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Chapter 1 

THE RESOLUTION OF LEXICAL AMBIGUITIES 

 

 Machine Translation is difficult at best.  One 

of the more challenging aspects is the resolution of 

lexical ambiguities based on context.  This study 

concentrates on ambiguities in major class words 

(nouns, verbs, adjectives, and adverbs). 

 Even the earliest workers in machine 

translation realized that the vagueness of word 

boundaries and the mismatch in cultural perspective 

would make word selection difficult in a second 

language.  They suggested limiting the subject area, 

so that words would be more likely to have technical 

meanings.  They also suggested statistical methods 

based on cooccurrence, but these were difficult to 

implement. Some systems simply translated the most 

frequent sense of each word, or included all of the 

possibilities in the output document.  Some projects 

had an ad hoc rule on each word in the lexicon.  

Several groups thought it might be possible to use 

the semantic groupings in a thesaurus to associate 

word senses.  Others tried to classify selectional 

restrictions that verbs have for 
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their arguments and modifiers have for their heads. 

More recently, people have begun to build knowledge 

bases, hoping that some kind of spreading activation 

along connections in the knowledge base might 

simulate contextual selection.  Others have looked 

to the budding technology of neural networks for a 

solution. 

 Of the methods that have actually been 

attempted, many have led to years of long, tedious 

labor followed by disappointment.  Proposals of one 

sort or another fill the literature, but reports of 

results are sparse. 

 One of the purposes of the research described 

in this thesis was to determine what kinds of 

lexical ambiguities actually occur in real text, and 

which classes of proposed methods might be expected 

to work for them.  The results of a manual study of 

actual text were rather surprising.  None of the 

proposed methods resolved more than about 45% of the 

ambiguities correctly by themselves, and some of the 

most highly touted theories proposed in the 

literature averaged no more than 15%.  It became 

clear that no single method would ever work well 
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enough by itself. The only logical approach was a 

combination of the methods. 

 Even after using syntactic clues, putting 

idioms in the dictionary, flagging words with 

technical meanings, using selectional restrictions, 

and remembering the sense of the word selected in a 

previous occurrence, there remained a difficult 

class of problems.  The disambiguation of some words 

seemed to depend on words with only loose syntactic 

relations if any, arbitrarily far away; the 

influence of these words somehow triggered the 

selection of the appropriate sense.  In the absence 

of such words, a default sense was used.  The 

thesaurus and spreading activation methods were 

attempts to handle this kind of ambiguity, but the 

results of such methods are either negative or 

unknown. 

 A new method was therefore invented to work 

with trigger words and default senses.  A toy 

example showed that a neural network might set up a 

feature representation of implicit cooccurrence 

classes. Training data was then extracted from a 

large sample of parallel texts in two languages, and 

the same method that worked in the toy example was 
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shown to have positive results on the larger data 

set. 

 The set of methods for lexical disambiguation 

were then studied, including the new semantic 

cooccurrence network approach, and an algorithm 

combining all of the methods was developed. 

 The contribution of this thesis consists mainly 

in the categorization of types of lexical ambiguity 

in the manual study, the new neural network method, 

and the organization of all of the methods into an 

algorithm for lexical disambiguation. 

 Chapter 2 discusses previous methods.  Chapter 

3 describes the manual study of text and 

classification of types of lexical ambiguities.  

Chapter 4 introduces the neural network method and 

describes the toy example and an initial experiment 

indicating the possible success of the method.  

Chapter 5 describes an experiment in which training 

data for the neural network was extracted from a 

large sample of raw text. Chapter 6 discusses the 

algorithm that combines all of the methods. 

 Appendix A presents the texts analyzed in 

Chapter 3.  Appendix B presents a program that 

resolves ambiguity in parallel texts based on lists 
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of trigger words.  Appendix C gives a program for 

creating semantic cooccurrence networks.  Appendix D 

is a program for evaluating semantic cooccurrence 

networks. 
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Chapter 2 

PREVIOUS APPROACHES 

 

2.1 Introduction 

 

 This chapter will be a survey of some of the 

approaches that have been taken to resolving lexical 

ambiguity in machine translation. 

 The earliest approaches were based on a 

suggestion in a memorandum by Warren Weaver in 1949, 

that statistical studies of collocation frequencies 

could at least partially solve the problem.  Section 

2.2 discusses some of the studies and approaches 

that arose from this idea. 

 Some of the early workers preferred a more 

direct approach, and considered each word to be a 

unique problem.  They therefore encoded unique 

disambiguation rules on each word in the lexicon.  

An example of this approach is the CREWS project; a 

similar but more sophisticated version of this 

approach was Small's word expert parser.  These are 

discussed in section 2.3. 

 Others suggested using the semantic categories 

of Roget's Thesaurus as the basis of contextual 
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analysis, and some worked on developing their own 

thesaurus especially for machine translation.  Some 

of the assumptions underlying their work, and some 

details of their methods, are discussed in section 

2.4. 

 Wilks' Preference Semantics emphasized 

selectional restrictions, but also recognized that 

such restrictions should be treated as preferences 

that could be violated.  Later, Fass' Collative 

Semantics used the idea of selection restrictions as 

preferences in the context of semantic feature 

structures.  Some of the important ideas in these 

approaches are mentioned in section 2.5. 

 Marker passing systems that spread activation 

along connected paths in knowledge-based frame 

structures are briefly considered in section 2.6. 

 Studies of spreading activation in neural 

networks have led to local connectionist approaches, 

exemplified by Cottrell's work, and distributed 

connectionist approaches, such as Kawamoto's work. 

These are briefly examined in section 2.7. 

 Section 2.8 will be a short summary of the 

various approaches to resolving lexical ambiguity. 
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2.2 Statistical Approaches 

 

 In July of 1949, Warren Weaver sent a 

memorandum to about 30 friends, suggesting the 

possibility of using computers to translate text 

from one language into another.  This group and 

their contacts began research in machine 

translation, and much of the work in natural 

language processing (and artificial intelligence) 

has its roots in the early efforts of this group.  

Since Weaver's memo was such an important influence 

in the history of machine translation, it is 

interesting to note Weaver's feeling about the 

problem of ambiguity. 

 Weaver began the memo by quoting from a letter 

he had written to Norbert Wiener of MIT: 

 

 Recognizing fully, even though necessarily 

vaguely, the semantic difficulties of multiple 

meanings, etc., I have wondered if it were 

unthinkable to design a computer which would 

translate only scientific material (where the 

semantic difficulties are very notably less), 

and even if it did produce an inelegant (but 
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intelligible) result, it would seem to me 

worthwhile. 

        (Weaver 1967, p. 

190) 

 

 Wiener's reply, also partially included in the 

memo, contained the following: 

 

 ... I frankly am afraid the boundaries of 

words in different languages are too vague and 

the emotional and international connotations 

are too extensive to make any quasi mechanical 

translation scheme very hopeful. 

      (Weaver 1967, p.190) 

 

 It is clear from these quotes that some of the 

major doubts about the feasibility of translation by 

machine were centered on the problem of the 

vagueness of word boundaries and multiple meaning, 

i.e. lexical ambiguity. 
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2.2.1  Domain Limitation 

 

 Weaver's first suggestion for overcoming the 

problem was to limit the domain of the input text 

(an idea which has come to be known as the 

"sublanguage" approach).  The word 'log', for 

example, would almost certainly need to be 

translated differently if it meant 'logarithm' than 

if it meant 'a piece of wood'; by limiting the text 

to the sublanguage of mathematics, one could be 

certain in the vast majority of cases that the 

intended meaning was 'logarithm'. A computer lexicon 

could be created specifically for mathematical text, 

and the 'wood' meaning would not need to be included 

at all.  In mathematical text, this would produce 

correct translations for most words that have a 

sense with a mathematical meaning.  It is not so 

clear that it would be helpful for words with 

several meanings, none of which are particular to 

mathematics. 

 Nevertheless, domain limitation is still the 

most frequently used approach in actual systems.  

Even knowledge-based machine translation projects 
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often resolve most cases of lexical ambiguity by 

using domain-specific knowledge bases. 

 

2.2.2  Contextual Windows 

 

 Weaver's other approach to the lexical 

ambiguity problem was based on the fact that a word 

may be ambiguous in isolation, but given sufficient 

context, should be unambiguous.  He suggested using 

a window of context of N words on either side of the 

ambiguous word.  The value of N would vary with the 

type of text, the grammatical category, and perhaps 

individually for each word.  He says, however, that 

 

 ... It would hardly be practical to do 

this by means of a generalized dictionary which 

contains all possible phrases 2N+1 long: for 

the number of such phrases is horrifying, even 

to a modern electronic computer.  But it does 

seem likely that some reasonable way could be 

found of using the micro-context to settle the 

difficult cases of ambiguity. 

      (Weaver 1967, p. 195) 



19 

19 

 The year after the appearance of Weaver's memo, 

Abraham Kaplan wrote a paper called "An experimental 

study of ambiguity and context."  His basic purpose 

was to discover the value of N, that is, to discover 

how much context was necessary for humans to 

disambiguate ambiguous words.  He took examples of 

140 (inflected) words in context from books on 

mathematics.  Seven types of contexts were used: (1) 

One word before the ambiguous word, (2) one word 

after, (3) one word before and one word after, (4) 

two words before, (5) two words after, (6) two words 

before and two words after, (7) and the whole 

sentence.  All 140 words were presented with a list 

of ten possible meanings each.  Only "clearly 

distinguishable meanings" of a single grammatical 

category were used.  Words which had less than ten 

"clearly distinguishable meanings" in the dictionary 

were supplemented by false senses of the same 

grammatical category; the average was 5.6 correct 

senses per word.  Each translator was presented each 

of the words in isolation and asked to pick which 

meanings were possible for the word; the average 

percentage of senses classified correctly was 70%. 

