evaluation of this work are 
precision and recall. Precision (P) represents the 
percentage of the entities that  the system recognized 
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which are actually correct. Recall (R) represents 
the percentage of the correct named entities in the 
text that  the system identified. Both measures are 
incorporated in the F-measure, F = 2 P R / ( P  + R). 

It would be inappropriate to compare the results 
of a language independent system with the ones de- 
signed for only one language. As Day and Palmer 
(1997) observed, "the fact that  existing systems per- 
form extremely well on mixed-case English newswire 
corpora is certainly related to the years of research 
and organized evaluations on this specific task in this 
language. It is not clear what resources are required 
to adapt  systems to new languages." 

It is important  to mention that  the F-measure for 
the human performance on this task is about 96%, 
(Sundheim 1995). Our experiments on Romanian 
text  were consistent with this figure. 

4.1 B a s e l i n e  m e a s u r e s  

In order to obtain a baseline performance for this 
method we considered the performance of a sys- 
tem that  tags only the examples found in one of 
the the original training wordlists. We consider this 
to be a plausible lower bound measure if the train- 
ing words have not been selected from the test text. 
Day and Palmer (1997) showed that  a baseline F- 
measure score for the ENAMEX task varies from 
21.2% for English to 73.2% for Chinese. It is im- 
portant  to mention that,  when they computed these 
figures, they trained their language independent sys- 
tem on large annotated corpora (e.g. the Wall Street 
Journal for English). 

The fact that  the precision obtained by the base- 
line approach is not 100% indicates that  the seed 
training names for each class are not completely un- 
ambiguous, and that  a certain degree of ambiguity 
is generally unavoidable (in this case, mainly be- 
cause of the interference between first names and 
last names). 

Another significant performance measure is forced 
classification accuracy, where the entities have been 
previously identified in the text  and the only task is 
selecting their name class. To obtain baseline per- 
formance for this measure, we considered a System 
that  uses the original training word labels if there is 
an exact match, with all other entities labeled with 
a default "last name" tag, the most common class 
in all languages studied. The baseline accuracy was 
measured at 61.18% for Romanian. System accura- 
cies range from 77.12% to 91.76% on this same data. 

4.2 E v a l u a t i o n  o f  bas ic  e s t i m a t i o n  m e t h o d s  

The results shown in Table 3 were obtained for a 
Romanian text having 12320 words, from which 438 
were entities, using a training seed set of 300 names 
(115 first names, 125 last names, and 60 c i ty /country  
names). 

The baseline measures and default system (a) are 
as described above. 

In configuration (b), the based parameters of the 
system have been optimized for Romanian, using 
greedy search on an independent development test 
(devtest) set, yielding a slight increase in F-measure. 

Configuration (c) used the default parameters, but 
the more conservative "dominant" criterion was uti- 
lized, clearly favoring precision at the expense of re- 
call. 

Configuration (d), which is relevant for the 
ENAMEX task, represents the performance of the 
system when classes "first name" and "last name" 
are combined into "person" (whenever two or more 
such entities are adjacent, we consider the whole 
group as a "person" entity). 

Configuration (e) shows contrastive performance 
when using standard continuous EM smoothing on 
the same data  and data  structures. 

4.3 E v a l u a t i o n  b y  l a n g u a g e  a n d  k n o w l e d g e  
source 

Table 4 shows system performance for 5 fairly di- 
verse languages: Romanian, English, Greek, Turk- 
ish and Hindi. The initial 4 rows provide some basic 
details on the training data available for each lan- 
guage. Note that when annotators were generating 
the lists of 150-300 seed words, they had access to a 
development test from which to extract samples, but 
they were not constrained to this text and could add 
additional ones from memory. Furthermore, it was 
quite unpredictable how many contexts would actu- 
ally be found for a given word in the development 
texts, as some appeared several times and many did 
not appear at all. Thus the total  number of contex- 
tual matches for the seed words was quite variable, 
from 113-249, and difficult to control. It is also the 
case that  not all additional contexts bring compa- 
rable new benefit, as many secondary instances of 
the same word in a given related document collec- 
tion tend to have similar or identical surrounding 
contexts to the first instance (e.g. "Mayor of XXX" 
or "XXX said"), so in general it is quite difficult to 
control the actual training information content just 
by the number of raw seed word types that  are an- 
notated. 

