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Abstract

The statistical approach is an adequate framework for introducing automatic learning
techniques in Machine Translation. One of the problems with Statistical Machine Translation
is the design of efficient algorithms for translating a given input string. In this paper, we
propose two algorithms in order to solve this problem, a Memory-Based algorithm and an
Iterative DP-based Search. The results achieved in both approaches are very different and
make us conclude that the memory-based technique used here is not a good solution for
solving this problem. Both algorithms have been tested on the “Tourist Task” corpus, a
limited domain task that was generated in a semi-automatic way. The best results obtained
were a word-error rate of 0.52 and a sentence-error rate of 3.2, using the iterative-search
algorithm.

1 Introduction

The statistical approach is an adequate framework for introducing automatic learning techniques
in Machine Translation [2, 9, 14, 15].

Under this framework, given an input string s from S* (S is a finite input alphabet), the
probabilistic translation of s is an output string, € € E* (F is a finite output alphabet) such that

é = argmax Pr(els). (1)
VecE*

Using Bayes’ theorem, and taking into account that Pr(s) is not a function of e,

é = arg max Pr(s|e)Pr(e). (2)
VecE*

Equation (2) is known as the Fundamental Equation of Machine Translation [3]. In Statis-
tical Translation, the input string s, which is to be translated, is interpreted as a distorted string
of an original string e from E* through a noisy channel. In this framework, Pr(e) represents the
probability that the original string is produced, and Pr(s|e) is the probability that the original
string e is distorted in the observed string s. In practice, an estimate of Pr(e) is performed from
a Language Model and an estimate of Pr(s|e) is performed from a Translation Model. In this
paper we are going to attack the translation problem using the paradigms given by equations
(1) and (2). Among the reasons reported by Brown et al. [3] for using (2) instead (1), it can
be observed that in (2), good output Language Models can aid the process of searching which
allows for focusing on the well-formed output strings.

Some interesting Translation Models were proposed in [3] and in [14]. With the model pro-
posed in [14], a Dynamic Programming algorithm can be designed to solve (2) [10, 11]. However,
the corresponding algorithms for the models 1 to 5 in [3] are based on a certain type of the A*
algorithm [2, 15]. Recently a new approach was proposed in [6] that was based on a single
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Dynamic Programming-like algorithm which computes approximate solutions when the IBM-
Model 2 from [3] was used. This approach can be improved through an iterative process in
which, a Dynamic Programming-like technique similar to the one proposed in [6] is used to
improve succesive solutions.

2 A Statistical Model for Machine Translation

The Translation Models introduced in [3] are based on the concept of alignment between the
components of the translation pairs (s,e) € S* x E*.

Formally, an alignment is a mapping between the sets of positions in s and e: a C {1, ..., |s|} X
{1,...,]e|}. However, in [3], the concept of alignment is restricted to being a function a:
{1,...,]s|} = {0,...,|e|}, where a; = 0 means that the position jin s is not aligned with any posi-
tion of e. All the possible alignments between e and s are denoted by .A(e,s) and the probability
of translating a given e into s by an alignment is denoted by Pr(s,ale), therefore

Pr(sle) = > Pr(s,ale). (3)

acA(s,e)

The first model for Pr(s,ale) proposed in [3] (Model 1) is

Prasi(s,ale) = ————— [T t(s; | ea,), (4)
" (|e|+1>ls|j:Hl !

where € is a positive constant, t(s; | e;) is the translation probability of the input word s; given
the output word e;. If equation (4) is used in (3),

Prasi(sle) = oo [T D tlsy [ ). (5)

The second model for Pr(s,ale) proposed in [3] (Model 2) is

PrM2 sa| H Sj | ea] a’]|.7 |S| |e|) (6)

where € is a positive constant, ¢(sj|e;) is the translation probability of s; given e; as in the first
model, and «(a;|j;|s|,|e|) is the alignment probability. This distribution gives us the alignment
probability of the i-th word in the target sentence , given any position in the source sentence
and the length of both sentences. If equation (6) is used in (3), we have,

ls| e
Prass(sle) = e [T D t(s; | ei)-ailjs Isl, le]) (7)
7j=11:=0
Given training data as a set 7 = {(s(1,e()), (s, e?), ... (s(F) elF))} the estimation of

the translation probabilities and the alignment probabilities for both models can be performed
by using the transformations proposed in [3]. These transformations allow us to increase the
product of (7) for all training pairs, and can achieve the global maximum for (5).



3 Translation Algorithms

In this section, we are going to describe two algorithms for obtaining the translation of a sentence
from a given input language to another output language. The first algorithm proposed here is
a memory-based algorithm which attempts to solve equation (1). The second one is an iterative
dynamic progrogramming-based search algorithm which attempts to solve equation (2), by using
an iterative process of solution refinement.

3.1 The Memory-Based Algorithm

Based on the information given by the above translation model (7) and given an input sentence,
here our goal is to obtain a translation sentence in an output language. For this reason, we are
going to work directly with the Pr(e|s) probability. Thus, in this case, the equation (7) will be:

le| el

Pr(els) = e[ > t(ei | sj)ali | i;lel,Is]) (8)

i=1 j=0

A sentence training set 7 is used to compute the parameters of equation (8), t(e; | s;) and
a(y |, el,|s|) as in [3].