The contexts were then mixed up so that each 
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translator disambiguated each word once, but each of 

the translators had the word in a different one of 

the seven contexts described above.  The contexts 

for each translator were mixed, so that each 

translator had a mixture of the types of context.  

The most important of Kaplan's conclusions were 

 

 ... A context consisting of one or two 

words on each side of the key word has an 

effectiveness not markedly different from that 

of the whole sentence. 

 ... Under optimal conditions ... ambiguity 

is reduced from ... about 5½ senses to about 1½ 

or 2. 

      (Kaplan 1955, pp. 46-

47) 

 

Optimal conditions were obtained (1) when the 

translator was trained in the subject of the text 

(mathematics); (2) when the context included at 

least one word on each side of the ambiguous word; 

and (3) when the context words were content words 

(nouns, verbs, adjectives, and adverbs) rather than 

function words (prepositions, articles, etc.). 
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 Kaplan's results were encouraging to many, 

because the study was taken as evidence that a local 

context (of two to four words) was sufficient to 

resolve lexical ambiguity; the study had shown that 

such a context was nearly as useful as the whole 

sentence for the purpose of resolving ambiguity.  It 

is odd that such optimism was generated by the 

article, however, since the translators had only 

achieved 70% accuracy picking possible senses of 

words in isolation, and even with the whole sentence 

context, ambiguities were reduced to "about 1½ or 2" 

of the "clearly distinguishable meanings."  Since 

only one of the "clearly distinguishable meanings" 

would probably be correct in the original text, that 

means that a computer with the reasoning capability 

of a human, using only a local or sentence context, 

would choose the correct meaning, and therefore the 

correct translation, between 50% and 67% of the 

time. 

 Although Kaplan's results were taken to mean 

that the size of Weaver's context variable N need 

not be greater than 2 words on each side of the word 

in question, the method of storing all such contexts 

was never applied directly.  Even setting N to 1, it 
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would require a matrix of size M3 for a vocabulary 

of size M, where the value at any position (X,Y,Z) 

in the matrix would be the most frequently correct 

sense number of word Y in the local context "X Y Z".  

For example, in the phrase 'put into a bank 

account', ignoring the function words 'into' and 

'a', it is almost certain that the meaning of 'bank' 

(Y) in the presence of 'put' (X) and 'account' (Z) 

is the financial meaning rather than the geological 

meaning; the sense number of the financial meaning 

would be the value of the matrix at position 

('put','bank','account').  Assuming that values in 

the matrix could be automatically determined based 

on frequencies in a text tagged with correct sense 

numbers, and assuming a moderate vocabulary of 

10,000 words, this would require a matrix of a 

trillion entries, and, at a millisecond per entry, 

would take over thirty years to fill.  In order to 

insure accuracy, the tagged text would have to 

include multiple examples of all possible phrases of 

3 words long (ignoring function words) in realistic 

contexts. Sense-tagging an input text with even a 

moderate coverage of contexts would take a 

staggering amount of time, even after the "clearly 
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distinguishable meanings" for each word had been 

determined. Moreover, even if such a matrix could be 

prepared for translation into one language, it is 

not at all clear that the same matrix could be used 

for translation into another language.  

Nevertheless, Kaplan's results were taken as 

evidence that the problems of lexical ambiguity were 

simply a matter of using local context in an 

appropriate way. 

 

2.2.3  Frequency-based Default Translations 

 

 Early translation programs had simply left the 

problem up to the reader, by presenting translations 

of each of the possible senses of a word, separated 

by slashes, such as the following translation 

simulation of a Russian to English chemistry 

article: 

 

 Saccharification cellulose begin 

(use/employ) (in/into/at) 

(technology/technique). For what waste product 

(wood processing/wood working) (plant/factory) 

heat (under/below) pressure (with/from) 0.1% 
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solution (sulfuric/sulfate) acid; obtained such 

(means/way) syrup (process/convert) (on/at) 

(wine/tartaric) alcohol.  (According 

to/Along/In accord with) other process 

saccharification (accomplish/carry out) (on/at) 

cold action very strong (sp. weight 1.21) 

(salt/hydrochloric) acid.  After removal acid, 

remain solid product being used (as/how) 

(food/forage) (medium/means). 

       (Perry 1955, p. 

18) 

 

 However, "The most frequent criticism was 

levelled at the excessive number of alternatives 

given ..." and even in a word-for-word translation, 

"... the proper selection of English correspondents 

is by far the major problem facing a reader ...." 

(Gould 1957, p. 14). 

 

As a result, 

 

 Booth and Richens proposed printing only 

the symbol 'z' to indicate an unspecified word; 

others have proposed leaving the word 
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untranslated, and others have proposed always 

giving the most common translation. 

       (King 1956, p. 

38) 

 

 The most common translation would give the best 

probability of having chosen the correct translation 

and should therefore be fairly successful.

 Sometimes the most common translation was 

decided through introspection by the dictionary 

maintenance people, but others felt that the 

decision needed to be based on semantic frequencies 

determined from sufficient examples of actual text. 

 

 A trans-semantic frequency count is a 

listing of the words of the source language, 

together with the various possible renderings 

of each in the target language, and the 

frequency of occurrence of each of the latter.  

Such a listing would resemble a normal 

translation dictionary, with the addition of 

information, probably in the form of 

percentages, giving the frequency of occurrence 

of each meaning in the target language. 
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      (Pimsleur 1957, p. 11) 

 

Given such information, only the most common 

translation for each word would need to be entered 

in the computer's lexicon, and if texts to be 

translated were consistent with the original text, 

incorrect translations would be expected to be in 

the minority. For example, according to one study, 

the French word 'de' should be translated as 'of' in 

English about 68% of the time (King 1956, p. 39), so 

if the machine always translated 'de' as 'of', it 

would also be correct about 68% of the time. 

 

2.2.4  Cover Words 

 

 A variation in the use of most common 

translation was the use of "cover-words", which were 

words "of relatively high semantic frequency which 

can be used in place of words of lower semantic 

frequency, with little possibility of misinforming 

the reader." (Pimsleur 1957, p. 13)  A target 

language "cover-word" would be a word of relatively 

broad coverage, whose available meanings could 

"cover" most of the meanings of other more specific 
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translations of a given source word.  For example, 

the German word 'schwer' may mean (among other 

things) 

 

heavy  as in 'ein schweres Stein', 

    'a heavy stone' 

laden  as in 'Das Dach ist schwer von 

Schnee', 

    'the roof is laden with snow' 

difficult  as in 'Das fällt mir schwer', 

    'I find that difficult' 

unfortunate as in 'Er hat ein schwere Schicksal', 

    'he has an unfortunate fate' 

 

In the second case, it would be acceptable to say 

'the roof is heavy with snow', and in the last case, 

it would be understandable to say 'he has a heavy 

fate'. By choosing the broader words 'heavy' and 

'difficult', the more specific words 'laden' and 

'unfortunate' might not need to be included in the 

computer's lexicon (example from Pimsleur 1957, pp. 

12-13).  Even though such "cover-words" in the 

target language would be relatively more vague in 

isolation, the human reader would not notice the 
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ambiguity in context. Determination of cover-words 

could not be based only on frequency studies of real 

translations, since human translators would often 

choose the more specific translation, but frequency 

studies could give a good idea of what the possible 

cover-words might be. 

 

2.2.5  Frequency-based Technical Tagging 

 

 Frequency studies could also be based on 

various types of text. 

 

Alternative frequencies should also be given 

for various subject areas, scientific, 

military, etc. 

      (Pimsleur 1957, p. 11) 

 

The "most common translation" could therefore be 

refined to be "the most common translation" in a 

particular domain (sublanguage). 

 Researchers at the University of Washington in 

1958 tried this approach by categorizing science 

into about seventy subfields. 
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 A few of the words in the target language 

were then tagged with numbers representing the 

particular field in  science in which they 

occurred almost exclusively.  Since the number 

of words that could be tagged in this way was 

small, the method was found to be successful in 

a very small number of cases to which it was 

applied. 

     (Madhu and Lytle 1965, p. 

9) 

 

 A more refined approach was later developed, 

which grouped these seventy subfields into ten 

technical groups, namely 

 

Group  I Mathematics, Physics, Electrical 

Engineering, Acoustics, Nuclear 

Engineering 

      II Chemistry, Chemical Engineering, 

Photography 

     III Biology, Medicine 

      IV Astronomy, Meteorology 

   V Geology, Geophysics, Geography, 

Oceanography 
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      VI Mechanics, Structures 

     VII Mechanical Engineering, Aeronautical 

Engineering, Production and Manufacturing 

Methods 

    VIII Materials, Mining, Metals, Ceramics, 

Textiles 

      IX Political Science, Military Science 

       X Social Sciences, Economics, Linguistics, 

  Etc. 