For each of these languages, 5 levels of information 
sources are evaluated. The baseline case is as previ- 
ously described for Table 3. The context-only case 
restricts system training to the two (left and right) 
contextual tries, ignoring the prefix/suffix morpho- 
logical information. The morphology only case, in 
contrast,  restricts the system to only the two (prefix 
and suffix) morphological models. These can be esti- 
mated from the 3 training wordlists (150-300 words 
total), but  without an independent source of infor- 
mation (e.g. context) via which bootstrapping can 
iterate, there is no available path by which these 
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Romanian 
Precis ion Recall  F-measure A c c u r a c y  

Baseline: 98.67 34.02 50.58 61.18 
System Performance using: 
(a) default settings (using semi-dominants) 
(b) re-estimated smoothing parameters 
(c) learning wi~h dominants 
(d) ENAMEX~like "Person" / "Place" classes 
(e) continuous:EM approach 

76.95 
80.17 
91.06 
82.38 
74.02 

64.99 
62.93 
51.38 
69.57 
60.64 

70.47 
70.51 
65.69 
75.43 
66.67 

78.49 
78.93 
78.26 
91.76 
77.12 

Table 3: Comparison of the performance of basic estimation methods on Romaninan 

Language ! [ R o m a n i a n  English G r e e k  Turkish Hindi  
Training text siz~ 12320 15738 10445 5207 18806 
Total training seed words 300 190 210 150 150 
Contextual matches for seeds 149 205 113 133 249 
Labeled entities for testing 438 204 210 203 303 

Baseline: 
(Precision/Recal i / /F-measure) 
Context  Only: 
(Precision/Recal]//F-measure) 
M o r p h o l o g y  Only :  
(Precision/Recall//F-measure) 
Context  and Morphology: 
(Precision/Recal!//F-measure) 
Full  bootstrapping: 
( Precision/ Recall / / F-measure ) 

98.67 ] 34.01 
50.58 

96.59 [ 19.45 
32.38 

73.79 [ 52.97 
61.67 

78.381 53.09 
63.30 

76.95 I 64.99 
70.47 

83.33 [ 12.25 
21.36 

82.35 I 6.86 
12.67 

84.42 [ 31.86 
46.26 

82.95 [ 35.78 
50.00 

83.67 ] 40.20 
54.30 

100 [ 18.09 
30.64 

87.50 I 3.33 
6.42 

78.35 I 36.19 
49.51 

77.06 I 40.00 
52.66 

76.47 [ 43.33 
55.32 

86.66 [ 19.21 
31.45 

53.331 11.82 
19.35 

75.32 ] 28.57 
41.43 

60.99 [ 42.36 
50.00 

6o.38 1 47.29 
53.04 

94.42 ] 20.26 
33.23 

84.21 [ 9.58 
17.20 

89.01 I 24.25 
38.12 

81.37 I 24.85 
38.07 

83.04 I 27.84 
41.70 

61.18 62.74 55.23 I 61.08 [ 61.79 Baseline classification accuracy 
System classification accuracy 

Table 4: Comparison of performance 

models can learn the behaviour of previously unseen 
affixes and conquer new territory. Thus the model 
is entirely static On just the initial training data. 
For the same reasOns, the context only model is also 
static. In this case there is a possible bootstrapping 
path using alternating left and right context to ex- 
pand coverage to new contexts, but this tends to be 
not robust and wa s not pursued. Interestingly, recall 
for morphology only is typically much higher than in 
the context only case. The reason for this is that  the 
morphology models are full hierarchically smoothed 
character tries rather than word token tries, and 
hence have much '~ denser initial statistics for small 
training data sets~ proving greater partial matching 
potential for previously unseen words. 

In an effort to I test the contribution of the full 
iterative boostrapping, the "context and morphol- 
ogy only" results ', are based on the combination of 
all 4 tries, but w:ithout any bootstrapping. Thus 
they are trained ekclusively on the 150-300 training 
examples. Performance for the combined sources 

by language and knowledge source 

is in all cases greater than for the morphology or 
context source used alone. Furthermore, the full it- 
erative bootstrapping clearly yields substantial im- 
provement over the static models, almost exclusively 
in the form of increased recall (and its corresponding 
boost the the F-measure). 