This algorithm works as follows: Given an input string s, we calculate the equation (8) for each
{ef}1<k<x sentence of the training corpus. We choose the N (n < N) pairs {(s’,e™)}1<n<n
from 7 with the highest probability Praso(s|e’™). A hypothesis of the translation of s is computed
for each n (1 <n < N) e as is pointed out in the following algorithm.

MEMORY-BASED ALGORITHM
INPUT

e The translation probabilities ¢.

e The alignment probabilities «.

e An input string s € S*.
OutpuT

e arg maxygcg Pr(e| s)

METHOD

[a—y

. Compute Pr(e* | s), 1 <k <K
2. Choose the N-best hypothesis Pr(e’* | s) > Pr(e’? |s) > --- >Pr(e’N |s)

3. Let 8" be (1 < < N), the corresponding couple of e inT.
Compute the Levenstein alignment [8] between s’ y s: . .
If an aligned pair s'; and s; (s"; # s;), look for the word e’ which is aligned with s'; and

substitute e'* for

argmaxt(e | s;)
VecE

so that you have new strings €’ ’

4. Compute Pr(e”’ | s) 1 <i < N, and choose:

arg max Pr(e”’ | s)
1<i<N



END-OF-ALGORITHM

A variant of this algorithm is to directly use the information that the translation model
provides, instead of the edition distance in order to “correct” the mistranslated words. This
means using the multiple alignment between the input sentence and its corresponding best
translation in the corpus, and its corresponding source in the corpus (see Figures 1 and 2).
With this variant, we can view the translation process as an alignment process between very
similar words in the corpus, and their associated translation.

There is an alignment in A(e,s) for which Pr(ale,s)is greatest. Brown et al. call this the
Viterbi alignment and denote it by V(s | e) [3]. For IBM Model 2 (and, thus, also for Model 1)
finding V (s | e) is straigthforward. For each j, we simply choose a; so as to make the product
t(sj | ea;)a(aj | j;|sl, |e]) as large as posible. In an algorithmic way, we can see that as:

for j=1...|s| do
V(j) = argmaxocicio] t(s; | es)e(i | j5[s|, |e])
end _for_j

This algorithm involves the training process in both directions (s — e and e — s). We need
to do the training in the first direction in order to obtain the alignment of the input sentence
and its best translation in the corpus. The training in the second direction is needed in order to
obtain the alignment between this best translation and its corresponding source. This double
training will provide some relevant information about the best translated sentence obtained. It
will help to decide which words must be modified and also how to do it (step 3 of the algorithm).

3.2 The Iterative-Search Algorithm

The second algorithm is an iterative-search algorithm which attempts to solve equation (2), as
in the approach proposed in [6], but based on an iterative process of solution refinement in
which a better solution can be built from the solution achieved in a previous iteration by using
a Dynamic Programming-like technique.

In a more formal way, the problem here is to design an efficient algorithm for searching & (or
an approximation to €).

From (2) we derive

max Pr(e)Pr(s|e) = max max .Pr(e{)Pr(s‘ls‘ lel) (9)
ecEx* I elerp!

In other words, the maximisation in (2) can be performed by searching the best output string
el for each possible I, and then by searching the optimal I.

Let us suppose that the length of the output string is known. The Translation Model
used is (7) and, the Languaje Model will be a stochastic regular grammar, given by G =
(N,E,R,qo,p), where: N is the set of non-terminals, E is the output alphabet, R is the set of
rules like ¢ — eq’ or ¢ — e (we assume that a state F € N exist in order to allow this last rule to
be rewritten by ¢ — eF’), qo is the first symbol of the grammar and p is a probabilistic function
like p : R —]0, 1] such that Vg € N:

Y plg—ed)=1
ecE;,q'eN

For the sake of simplicity we will use p(g;_1, €;,q;) instead of p(¢;—1 — e;q;), where g; is the
state reached when the symbol e; is produced, beginning in the state where e;_; was produced,
and so on.



From (7) and (9) we can obtain:

omax,(Pro,(el)Pristt | ef)) = (10)
€] Wy

I Is| 1
max plao, e, 1) [ [ plai 1 ei0) [T D tsjlea)eilsss], I)
=2

I I.yql I
Vel eEIvqleN =110

The formal way to calculate this maximisation can be found in [4] or in [7] by using the
following algorithm.
ALGORITHM ITERATIVE-SEARCH
INPUTS

e The translation probabilities t.
e The alignment probabilities «.
e An output language model Prg,.
e An input string s € S*.
ouTPUT
e argmaxy,cp (Proq(e) Pras(sle))
METHOD
e initialisation
Compute a first approach (&) to the solution by using the algorithm proposed in [6].
e iteration

While not convergence do

Compute a new approach (&) to the solution by using a prefix that is built during
the current iteration and a suffix that was computed in the previous iteration.

end of While

END-OF-ALGORITHM

The length of the output sentence is set statistically around the mean of the output lengths
for each length of the input sentence.