 

 Target language texts were examined, and each 

paragraph in the text was tagged as belonging to one 

of the ten groups.  A count was made of how often 

each content word in the sample occurred in a 

paragraph labelled by each group.  The chance that 

target word Tk would occur in a paragraph that 

should be classified as falling within subject group 

N, was based on the sample text, and was given as 

 

             (times Tk found in a group N paragraph) 

  p(Tk,N) =  --------------------------------------- 

             (total words in target sample text) 
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The chance that a given paragraph in a new text 

should be classified as belonging to subject group N 

was then taken to be 
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 p(N) = p(W1,N) + p(W2,N) + ... + p(Wk,N) 

 

where it was assumed that W1 through Wk were words 

in the paragraph that had a single meaning.  For a 

word with more than one possible translation, the 

best translation was selected by using a figure of 

merit, defined by 

 

 f(Tk) = _ p(N)·p(Tk,N) 

             N 

 

In other words, the figure of merit of a given 

target word was the chance that the current 

paragraph was of subject group 1 times the chance 

that the target word would be used in a text of that 

type, plus the chance that the current paragraph was 

of subject group 2 times the chance that the target 

word would be used in a text of subject group 2, and 

so forth.  The figure of merit would be calculated 

for each possible translation, and the target word 

with the highest figure of merit would be the 

translation chosen. 
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 For example, consider the phrase 

"structure/building of an algae colony", where the 

only ambiguity is in the choice between 'structure' 

and 'building'.  Based on a small text corpus, the 

study showed the chance that the word 'structure' 

would occur in a paragraph of group I (multiplied by 

a scaling factor) was P('structure',I)=.1.  

Similarly, P('structure',III)=1.9, 

P('structure',V)=.8, P('structure',X)=.3, 

P('building',I)=.1, P('building',V)=.4, 

P('building',VI)=.1, P('building',IX)=.1, 

P('algae',III)=.5, P('algae',V)=1.4, and the ities 

for these words with other groups were 0.  If the 

phrase is considered a text unit, the only 

unambiguous word known to the text corpus was 

'algae'.  Therefore, the chance that this phrase 

should belong to group III is P(III)=.5, P(V)=1.4, 

and P(n)=0 for the other groups.  Therefore, the 

figure of merit for 'structure' would be 

f('structure')=(.5*1.9)+(1.4*.8)+(0*.1)+(0*.1)=2.07, 

and the figure of merit for 'building' would be 

f('building')=(.5*.1)+(1.4*.4)+(0*.1)+(0*.1)=.61. 

Since the figure of merit for 'structure' is greater 
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than that for 'building', 'structure' would be the 

word chosen. 

 In a small test of 21 Russian sentences 

translated into English using this technique, the 

correct alternate was chosen in 87% of the cases 

(Madhu and Lytle 1965, pp. 10-12). 

 

2.2.6  Category Counting 

 

 Walker and Amsler suggested using frequencies 

of occurrence of domain codes in the Longman 

Dictionary of Contemporary English (LDOCE).  In the 

typesetting tape, certain senses of some words are 

given a four-character domain code.  The first two 

characters are field codes, and the second two 

characters are subfield codes; there are 120 fields, 

212 subfields, and about 2600 domain code 

combinations actually used. Given a segment of text 

with ambiguous words, the domain codes on each of 

the senses of each of the words in the text are 

assembled and counted.  The domain code with the 

highest frequency is assumed to be the main subject 

of the text; word senses which are marked with this 

domain code are chosen as the correct senses of the 
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given words in the text.  This reduces the number of 

ambiguous word in the text.  The next pass works 

exactly as the first pass, assembling domain codes 

of only those words which are still ambiguous.  

Again, the domain code with the highest frequency 

wins, and word senses marked with that code are 

chosen.  The process continues in cycles. 

 Although this process yielded some interesting 

results for classifying the domain of some documents 

(the most frequent of all the codes), there were 

some problems.  Walker and Amsler reported that in 

an eight million word corpus, only 23% of the words 

were in the LDOCE (Walker 1986).  Even of the words 

that do occur in the dictionary, most of the senses 

are not marked with domain codes.  In cases where 

only some senses of a word are marked, the algorithm 

may not choose the correct sense, and, of course, in 

cases where none of its senses are marked, the 

algorithm makes no choice at all.  It is not clear 

what to do when more than one code ties for the lead 

at any point in the algorithm, especially at the 

end, when competing codes occur only once or twice.  

One must also be careful about the quantity of text 

used, so that enough codes can be 
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 assembled to make choices, but there is not so much 

text that too many topics are addressed. 

 Because of the lack of domain codes on most 

senses in the dictionary, no data is available on 

the potential success rate of this method. 

 

2.2.7  Proximity Lists 

 

 Stephen Weiss developed an algorithm for 

determining contextual rules for disambiguation 

based on proximity of context.  Each ambiguous word 

has an associated list of contextual rules.  Each 

contextual rule consists of a context word and a 

sense of the ambiguous word.  When the ambiguous 

word A occurs in the context 

 

 ... 9 7 5 3 1 A 2 4 6 8 10 ... 

 

where each of the numbers represents a context word, 

the context words are checked in the order shown, 

beginning with 1.  Each context word is checked to 

see if it occurs in a contextual rule for the 

ambiguous word; if it does, the sense listed in the 

contextual rule is the one chosen. 
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 The set of contextual rules for an ambiguous 

word is generated based on a training text in the 

following way.  For each instance of the ambiguous 

word A, each context word C is examined in the same 

order as above. There are three possibilities: 

 

1)  If C is mentioned in the contextual rules, and C 

is associated with the correct sense of A, the 

training jumps to the next instance of A in the 

text. 

 

2)  If C is mentioned in the contextual rules, and C 

is associated with an incorrect sense of A, the 

contextual rule containing C is removed from the 

list, and C is added to an exclusion list; then the 

next context word is examined. 

 

3)  If C is not mentioned in the contextual rules 

generated so far, and C is not on the exclusion 

list, a new contextual rule is added with C and the 

correct sense of A, and the training then jumps to 

the next instance of A in the text; if C is on the 

exclusion list, the next context word is examined. 
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 The training text can be examined in this way 

for every ambiguous word of interest, generating 

contextual rules for each one. 

 Weiss tested this algorithm on three words, 

with 180 instances each.  After training each word 

on its first 80 instances, Weiss found that the 

correct sense was chosen 97% of the time in the 

remaining 100 cases (Weiss 1973). 

 Since this is such an impressive result, this 

algorithm was implemented and tested as part of this 

dissertation, using the program in Appendix B; 80% 

of the text used in Chapter 5 was used as training 

text, and the remaining 20% was used for testing.  

Although the algorithm resolved ambiguity nearly 

perfectly for the training text (correctly resolving 

over 99.5% of the cases), the algorithm only 

achieved 63.4% on the approximately 1250 ambiguous 

words in the test text, whereas simply choosing the 

most frequent sense in the sample text would have 

achieved 67.2%. 
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2.3 Word Experts 

 

 Some researchers felt that waiting for detailed 

frequency data of any kind was impractical with the 

resources they had available.  They felt that each 

word was a unique entity, and every ambiguous word 

was a unique problem.  The best way to solve such a 

problem, they felt, was to attack it head on. 

 The CREWS project developed a special language 

in which to describe possible local conditions that 

might affect lexical selection.  This language 

allowed them to check for certain grammatical 

categories, or specific words, a certain number of 

words before or after the ambiguous word, or within 

a certain range of the words near the ambiguous 

word.  In this way, much of the syntactic and 

semantic processing was mixed in a way that was 

unique for each word.  A word such as 'bank', for 

example, would have a specific rule to look for 

words in its immediate vicinity such as 'river' or 

'money'.  Failing to find any such words in the 

context, the most likely sense would be chosen as a 

default.  Naturally, such a system continually 
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needed to be refined, until conditions on commonly 

used words became extremely difficult to maintain. 

 In a similar vein, Small's Word Expert Parser 

simply executed the procedures that were associated 

in the lexicon with each word in the sentence.  Each 

procedure was a discrimination net.  For example, a 

discrimination net for the adjectival use of the 

word 'deep' would be as follows: 

 

(a) What view best describes the concept? 

   PERSON -------------> (1) Intellectual 

   ART-OBJECT ---------> (2) Ethereal 

   VOLUME: (b) Which view best describes the 

concept? 

  AIR-VOLUME ------> (3) Large Vertical Distance 

         Through Air 

  WATER-VOLUME ----> (4) Large Vertical Distance 

         Through Water 

 

By answering the questions (a) and (b), the computer 

could arrive at one of the senses marked (1)-(4).  

By asking questions, and receiving answers based on 

the procedures of nearby words, such nets could be 

traversed until a unique meaning was reached. 
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Unfortunately, the procedures were long and 

cumbersome; the one for the word 'throw', for 

example, was six pages long (Hirst 1987, p. 83).  

Some of the questions were of a more global nature, 

and plans were made to define a conceptual proximity 

measure based on a semantic network.  Developing the 

procedures was so time consuming, however, that 

questions of a global nature were just relegated to 

interaction with an on-line user, thus begging all 

the more important questions of automatic 

disambiguation (Adriens and Small 1988, p.18). 

 

2.4 Approaches Based on a Thesaurus 

 

 Word by word definition of unique procedures 

was time-consuming, inelegant, and mostly 

ineffective. Scientific classification of words into 

ten groups or even seventy subfields was useful for 

resolution of some lexical ambiguities, but many 

ambiguities were left unresolved and unresolvable.  

It seemed clear that what was needed was a more 

thorough scheme of semantic classification that was 

better at capturing generalizations.  The 

organization of Roget's Thesaurus, which lists 
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content words under more than 1000 concept headings, 

presented the possibility of being just such a 

semantic classification. 