Cross-language analysis yields further insight. 
First, recall is much higher for the 4 languages 
in which case is explicitly marked and is a clue 
for named entity identification (Romanian, English, 
Greek and Turkish) than for a language like Hindi, 
where there are no case distinctions and hence any 
word could potentially be a named entity. A lan- 
guage such as German would be roughly in the mid- 
dle, where lower-case words have low probability as 
named entities, but capitalized words are highly am- 
biguous between common and proper nouns. Be- 
cause approximately 96% of words in the Hindi text 
are not named entities, without additional ortho- 
graphic clues the prior probability for "non-entity" 
is so strong that  the morphological or contextual evi- 
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Figure 3: Learning curves for Romanian 

dence in favor of one of the named entity classes must 
be very compelling to overcome this bias. With only 
50 training words per context this is difficult, and in 
the face of such strong odds against any of the named 
entity classes the conservative nature of the learning 
algorithm only braves an entity label (correctly) for 
38% more words than the baseline model. In con- 
trast, its performance on entity classification rather 
than identification, measured by forced choice accu- 
racy in labelling the given entities, is comparable to 
all the other languages, with 79% accuracy relative 
to the 62% baseline. 2 

4.4 Evaluat ion  at different tra in ing  set  sizes 

Figure 3 demonstrates that the performance of the 
algorithm is highly sensitive to the size of the train- 
ing data. Based on Romanian, the first graph shows 
that as the size of the raw text for bootstrapping 
increases, F-measure performance increases roughly 
logrithmically, due almost exclusively to increases 
in precision. (Approximately the same number of 
unique entities are being identified, but due to the 
increased number of examples of each, their classi- 
fication is more accurate). This is a v e r y  encour- 
aging trend, as the web and other online sources 
provides virtually unlimited raw text in most major 
languages, and substantial on-line text for virtually 
all languages. So extrapolating far beyond the 10K 
word level is relatively low cost and very feasible. 

The second graph shows that F-measure perfor- 
mance also increases roughly logrithmically with the 
total length of the seed wordlists in the range 40- 
300. This increase is due entirely to improved recall, 
which doubles over this small range. This trend sug- 

2Note again that  this baseline is more competitive than 
typical, as it not only assigns the majority tag ("last name"), 
but when there is an exact match with the training wordlist 
(e.g. "deepak"), a common occurrence given repeated high- 
frequency names in the Hindi data, the training classification 
is used as the baseline answer 

gests that there is considerable benefit to be gained 
by additional human annotation, or seed wordlist ac- 
quisition from existing online lexicons. However, rel- 
ative to case of raw text acquisition, such additional 
annotations tend to be much costlier, and there is 
a clear cost-benefit tradeoff to further investment in 
annotation. 

In summary, however, these evaluation results are 
satisfying in that they (a) show clear and consistent 
trends across several diverse languages, (b) show 
clear trends for improvement as training resources 
grow, and (c) show that comparable (and robust) 
classification results can be achieved on this diver- 
sity of languages. 