The computational time complexity of each iteration is O(|s| X Iyyax X n1 X |E|), where Iyax
is the maximum output length allowed and njy is the number of output lengths tested.

4 Experiments and Results

We selected a subtask of the general “Traveller Task” [13] to perform experiments with the
algorithms proposed here. The general domain of the task was a visit by a tourist to a foreign
country. This domain included a great variety of different scenarios, from limited-domain ap-
plications to unrestricted natural language. The task used for the experiments reported here
corresponded to a scenario of human-to-human communication situations at the reception desk
of a hotel. This task provided a small “seed corpus” from which a large set of sentence pairs
was generated in a semi-automatic way [1]. From the different pairs of languages that were
generated, only Spanish to English was considered for this work. The parallel corpus consisted



Entrada Destino Origen

nos we hemos
hemos should de
de leave irnos
ir tomorrow ma~nana
ma~nana at a
a half \ las
las past cinco
cinco five ¥

\ media

media

€W

Figure 1: Multiple alignment example from Source to Input. The direction of the arrows shows the
way that the Input(left) is best aligned with the (Source, Target)(middle,right) pair of the corpus. This
alignment direction and the opposite direction give us the information used in the translation process.

Entrada Destino QOrigen
hemos we hemos
de should de

marcharnos leave irnos
ma~nana = tomorrow *  ma~nana
a > at 5= a
las » a las
nueve quarter nueve
Mmenos = past > ¥
cuarto nine \ cuarto

Figure 2: Multiple alignment example from Input to Source. The direction sense of the arrows shows
the way that the Input is best aligned with the (Source, Target) pair of the corpus.



Spanish: ipodria bajarme la bolsa de viaje a la ocho treinta?
English:  could you send down my travel bag to room number eight three oh ?

Spanish: hemos de marcharnos el martes veintiuno a las doce y media .
English: we should leave on Tuesday the twenty-first at half past twelve.
Spanish: por favor , j cudnto cuesta una habitacién individual?
English: how much does a single room cost , please 7

Spanish: iles importaria subir mis maletas al taxi?

English: would you mind putting my suitcases in the taxi?
Spanish: por favor , tengo hecha una reserva a nombre de Beatriz Valls.
English: I have made a reservation for Beatriz Valls.

Spanish: hemos reservado una habitacién para siete dias.
English: we have booked a double room for seven days.

Table 1: Spanish-English sentences from the Traveller Task. The parts of the corpus to be categorized are in

italics.

‘ Error-Rate Percentage ‘

Categories | Word Level | Sentence Level
NO 72.24 % 98.4 %
YES 13.67 % 83.1 %

Table 2: Translation results using the Memory-based Algorithm. Word-Error Rate and Sentence-Error
Rate for 1,000 test sentences.

of 65,000 sentence pairs (24,160 different sentence pairs). The input and output vocabulary
sizes were 178 and 140, and the average input and output sentence lengths were 9.4 and 8.7,
respectively.

From this corpus, a sub-corpus of 5,000 random sentence pairs was selected for training
purposes. Testing was carried out with 1,000 input random sentences which were generated
independently from the training set.

Under these circumstances two different experiments were done. Both of them used the task
described above, the first one in its original form, and the other one categorizing its critical
parts, i.e. the proper names, dates, hours and numbers.

The output language model was a Stochastic Regular Grammar built by the ECGI algorithm
[12]. The output test-set perplexity of the inferred ECGI grammar was 3.53.

The results achieved with the Memory-based Algorithm are shown in Table 2, with and
without categories. In Figure (1) and Figure (2) we can see two examples of the multiple
alignment between an input sentence and the sentence-pair chosen in the corpus.

The results achieved with the Iterative-search Algorithm are shown in Table 3, with and

‘ Error-Rate Percentage |

Categories | Word Level | Sentence Level
NO 2.06 % 15.1 %
YES 0.57 % 3.2 %

Table 3: Translation results using the Iterative-Search Algorithm. Word-Error Rate and Sentence-Error
Rate for 1,000 test sentences.



without categories. The number of iterations used in this algorithm was three.
The results with both algorithms in the categorized case are shown without resolving the
categorization.

5 Conclusions

Two algorithms for translating input sentences have been explained here. In the first algorithm
we have only used the distribution probabilities obtained with the training of the translation
model. In the second one, we have also used a stochastic regular grammar.

The main conclusions that can be drawn are:

e Good results can be achieved with the iterative-search algorithm without too high a com-
putational cost. The best results achieved with this algorithm were a word-error rate of
0.57% and a sentence-error rate of 3.2%. Nevertheless, the statistical approach to memory-
based algorithms produced bad results. One of the possible reasons could be the reason
reported by Brown et al. [3] for using equation (2) instead of equation (1). It can be
observed that, in this case, good output language models can aid the process of searching
which allows focusing on the well-formed output strings.

e Comparing Tables 2 and 3, we find best results when the categorized corpus has been used.
This is what we expected since the complexity of the corpus decreases when categorization
is done.
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