 

2.4.1  Sequences of Thesaurus Categories 

 

 Roderick Gould of Harvard noticed that 

different senses of a word in a dictionary usually 

correspond to different concept categories in 

Roget's Thesaurus. His idea was to store lists of 

possible semantic category sequences.  These lists 

would be based on an automatic frequency analysis of 

a large sample of source language text, in which 

each word had been manually tagged with the Roget 

concept category number of the sense in which it was 

being used.  At first, he suggested expanding 

Roget's classification to include uses of 

prepositions and other function words, but soon 

found this extension to be problematic.  He 

subsequently suggested storing possible sequences of 

content word semantic categories.  He did not report 

any implementation of his method, but only noted 

that it would have to be based on a large text 

sample in order to be effective.  He did not present 
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a specific algorithm for resolving lexical ambiguity 

on the basis of the frequencies stored, but noted it 

would be complicated by the fact that even if a 

stored two category sequence selected senses for two 

adjacent words, those senses could be disallowed by 

the lack of a sequence for the first word and its 

preceding word, or the second word and its following 

word (Gould 1957, pp. 15-27).  It should also be 

noted that a matrix for sequences of two categories 

would require a million entries; Kaplan's data 

suggests that at least sequences of three categories 

would be required, and a matrix storing three 

category sequences would need a billion entries. 

 

2.4.2  Synonymy in a Thesaurus 

 

 The Cambridge Language Research Group thought 

of using the thesaurus in a more practical and 

immediate way.  The idea was that a text about a 

certain subject or situation would probably employ a 

number of words that could be classified under the 

same concept heading in the thesaurus.  For example, 

in the phrase 'flowering plant', 'flowering' and 

'plant' are each listed in the thesaurus under a 
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number of different headings, but the only heading 

under which both are listed is 'vegetable'; we 

therefore assume that the correct sense of each word 

in the current context is the 'vegetable' sense 

(Masterman 1957, p. 36).  It was soon discovered, 

however, that the method was only partially 

successful, and it was assumed that this was due to 

problems with Roget's Thesaurus.  Some words were 

not listed at all, and other words were not listed 

in all of their senses. 

 The solution was to develop a new thesaurus 

more appropriate for use in machine translation.  It 

was assumed that in this new thesaurus, "... if a 

set of words all come under one heading, they must 

be semantically related, and if a number of words 

are semantically related to one another, they will 

come together under some heading."  (Sparck-Jones 

1965, p. 97)  Some of the relations examined were 

hyponomy, antonymy, incompatibility, collocation, 

and synonymy. It was claimed that collocation was 

not a genuine linguistic relationship, antonymy 

would be hard to determine empirically, and hyponymy 

and incompatibility could not be satisfactorily 

defined, so synonymy was the only viable semantic 
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basis for determining the vocabulary structure of a 

language, and, therefore, the contents of the new 

thesaurus. Two words were held to be synonymous if 

they had two uses that were synonymous, i.e. if they 

could be mutually substituted in some sentence 

without changing the meaning.  The set of words that 

could be mutually substituted in a given context was 

called a row.  Rows were then "clumped" together if 

each row in the clump was more "similar" to members 

of the "clump" than to nonmembers.  A pair of rows 

was given a similarity score based on the number of 

words they shared, such that if a shared word had 10 

senses, a similarity score of .1 was added based on 

that word; if a shared word had only two senses, .5 

was added.  In this way, rows were clumped together, 

and each clump was given a heading and listed as a 

new category in the thesaurus. 

 For example, rows could be abstracted from the 

examples in the definitions of the Oxford English 

Dictionary.  One definition of the word 'toil' is 

"Severe labour; hard or continuous work or exertion 

which taxes the bodily or mental powers."  An 

associated example is "You are many of you 

accustomed to toil manual; I am accustomed to toil 
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mental."  In the example, 'toil' could be replaced 

by 'labour' without loss, so one possible row would 

be 

 

 toil labour 

 

One definition of 'task' is "A piece of work that 

has to be done; something that one has to do 

(usually involving labour or difficulty); a matter 

of difficulty, a 'piece of work'."  One example 

associated with this definition is "He had taken 

upon himself a task beyond the ordinary strength of 

man." As the definition might suggest, 'task' could 

be substituted with 'labour', so another row would 

be 

 

 task labour 

 

These two rows share a word, 'labour', so if 

'labour' had 5 senses, these two rows would be given 

a similarity score of .2.  Assuming a clump 

threshold of .15, these rows could be grouped 

together as a clump, perhaps with the heading 

'labour', and could be added to the thesaurus as a 
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new category (see Sparck-Jones 1965, pp. 102-103, 

for a less simplified version of this example). 

   There was also a notion of semantic distance 

between words.  If words A and B occurred together 

in the same row, they were said to have distance 0 

(i.e. they were synonymous).  If a word C occurred 

with word A in some row, and with word B in another 

row, but A and B never occurred in the same row, A 

and B were said to have distance 1.  This distance 

could also be used in resolution of lexical 

ambiguity, if nearby words were not found under the 

same heading in the thesaurus.  (Sparck-Jones 1965, 

pp. 97-112) 

 For example, if there are rows 

 

 function capacity capability 

 function purpose business 

 business affair job matter 

 

the semantic distance between 'function' and 

'capacity' is 0 (they are "synonymous"), the 

distance between 'capacity' and 'business' is 1, and 

the distance between 'capacity' and 'job' is 2.  In 

the sentence "the job was beyond his capacity", the 
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sense of 'job' would mean something closer to 

'matter' than 'employment' or some other sense; the 

sense of 'capacity' would be closer to 'capability' 

than another sense like 'volume'.  The proper senses 

would be chosen automatically because the semantic 

distance between them is only 2, whereas the 

distance between other senses (as determined in 

other rows) would presumably be greater than 2. 

 The intention was that words that were 

semantically related to each other would be found 

together under some heading, and that words that 

were semantically related would be found in the near 

context of an ambiguous word.  Using the thesaurus 

method, however, two words were "semantically 

related" only if they were synonymous or nearly 

synonymous.  It was evidently either not noticed or 

not regarded as important that two words could be 

semantically related without having that property.  

For example, in the sentence 

 

I slept poorly, because I kept rolling over 

onto an exposed spring. 

The word 'spring' could be a season of the year, a 

fountain of water, or a metal spiral.  Clearly, 
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sleeping and bedsprings are related, but it is very 

doubtful that they or their synonyms could be 

substituted for each other in any context.  They are 

related, but not by synonymy.  It appears that the 

premise of the endeavor was somewhat flawed. 

 Furthermore, the procedure for building the new 

thesaurus was quite complicated, and the number and 

content of headings was completely dependent on the 

set of contexts that were used to determine the 

rows. Producing a new thesaurus with better coverage 

than Roget's required a tremendous amount of work, 

and there never had been a guarantee that it would 

be more suitable for machine translation than 

Roget's had been. 

 

2.4.3  Chains in the Thesaurus 

 

 Later work returned to the original Roget's 

Thesaurus, once machine readable copies became 

available.  A model of chaining in the Thesaurus was 

developed by Robert Bryan at San Francisco State 

University.  He defined chains of entries according 

to word-groups and categories (Sedelow 1986).  The 

Thesaurus is divided into eight major classes, 
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comprised of 1042 groupings.  Each grouping is 

divided into paragraphs, which are subdivided into 

semi-colon groups, which each contain a number of 

entries.  The entries within one semi-colon group 

formed one of Bryan's categories.  A word group 

consisted of all entries in the Thesaurus that were 

spelled the same; therefore, homographs belong to 

the same word group. Entries in the Thesaurus could 

be thought of as points in a two-dimensional matrix, 

with word groups as rows, and categories as columns.  

For example, 

 

  c1 c2 c3 

 w1 e1  e2 

 w2 e3 e4 

 w3 e5 e6 e7 

 w4   e8 

 

A chain was simply a sequence of entries.  Bryan 

defined ten types of chains, each a subtype of the 

previous type.  Type-10 chains were the most 

constrained and of the greatest interest.  These 

were defined in terms of word-links and category 

links.  A pair <ei,ei+1> was a word-link if both 
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entries belonged to the same word group (so they 

were in the same row of the matrix).  A pair 

<ei,ei+1> was a category-link if both entries 

belonged to the same category (so they were in the 

same column of the matrix).  A type-10 chain was a 

sequence of entries such that word-links and 

category-links alternated, no entry was repeated, no 

word group or category was repeated, and every word-

link and category-link was strong.  A word-link was 

strong if the two categories it connected were also 

connected in the matrix by another word-link (though 

this second word link was not required to be in the 

chain being considered).  A category-link was strong 

if the two words it connected were also connected by 

another category link (again, this second link was 

not required to be in the chain).  This meant that 

in terms of the matrix, strong links always came in 

fours, called quartets, and were composed of four 

entries that formed a square in the matrix.  For 

example, the entries e1, e2, e5, and e7 in the 

matrix above form a square, so <e1,e5> and <e2,e7> 

would be strong category-links, and <e1,e2> and 

<e5,e7> would be strong word-links. 
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 Evidence suggested that entries which had 

strong word-links belonged to the same sense of the 

word, and entries which had a strong category link 

were semantically related (perhaps synonymous 

according to the usage of Sparck-Jones as discussed 

in the previous section).  Therefore, entries which 

could be connected in type-10 chains were expected 

to be semantically related.  It was possible to 

partition the Thesaurus in such a way that only 

entries which could be connected by type-10 chains 

would be in the same group.  This was done by 

Talburt and Mooney.  They discovered that of the 

199,427 entries in Roget's International Thesaurus, 

there were 113,963 distinct word groups.  It turned 

out that 133,672 of the entries had no strong links 

with any other entry.  The remainder of the 

Thesaurus contained 65,755 entries and was 

partitioned into 5966 groups.  One of these groups 

contained 22,480 entries, or about one-third of the 

remaining entries.  Although some of the entries in 

this group were instances of the words 'cozy', 

'intimate', 'snug', 'familiar', 'close', 'near', 

'tight', 'thick', and 'compact', the group also 

contained instances of words such as 'vile' and 
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'humble'.  Of the other groups, 3373 were formed 

from a single quartet, so they each consisted of 

four entries.  The other groups ranged in size from 

six entries to 229 (Talburt 1990). 