5 F u t u r e  w o r k  

For future work, natural next steps include incorpo- 
rating a language independent word segmentation 
phase like the one proposed by Amitay, Richmond 
and Smith (1997), to improve the performance on 
large texts. Different statistics can be pre-computed 
for different languages and language families and 
stored in external files. For example, the a priori 
probability of a named entity given the set of charac- 
teristics of its representation in the text, such as po- 
sition, capitalization, and relative position of other 
entities (e.g.: first name followed by last name). A 
further step is the implementation of a supervised 
active learning system based on the present algo- 
rithm, in which the most relevant words for future 
disambiguation is presented to the user to be classi- 
fied and the feedback used for bootstrapping. The 
selection of candidate examples for tagging would be 
based on both the unassigned probability mass and 
the frequency of occurrence. Active learning strate- 
gies (Lewis and Gale, 1994) are a natural path for 
efficiently selecting contexts for human annotation. 
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6 Conclusion 
This paper has presented an algorithm for the mini- 
mally supervised learning of named entity recogniz- 
ers given short name lists as seed data (typically 40- 
100 example wordS per entity class). The algorithm 
uses hierarchically ismoothed trie structures for mod- 
eling morphological and contextual probabilities ef- 
fectively in a language independent framework, over- 
coming the need for fixed token boundaries or his- 
tory lengths. Th e combination of relatively indepen- 
dent morphological and contextual evidence sources 
in an iterative bootstrapping framework converges 
upon a successful inamed entity recognizer, achiev- 
ing a competitive 70.5%-75.4% F-measure (measur- 
ing both named entity identification and classifica- 
tion) when applied to Romanian text. Fixed k-way 
classification accuracy on given entities ranges be- 
tween 73%-79% on 5 diverse languages for a dif- 
ficult firstname/l~stname/place partition, and ap- 
proaches 92% accuracy for the simpler person/place 
discrimination. These results were achieved using 
only unannotated training texts, with absolutely no 
required language-specific information, tokenizers or 
other tools, and requiring no more than 15 minutes 
total human effort in training (for short wordlist 
creation) The observed robust and consistent per- 
formance and very rapid, low cost rampup across 5 
quite different languages shows the potential for fur- 
ther successful and diverse applications of this work 
to new languages and domains. 

7 Acknowledgements  
The authors would like to thank Eric Brill, Radu 
Florian, Shankar Kumar, Murat Saraclar, Dimitra 
Vergyri and Jun Wu for both their feedback on this 
work and their help in annotating the named-entity 
data for the languages studied. 

R e f e r e n c e s  : 

Amithay, E., K. Richmond , and A. Smith. 1997. De- 
tecting Subject Boundaries within Text: A Lan- 
guage Independent Statistical ApproachIn Pro- 
ceedings of the Second Conference on Empirical 
Methods in Natural Language Processing, pp. 47- 
54. 

Aone, C., S. Benett, and C. Lovell, 1997. Learning 
to Tag Multilingual Texts Through Observation. 
In Proceedings of the Second Conference on Em- 
pirical Methods in  Natural Language Processing, 
pp. 109-116. 

Baum, L. 1972. An Inequality and Associated Max- 
imization Technique in Statistical Estimation of 
Probabilistic Functions of a Markov Process. In- 
equalities, 3:1-8. 

Choi, M., Y. Ravia, and N. Wacholder. 1997. Disam- 
biguation of Proper Names in Text. In Proceeding 

of the Fifth Conference on Applied Natural Lan- 
guage Processing, pp. 202-208. 

Day, D., and D. Palmer. 1997. A Statistical Pro- 
file of the Named Entity Task. In Proceedings of 
the Fifth Conference on Applied Natural Language 
Processing, pp. 190-193. 

Dempste.r, A., N. Laird and D. Rubin. 1977. Max- 
imum Likelihood from Incomplete Data Via the 
EM Algorithm. Journal of the Royal Statistical 
Society, 39:1-38. 

Gale, W., K. Church and D. Yarowsky. 1992. A 
Method for Disambiguating Word Senses in a 
Large Corpus. Computers and the Humanities, 
26(5):415-439. 

Gale, W., K. Church, and D. Yarowsky. 1992b. One 
Sense per Discourse. In Proceedings of the 4th 
DARPA Speech and Natural Language Workshop, 
pp. 233-237. 

Gale, W., K. Church and D. Yarowsky. 1995. Dis- 
crimination Decisions for 100,000 Dimensional 
Spaces. Annals of Operation Research, 55:323-344. 

Katz, S.M. 1996. Distribution of Context Words and 
Phrases in Text and Language Modeling. Natural 
Language Engineering 2(1):15-59. 

Lewis, D. and W. Gale. 1994. A Sequential Algo- 
rithm for Training Text Classifiers. In Proceedings 
of SIGIR'94, pp. 3-12, Dublin. 

Sundheim, B.M. 1995. Overview of Results of the 
MUC6 Evaluation. Proceedings of the Sixth Mes- 
sage Understanding Conference, pp. 13-31. 

Yarowsky, D. 1995. Unsupervised Word Sense Dis- 
ambiguation Rivaling Supervised Methods. Pro- 
ceedings of the 33rd Annual Meeting of the Associ- 
ation for Computational Linguistics, pp. 189-196. 

99 