 Although this work was interesting, it is not 

immediately obvious how to use the results for the 

resolution of lexical ambiguity.  The classification 

is too general in some cases (such as the group with 

22,480 entries), and too specific in others (such as 

the 3373 groups with four entries each, which 

connect only two words).  The partitioning of 

133,672 entries into singleton groups completely 

loses the semantic information that the thesaural 

classification affords for those entries. 

 

2.4.4  Thesaural Category Counting 

 

 An approach similar to Walker's idea of 

counting categories, as discussed above, was 

suggested for thesaural categories by John Brady 

(Brady 1990). Given a text with ambiguous words, the 

codes for each of the words in the text would be 

assembled and counted (using the 1042 groupings in 

Roget's Thesaurus).  For each word, the sense would 
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be chosen that corresponded to the thesaurus code 

that occurred most frequently in the text.  If this 

was insufficient to disambiguate a particular word, 

higher levels of classification in the Thesaurus 

would be used in the same manner (Sedelow 1990). 

 It is difficult to tell how successful this 

approach might be in actual practice. 

 

2.5 Preference Semantics and Collative Semantics 

 

 Yorick Wilks developed "... a set of formal 

procedures for representing the meaning structure of 

natural language, with a view to embodying that 

structure within a system that can be said to 

understand ..." (Wilks 1975, p. 329).  Preference 

Semantics attempted to use insights of artificial 

intelligence to approach the problems of semantics, 

including the problem of lexical ambiguity.  Since 

the goal was somewhat broader than just resolving 

lexical ambiguity, and Preference Semantics has been 

developed over a period of some twenty years, it 

includes many mechanisms that are well beyond the 

scope of this thesis.  The most important idea, as 

applied to the resolution of lexical ambiguity, is 
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that predicators have preference for certain 

semantic classes of arguments, and modifiers have 

preference for certain semantic classes of head.  

The verb 'drink', for example, prefers an animate 

subject, and the adjective 'blue' prefers a concrete 

head.  Although semantic restrictions on arguments 

had been previously discussed in the form of 

selectional restrictions, an important contribution 

of Preference Semantics is the idea that argument 

and head preferences can be violated. 

 Preferences themselves are represented as 

expectations for arguments and heads to belong to 

certain semantic classes.  These classes are defined 

by a set of semantic primitives (from about 60 to 

100 of them, depending on the version of the 

theory). Each sense of a word is defined by a 

semantic formula built up from these primitives, 

with one primitive as its central meaning.  The 

formulas for verbs and prepositions include 

preferences for their arguments, and those for 

adjectives, adverbs, and prepositions include 

preferences for their head.  During parsing, the 

central meaning of a potential argument is matched 

against the preference of the predicator.  If the 
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potential argument is ambiguous, the formulas of 

each of its possible senses are matched against the 

preference of the predicator for that argument; if 

only one of the senses fulfills the preferences, 

that is the one that is chosen.  Although greatly 

oversimplified, this is the basic mechanism in 

Preference Semantics for the resolution of lexical 

ambiguity.  (Wilks 1975) 

 Recently, Brian Slator, working under Wilks, 

has implemented a program for extracting semantic 

data from the Longman Dictionary of Contemporary 

English, and automatically creating semantic 

formulae for each sense of each of the words listed 

there (Slator 1988). A considerable amount of 

information still needs to be added to the formulae 

before they can be used in a full Preference 

Semantics system.  In any case, no data is yet 

available about the success of a full-scale 

Preference Semantics system in resolving lexical 

ambiguity. 
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 Dan Fass, another of Wilks' students, has 

recently recast Preference Semantics in terms of 

frame-based feature structures.  The same idea of 

preference is carried over, but the way in which 

preferences are satisfied has changed. 

 In Collative Semantics, word senses are the 

semantic primitives, and each sense of a word is 

defined by a frame structure.  Each frame has arc 

information, which relates the frame to other 

frames, creating a hierarchical hyponymy structure, 

and node information, in which there are features 

and values, preferences for arguments, and 

assertions. 

 Each frame includes an arc which specifies the 

name of the next higher frame in the hierarchy.  By 

following links, one can find all of the 

superordinates of a frame in the hierarchy. 

Preferences can be expressed by giving the name of a 

frame in the hierarchy.  If this frame is among the 

superordinates of a potential argument, that 

argument satisfies the preference.  If only some 

senses of an ambiguous word being used as an 

argument do not satisfy the argument preference, 

those senses are eliminated. 
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 Preferences can also be expressed by listing a 

set of preferred features and values.  In this case, 

the word sense whose frame best matches the 

preferred list is the one chosen.  The best match is 

determined by a scoring algorithm; the score of a 

frame is the number of feature-value pairs that 

match minus the number of feature-value pairs that 

fail to match. Since the values of features in 

Collative Semantics are word senses (i.e. the names 

of other frames in the hierarchy), a feature-value 

pair in an argument (or head) matches if the frame 

of its value includes among its superordinates the 

value which is specified as the preferred value in 

the predicator (or modifier).  In order to pick one 

sense above another by this method, it has to be 

clearly better than the other senses. 

 If no preferences of the predicator (or 

modifier) are satisfied, the preferences of the next 

higher frame in the hierarchy are checked.  In this 

way, an analogy is sought, so that the sense of the 

argument (or head) is chosen which would best 

support a metaphorical reading. 

 Finally, senses with assertions (modifiers 

assert about their heads) are given scores depending 
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on whether the assertion adds inconsistent, 

redundant, or new information.  Those which add new 

information are more highly valued than those which 

add redundant or inconsistent information. 

 Although the algorithms for lexical ambiguity 

resolution in Collative Semantics are potentially 

very useful, the complexity of coding word sense 

frames makes implementation of a full system a 

tremendous amount of work.  The prototype system 

Fass developed has a vocabulary of about 400 frames, 

and each of the 50 test sentences worked correctly.  

It is difficult to assess the degree of accuracy 

that might be achievable in a full implementation.  

(Fass 1988) 

 Yet another group using the idea of preferences 

is the Distributed Language Processing group (DLT) 

in the Netherlands.  The major disambiguation method 

is based on a hierarchy of word senses, and a set of 

wordsense:relator:wordsense triplets.  These 

triplets represent commonly expected relationships.  

The relators are an abstracted form of prepositions 

or thematic roles.  The syntax builds dependency 

trees, and each pair of words and the connection 

between them is mapped to a set of possible 
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triplets.  The possible triplets are given scores, 

according to the distance in the hierarchy between 

the tree word senses and the triplet word senses.  

For each word, the scores of the triplets in which 

it is involved are summed, and the word sense with 

the highest score is chosen.  A book describing this 

effort (Papegaaij 1986) includes a section for test 

results, but at publication of the book, the 

software was not yet completed, so only the test 

procedure was described.  As of the summer of 1988, 

the first results were available.  The first results 

indicated that disambiguation would have been 

considerably more successful if the most frequent 

sense of each word had been chosen (Alan Melby --

personal communication). 

 

2.6 Marker Passing 

 

 Charniak developed a system of marker passing 

based on frame structures for knowledge 

representation.  When a word in a sentence is 

encountered each of its sense frames is marked, even 

if it is not the sense eventually selected.  Then, 

all frames referenced in these marked frames are 



61 

61 

also marked, and so forth.  Usually, some kind of 

strength is associated with each mark, and the 

strength of the mark diminishes each time until it 

falls below some pre-established bound, after which 

marking is discontinued.  If some frame in the 

system gets marks from two different origins, the 

two sense frames of the two words which originated 

the marker passing are chosen as the correct senses 

for those two words. There can also be differing 

strengths associated with markers passed across 

certain arc-types in the frames, and so forth, to 

improve the performance of the system (Charniak 

1983). 

 One major problem with this kind of system is 

the difficulty of coding the knowledge frames for 

word senses of any reasonable sized vocabulary.  The 

difficulty has been such that a full-scale 

implementation has not been possible so far, and no 

data is available on how successful such a system 

might be in resolving lexical ambiguity in a full 

system. 

 Hirst attempted to combine the ideas of 

preference semantics and marker passing.  His system 

uses information in frame structures to enforce 
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selectional restrictions and also uses marker 

passing among these frames.  When a word in the 

sentence is encountered, it registers selectional 

restrictions on its arguments, and also begins a 

chain of marker passing.  Senses of other words in 

the sentences can be eliminated by the selectional 

restrictions or chosen via marker passing.  

Apparently, selectional restrictions are not just 

preferences in his system; any senses of the 

argument that do not satisfy the requirements are 

eliminated (Hirst 1987, p. 108).  It appears that 

markers passed from words earlier in a sentence 

could cause senses to be chosen that would fail to 

satisfy selectional restrictions registered later, 

or a sense eliminated by selectional restrictions 

could be the one that would have later been chosen 

by marker passing, so the selection of word sense 

could depend totally on the order of processing 

within the system.  Naturally, selection by marker 

passing is completely dependent on the nature of the 

frame network, and slightly different philosophies 

of the nature of the features to be used could 

considerably alter the results of lexical ambiguity 

resolution.  No full system has been implemented, so 
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no statistics are available as to the viability of 

this approach. 

 

2.7 Connectionist Approaches 

 

 The spreading activation idea naturally appeals 

to those who are interested in modelling the neural 

structure of the brain.  Neural networks normally 

consist of a number of nodes and directional 

connections among the nodes.  Associated with each 

node is an activation level, an output level, and 

sometimes a bias.  Associated with each connection 

is a weight.  At a specified point in time, each 

node applies an input function to the inputs it is 

receiving (the input on each connection is the 

output of the node it is connected to, times the 

weight of the connection) and determines its next 

activation level.  It applies another function to 

determine its output from its activation (often this 

is a threshold function).  Different networks are 

characterized by different numbers of nodes and 

different topologies of connections, as well as 

different activation and output functions.  By 

receiving outside input, and cycling through 
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activation and output updates, these networks can 

calculate a variety of functions; if programmed 

carefully, the networks often settle into stable 

patterns that no longer change significantly with 

more cycles.  By tuning weights in the network based 

on expected activations of certain nodes given 

inputs at other nodes, the networks can actually 

learn to compute certain functions.  Automatic 

learning algorithms have been developed for some 

kinds of networks so that a sequence of input and 

expected output patterns can be presented to the 

learning routine, and it will automatically tune 

weights in the network so that the network will 

calculate the function implicit in the data.  Some 

networks can generalize and develop internal 

representations for prototypical patterns; others 

can fill in missing portions of familiar patterns 

when only presented with a part of the pattern.  

Naturally these kinds of automatic learning and 

generalization capabilities are of great interest to 

the problem of ambiguity resolution, since it seems 

that humans learn words and semantic relationships 

by a process of examining large quantities of data 

and extracting generalizations. 
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 Unfortunately, research into the abilities of 

neural networks for natural language processing is 

still in its infancy.  Very few have been used in 

other than a toy demonstration mode, since serial 

computers make the highly parallel nature of large 

neural networks impractical to use.  Nevertheless, 

some toy demonstration work has been done with 

neural networks in the area of resolution of lexical 

ambiguity. 

 Cottrell has discussed a localist approach, in 

which each concept is represented by a separate node 

(Cottrell 1988).  In a three level network, the 

nodes of the first level correspond to words.  Each 

word node is connected to nodes of the second level, 

which represent its word senses, which are connected 

to each other with inhibitory connections (with 

negative weights).  These are in turn connected to 

nodes of a third level, which include nodes 

representing some syntactic concepts as well as 

internal semantic nodes that connect all of the word 

senses together. Although he does not specify the 

internal structure of this third level of nodes, the 

idea is that when a word is encountered, it excites 

the activation of nodes of its word senses.  The 
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most frequent sense of the word is probably 

connected to the word with the most positive weight, 

so its activation increases fastest initially, 

unless nodes from the third level inhibit it based 

on previous context.  Nodes of the third level 

either excite or inhibit the various word sense 

nodes, and since the word sense nodes are connected 

to each other with inhibitory connections, they 

compete for more input from the third level, until 

one wins the competition and is declared the 

appropriate sense of the word in the given context. 

Naturally all of this competition alters the third 

level so that it represents the previous context and 

the inclusion of the current word into context for 

the next word to be presented to the network.  

However, the exact connections needed in the network 

for all of this to function properly are not at all 

obvious.  The approach awaits further description. 

 Kawamoto presents a more specific model, but 

prefers to use a distributed representation of 

concepts.  This means that a concept is represented 

not by a single node in a neural network, but by a 

certain pattern of activation over the nodes of the 

network.  In one of his networks, twelve ambiguous 



67 

67 

words are represented by 24 patterns of activation 

(two for each word) over a network of 216 nodes.  

Each pattern consists of 48 nodes to represent the 

written form of the word (each of the twelve words 

is four letters long), 48 nodes to represent the 

phonetic form of the word (some words have different 

pronunciations in their two senses, such as /lid/ 

and /l_d/ for 'lead'), 24 nodes to represent 

grammatical category, and 96 nodes to represent 

semantic features.  The semantic representations 

assigned to each pattern are actually quite 

arbitrary, but were simply used to make a point.  

Portions of the 24 patterns were repeatedly 

presented to the network, and an auto-associative 

learning algorithm was used to modify weights in 

response to errors in generation of the remainder of 

each pattern.  After sufficient training, it was 

possible to present partial patterns, and the 

network would fill in the rest of the appropriate 

pattern, as long as the part of the pattern 

presented was not ambiguous (it could not belong to 

more than one of the known patterns).  Using a 

procedure called habituation, after a pattern had 

settled into a stable state, connection weights were 
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temporarily modified so that the network would decay 

out of the stable state. When an ambiguous new 

partial pattern was presented to the network in this 

habituated state, the network would settle on the 

pattern consistent with the input pattern which was 

most similar to the previous stable pattern.  In 

this way, the network simulated resolution of a 

lexical ambiguity in terms of the context of the 

previous word (Kawamoto 1988). 

 Although the use of a one word preceding 

context to resolve lexical ambiguity in a neural 

network is impressive, it is difficult to know how 

to apply the research to the real world of 

ambiguity.  The semantic features used in the toy 

simulation were assigned in a quite arbitrary way.  

Kaplan's study showed that at least two to four 

words of context would be necessary, and at least 

one or two of them should be after the ambiguous 

word.  It is also difficult to know if the neural 

network scheme could ever scale up to the demands of 

a full vocabulary. 
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2.8 Summary 

 

 In the forty years since Warren Weaver's memo, 

a variety of approaches have been taken to solving 

the lexical ambiguity problem.  None of the 

approaches taken so far has presented a reliable 

solution for an implemented real-time machine 

translation system. 

 Wilks said that 

 

 An ambiguity resolution system would be of 

some interest within computational linguistics 

even if it worked on a purely ad hoc basis, 

since word ambiguity is probably the problem 

holding up the achievement of reliable 

mechanical translation. 

      (Wilks 1968, p. 59) 

 

 Strangely enough, the systems just using cover 

words or the most common translations, or the most 

common translations within a certain kind of text, 

have actually been the most utilized and the most 

successful.  Weaver's first suggestion, that 

ambiguity could be partially overcome by limiting 
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the domain of the input texts, is still the solution 

that is most widely used. 

 Weaver's next suggestion about using the 2N 

word context has been too difficult to implement, 

because of time and space considerations.  The 

optimism that was generated by Kaplan's paper was 

based on an assumption that local context would be 

easy to deal with, but it has not proved to be the 

case.  Methods that depended on division of science 

into some number of technical areas, and 

classification of portions of text into those areas, 

had a reasonable degree of success, but not enough 

that people were satisfied. Approaches based on 

shared domain codes showed promise, but lacked the 

underlying data base to even sufficiently test.  

Methods based on somewhat random single 

cooccurrences simply failed to be accurate enough.  

 Approaches using complex individual procedures 

for each word in the lexicon have been difficult to 

manage, and have not led to any general solution to 

the problem. 

 The thesaurus approach was a noble effort, but 

was probably based on a mistaken assumption, that 

synonymy was the most important semantic 
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relationship that an ambiguous word could have with 

other words in its context.  Analysis of Roget's 

Thesaurus into chains of entries and type-10 

partitions failed to produce a reliable method of 

semantic grouping.  We still await a viable approach 

to using thesaurus information for resolving lexical 

ambiguity. 

 Preference Semantics was an important 

contribution to the field.  Similarly, Collative 

Semantics has given a new vitality to the old idea 

of preferences.  These approaches are difficult to 

implement because of the care with which dictionary 

entries must be prepared.  The disappointing results 

of the DLT project seem to indicate that a system 

based only on selectional preferences will not be 

sufficient to handle a wide enough variety of cases 

of lexical ambiguity in real text. 

 The viability of the marker passing algorithm 

is difficult to assess, since it is so dependent on 

details of the frame lexicon.  Hirst's system 

combines the use of selectional restrictions (but 

not preferences) with marker passing, but the 

uncertain ordering of elimination of senses by 

selectional restrictions, and the selection of 
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senses based on marker passing, leads to doubt about 

the validity of the algorithm.  The care with which 

dictionary entries must be prepared in systems that 

use marker passing makes these approaches difficult 

to implement and therefore difficult to judge. 

 The neural network approaches previously 

developed have been extremely limited in scope.  

While they have offered some hope for the future, as 

Kaplan's paper did, they have not offered clear 

direction about how to expand them for use in a real 

full-scale system. 

 Part of the problem may have been a lack of 

clear perspective about what kinds of lexical 

ambiguity problems occur in actual text.  The 

frequency approaches and neural network approaches 

have ignored selectional restrictions, while 

Preference Semantics and Collative Semantics have 

ignored almost everything else.  The next chapter 

will discuss examples of various kinds of ambiguity 

in real raw text. 
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 Chapter 3 

AMBIGUITIES IN REAL TEXT 

 

3.1 Introduction 

 

 It seems to have been common practice to take a 

single approach to lexical ambiguity, and carry it 

out for a limited set of examples to show some 

feasibility for the approach.  The last chapter gave 

a brief overview of some of the methods that have 

been tried. Because of the difficulty of creating 

large lexicons, however, statistics on the 

successfulness of various approaches in actual full-

scale implementations are very rare.  Although some 

methods look good for some well-chosen examples, it 

is very hard to know how useful the various 

proposals would actually be in a real system. 

 This chapter presents the results of an 

analysis of the types of lexical ambiguities that 

occur in actual text.  The ambiguities found were 

manually classified according to which of several 

general approaches might successfully resolve them.  

This study was particularly concerned with lexical 
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ambiguities within the grammatical categories of 

adjective, verb, and noun.  After a word was 

successfully categorized as belonging to one of 

these categories, several senses within that 

category often remained as possible meanings that 

would require different translations. 

 The study was based on four small texts.  The 

first was a newspaper article about some whales 

which were trapped in Arctic ice (Provo Herald 

1988); the second was made up of selections from an 

article on AI (Dreyfus 1985); the third was from a 

religious text (Smith 1978); and the fourth was from 

a LISP manual (Gold Hill Computers 1983). These 

texts are found in Appendix A.  Together, the texts 

included 3848 words. Of these, 1537 were adjectives, 

verbs or nouns (about 40%).  An English-to-Japanese 

translation dictionary was used to make a list of 

all the words which appeared in the texts.  Each 

word was listed with its possible grammatical 

categories and possible translations within each 

category.  Each word in the source texts was then 

annotated by its grammatical category in that 

context, along with the possible translations for 

that word within that category.  It was found that 
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883 of the 1537 adjectives, verbs and nouns had 

intra-category ambiguities (about 57%). 

 Each word was then annotated with the subset of 

possible approaches which could hope to successfully 

resolve the ambiguity in its particular context.  

Some ambiguities could be resolved simply by 

syntactic considerations, or by assuming the phrase 

containing the ambiguity would be entered in the 

translation dictionary as an idiom.  Others could be 

resolved if it was assumed that the number of 

translations in the dictionary was reduced so that a 

single cover term could be used to cover all of 

them.  Others could be resolved by simply choosing 

the sense of the word that would be expected to be 

the most likely or frequently used sense in general 

text.  Some words could be considered to have a 

technical meaning appropriate to the subject area of 

the text.  Many ambiguities could be correctly 

resolved simply by using the same sense of the word 

that had been chosen for the previous instance of 

the same word in the text.  Some ambiguities could 

be resolved by appealing to selectional 

restrictions.  Others could be resolved by appealing 

to some notion of general relatedness to words in 
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the immediate context.  Ambiguities in some words 

could be resolved by several of the approaches by 

themselves; others could be resolved only by a 

combination of approaches.  Finally, some of the 

ambiguities could not be correctly resolved by any 

combination of these methods, and it was assumed 

that some higher form of logical reasoning would be 

required.  The texts are presented in Appendix A 

with the annotations which classified each ambiguous 

word. 

 Sections 3.2 to 3.10 will present each of the 

approaches along with an example of its 

applicability to an ambiguity from the texts.  

Section 3.11 presents the results of the study.  

Section 3.12 comments on the possible meaning of the 

results. 

 

3.2 Syntax 

 

 Some intra-category ambiguities were resolvable 

using syntactic restrictions.  Some of the 

restrictions considered were complement types and 

agreement for verbs, countability for nouns, and 

sentence position for adjectives. 
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For example, in the phrase 

 

 As Husserl saw ... 

 

the verb could either be 'saw' as the past tense of 

'see', or 'saw' as in 'sawing wood'.  'Saw' cannot 

have the 'sawing wood' sense in this case because it 

would not agree with the third person subject.  

 

3.3  Idioms 

 

 The correct sense of some words could be 

achieved by treating them as belonging to fixed 

idioms.  For example, it would be more sensible to 

enter the whole phrase 

 

 In the first place ... 

 

in the lexicon than to try to predict the 

translation of 'place' by some other method. 
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3.4 Frequency 

 

 Often, the easiest way to pick the correct 

sense of a word is simply to choose the sense that 

is most frequent in general text.  For example, in 

the phrase 

 

 When the waitress came to the table ... 

 

one of the ways to resolve the ambiguity is to 

simply take the most frequent meaning, that of 

furniture 'table' over 'table' of figures. 

 

3.5  Technical Glossaries 

 

 Naturally, the relative frequency of word 

senses depends on the type of text being used as the 

standard.  In a phrase in an article talking about 

knowledge representation, such as 

 

... the script accounts for the possibilities 

in the restaurant game ... 
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the word 'script' is likely to have the technical 

meaning.  The most likely meaning in a computer 

science text might be 'font', and in a text about 

the theatre, 'the written form of a play'.  This 

method amounts to using a technical glossary for 

translating texts within a given domain. 

 

3.6  Discourse Memory 

 

 Often, the context surrounding the first use of 

a word is more specific than the context surrounding 

its later uses.  Once the intended sense of the word 

is established by the context surrounding the first 

usage, the same sense is assumed in further 

instances of the word.  For example, if the context 

 

 ... thick Arctic ocean ice ... 

 

establishes the meaning of 'ice' to be 'frozen 

water' rather than 'sherbet', the more difficult 

phrase later in the text, 

 

 ... they quickly cleared the ice ... 
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can be resolved by simply using the same sense of 

'ice' that was used earlier in the text. 

 Words were marked as resolvable by this method 

if the correct sense of the word was the same as the 

correct sense of the previous instance of the word 

in the text. 

 

3.7  Cover words 

 

 Although a source word may be translated by 

several different target words, one of the possible 

translations may be more general in meaning than the 

others, and actually include or "cover" those more 

specific meanings.  For example, the verb 'decide' 

in English can be translated into Japanese by 

'kettei suru', meaning 'decide definitely on'; or by 

'kesshin suru', meaning 'decide in one`s heart'; or 

by 'kimeru', meaning 'decide upon'.  Although the 

former two meanings are more specific, the latter 

meaning is general enough to cover them, and the 

context is usually sufficient for the Japanese 

reader to understand.  In practice, this method 

would be utilized by entering only the cover meaning 

in the machine translation lexicon. 



81 

81 

 

3.8 Preferences 

 

 A verb or preposition often prefers certain 

classes of arguments and an adjective often prefers 

certain classes of heads to modify.  These 

preferences can sometimes be used to resolve 

ambiguities.  For example, in the fragment 

 

The ... whales became trapped in the ice two 

weeks ago while migrating south. 

 

the two listed Japanese translations for 'migrate' 

were 'idoo suru', meaning to 'move or locomote', and 

'ijuu suru', meaning to 'immigrate or emigrate'.  

The second one prefers a human subject, so the first 

translation is more likely in this context. 

 



82 

82 

3.9  Spreading Activation 

 

 Often nearby words give a clue to the proper 

sense of a word. For example, in the fragment 

 

... California gray whales, whose species is 

endangered, became trapped in the ice ... 

 

'species' can be translated by 'shu', meaning 'type 

of living thing'; or by 'shurui', meaning 'type or 

kind'. In this case, the proximity of the word 

'whales' makes it clear that the first is the best 

translation.  The word 'ice' can be translated by 

'koori', meaning 'frozen water'; or by 'shaabetto', 

meaning sherbet. Whales are clearly related to 

water, and therefore to 'frozen water', but there is 

no such immediate connection between whales and 

sherbet. 

 

3.10  Logical Reasoning 

 

 Some kinds of ambiguities could not be resolved 

by any of the above methods or any combinations of 

them. 
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In the fragment 

 

But Minsky seems oblivious to the hand-waving 

optimism of his proposal that programmers rush 

in where philosophers such as Heidegger fear to 

tread . . . 

 

'oblivious' can be translated as 'kizukanai', 

meaning 'unaware'; or as 'wasureppoi', meaning 'apt 

to forget'.  In this case, it seems more likely that 

Minsky was unaware of his "hand-waving optimism" 

than that he had once been aware of it, but had 

forgotten about it.  This kind of reasoning is not 

something that could easily be captured by any of 

the previous methods for resolving ambiguities. 

 

3.11 Results of the Study 

 

 The following table reports the statistics 

collected.  Lines 1 through 5 give general 

statistics on the number of words, number of words 

in the categories surveyed, and the number of 

polysemous words (with intra-category ambiguities); 

also the number resolvable by syntactic 
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considerations alone, or by assuming the words 

occurred in idioms that had been entered in the 

dictionary. 

 The second part is based on the number of 

ambiguities left after the syntactic and idiom 

methods had been used.  The statistics in lines 7 

through 12 are given as percentages of the number of 

remaining ambiguities (shown in line 6) that can be 

resolved by the given method alone.  In line 13, the 

percentages represent the number of ambiguities left 

unresolved by all of methods used in lines 7 through 

12 (and combinations of those methods). 

 

                        Text1 Text2 Text3 Text4 

Total 

1. Total words            421  1776  1212   439  

3848 

2. Adjs, verbs, nouns     194   731   411   201  

1537 

3. Polysemous words        84   424   248   127   

883 

4. Resolvable by syntax    20    93    61    20   

194 
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5. Part of an idiom        12    36    11    10    

69 

6. Unresolved by above     52   297   176    97   

622 

7. Frequency               46%   39%   26%   39%   

36% 

8. Technical glossaries     0%   15%    3%   23%   

11% 

9. Discourse memory        21%   40%   37%   79%   

44% 

10. Cover words            27%   18%   27%   19%   

21% 

11. Preferencess           27%   11%   15%    3%   

12% 

12. Spreading activation   25%    9%   13%    3%   

10% 

13. Logical reasoning       2%    2%    5%    1%    

3% 

 

 The percentages do not add up to 100% because 

some ambiguities are resolvable by more than one of 

the methods.  Of the ambiguities not resolved by 

syntax and idioms, only 2% required some combination 

of the methods in lines 7 through 12. Each of the 
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methods in lines 7 through 12 resolved between 3% 

and 9% that could not be resolved by any of the 

others. 

 

3.12 Comments on the Results of the Study 

 

 The purpose of the study was to get a general 

idea of the potential usefulness of the general 

approaches that have been taken to resolving lexical 

ambiguity during machine translation.  Of course, 

since the purpose was to get such a general idea 

before actually going to the trouble of trying to 

make a full-scale implementation of any of the 

methods, the data had to be analyzed manually, and 

the results were unavoidably somewhat subjective.  

The differences in the percentages in different 

columns show that the statistics vary for different 

kinds of text.  The range of the percentages on each 

line may give some general idea of the range of 

usefulness of the various methods. 

 The results could be considered surprising in a 

number of respects.  It might have been expected 

that taking the most frequently correct sense of a 

word would have succeeded at least 50% of the time, 
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but in the texts examined, it was not uncommon to 

find words with three or more possible senses.  If a 

word had three senses, the first occurred 40% of the 

time in general text, and the others occurred 30% 

each, one would expect to achieve only about 40% 

accuracy by choosing only the most frequent sense. 

 It was most common for a word to be used in 

only one sense within a single text.  Despite this 

fact, the discourse memory method was usable in less 

than 50% of the cases because many words occurred 

only once in the text, and the method was not usable 

for the first occurrence of even words that occurred 

more than once.  The usefulness of this method is 

somewhat exaggerated by the statistics, because it 

was assumed that the previous occurrence of the word 

in the text had been correctly classified, and at 

least the first occurrence had to have been 

classified by some other method. 

 Although a word was commonly used in only one 

sense within a text, it was not at all clear for 

many of the words that they would be used 

consistently in that sense alone in every text of 

the same subject area.  Words having a special 

meaning in the particular subject area were marked 
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as resolvable by the technical dictionary method.  

The statistics might have been higher if actual 

statistics had been available about the frequencies 

of usage in the various types of text.  The first 

text was considered a general text, since it had 

come from a newspaper. Perhaps more of the words 

could have been considered technical if it had been 

labelled as a text about oceanography or zoology.  

Still, the number of words that could be correctly 

disambiguated using the technical domain approach 

was surprisingly small, since that is one of the 

major methods being used in actual systems. 

 Another surprise was the low score for 

preferences.  The need for using selectional 

restrictions is somewhat obscured by these 

statistics, since disambiguation of prepositions 

depends heavily on them.  Still, the statistics are 

surprising, because they imply that the best efforts 

of Preference Semantics might hope to resolve only 

about 30% of the major category class words in the 

best case, and only about 12% in general.  Perhaps 

the statistics could be improved by using some 

extremely ad hoc features, but the prospects of 

using Preference Semantics alone seem rather bleak. 



89 

89 

 Since each method resolved 3% to 9% of the 

ambiguities that could not be resolved by other 

methods, and 3% would require some form of logical 

reasoning, it seems clear that to reach 95% accuracy 

in resolving lexical ambiguity (without using 

logical reasoning), one would have to use some 

combination of all of the methods.  No single method 

will do. 
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Chapter 4 

SPREADING ACTIVATION AND TRIGGER WORDS 

 

4.1 Introduction 

 

 Other than cases of ambiguity that require 

logical reasoning, the fuzziest division between the 

methods discussed in the last chapter seems to be 

between the frequency method and the spreading 

activation method.  The cases in which the other 

methods apply are fairly clear cut.  Cases where 

syntactic restrictions apply are easy to identify. 

Idioms are also easy to identify.  Texts can be 

marked for their technical area before translation, 

so that word senses particularly applicable to the 

given area can be given precedence.  When words are 

first encountered in a text, the word and its chosen 

sense can easily be stored, so that when the word is 

found again, the same sense can be used (as long as 

it has the same syntactic characteristics).  The 

dictionary can be coded in the first place with the 

concept of cover words in mind, so that unnecessary 

ambiguities do not even become possible choices.  

Preferences 
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require considerably more work, but methods for 

applying them have been studied for over 20 years by 

those working in Preference Semantics (a simplified 

version of Collative Semantics may offer the best 

working algorithm); again, the cases in which 

modifier and argument preferences can resolve 

ambiguity are easy to delineate, once the lexicon 

has been correctly coded. 

 The frequency and spreading activation methods 

are not so easy to separate, however.  The idea is 

that if a word appears in the context of certain 

other words, they may trigger a sense other than the 

most frequently used sense.  The trick is to define 

in some manner the trigger words allowed for each 

less frequent sense and how they may interact; if 

none of these are found in the context, the most 

frequent sense should be used as a default. 

 Capturing and representing trigger information 

is no easy matter, however.  Chapter 2 discussed the 

idea of Weaver's contextual windows; to use a window 

of size n on each side of a word, a matrix of 

M(2n+1), where M is the size of the vocabulary, 

would be required. A simpler method might be an M2 

sized matrix, where rows are ambiguous words, 
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columns are potential trigger words, and the value 

in a cell of the matrix would be the correct sense 

of the ambiguous word (row) in the presence of the 

trigger word (column). Alternatively, since many of 

the cells on the row of an ambiguous word would 

contain the sense number of its most frequent sense, 

it would be enough to specify the most frequent 

sense and list each of the other senses with the 

trigger words that trigger them (the program in 

Appendix B is actually an implementation of this 

approach).  However, how does one obtain the list of 

trigger words and the senses they trigger?  Even if 

this information can be obtained, what should be 

done if trigger words that trigger different senses 

are found in the context?  Does distance from the 

word matter?  Should trigger words have different 

strengths? 

 The thesaurus methods of Chapter 2 were an 

attempt to quantify trigger words.  A word was a 

trigger if it appeared under the same heading as the 

ambiguous word (in one of its senses) in the 

thesaurus.  The notion of semantic distance could 

also be used to give different words a different 

trigger strength.  However, the complexity of 
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building the thesaurus makes this method very 

difficult to use, and no statistics are available 

about how successful even one implementation might 

be.  The fact that the thesaurus is based solely on 

synonymy also makes it doubtful that this method 

could be very useful. 

 The marker passing methods also attempt to 

address the trigger word problem.  By spreading 

activation among nodes in a knowledge base, trigger 

words are allowed to choose the triggered sense of 

an ambiguous word.  Trigger words can also be given 

different strengths.  There may even be a way to 

handle cases where words that trigger different 

senses occur in the same context.  But since 

knowledge bases are so difficult to build, no 

statistics are available on the possible success of 

these methods in a full implementation, and there is 

no guarantee that success in one such system would 

imply success in another one with a different 

knowledge base. 

 The connectionist approaches are appealing 

because they can be trained by real data, and they 

have the ability to generalize.  It seems plausible 

that the process of deciding on a word sense among 
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several alternatives is more like a weighing process 

than a logical discrete process.  However, previous 

work has been limited to vague discussion and toy 

examples that give no clear direction for 

implementation in a full system. 

 An optimal approach would be one that could 

automatically determine most frequent sense from 

actual textual data, and at the same time gather 

information about potential triggering of less 

frequent senses.  If this information could then be 

used in some manner to train a connectionist 

network, complex and arbitrary coding of thesauri or 

knowledge bases could be avoided, and triggering and 

frequency information could be combined in a 

probabilistic algorithm for resolving ambiguity.  

The approach described in this chapter is a 

beginning attempt at just such a system. 

 

4.2 Neural Cooccurrence 

 

 One of the goals of using a connectionist 

approach would be to find an architecture for a 

neural network that could generalize classes of 

cooccurring words.  An experiment will be described 
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in this section, in which a small list of ambiguous 

words were correctly categorized into cooccurrence 

classes by a neural network. 

 The input words and general categories of 

intended senses were as follows: 

 

bank   money  water 

bail   container  money 

bat   animal  sports 

bridge  cards  water 

calf   animal  bodypart 

chest  bodypart  container 

fence  container  sports 

file   office  tool 

palm   bodypart  plant 

pen   container  office 

pitcher  container  sports 

poker  cards  tool 

pool   sports  water 

spade  cards  tool 

squash  plant  sports 

 

 The network was a feed-forward neural network. 

Such a network is a connected directed acyclic 
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graph; it is composed of nodes and one-way 

connections between pairs of those nodes.  Each node 

in the network has an associated real number called 

its activation level, and another real number called 

its bias.  Each connection is also associated with a 

real number called its weight.  The activation of 

each node changes once each cycle, and is calculated 

based on the following equation: 

 
 ai = _ ( bi + _ aj * wji ) 
                   j 
 
 

  where  ai is the activation of node i 

     aj  the activation of node j 

     bi  the bias of node i 

       wji  the weight of the 

connection 

                         from node j to node i 

    and 

                1 

    _ ( x ) = ------- 

              1 + e-x   
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 This particular network was composed of three 

sets of nodes, namely input nodes, hidden nodes, and 

output nodes.  Each input node had a directed 

connection to each hidden node, and each hidden node 

had a directed connection to each output node.  The 

network had 16 words as input units, 8 hidden units, 

and 32 output units.  Each input unit corresponded 

to one of the 16 words.  There was one output unit 

for each sense of each word.  The network was set up 

using the bp (back propagation) program in the 

Explorations in Parallel Distributed Processing 

(PDP) software of McClelland and Rumelhart.  The 

biases and weights in the network were trained 

according to the back propagation formulas.  In 

these formulas, each non-input unit has an error 

term calculated.  The error terms for output units 

are simply 

 

 Ei = ti - ai 

 

namely, the target activation minus the actual 

activation. 
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The error term for each hidden unit depends on 

activations and error terms of all of the output 

units the hidden unit is connected to, as follows: 

 
 Ei = _  wij * Dj 
      j 
 

     where Dj = Ej * aj * (1-aj) 

 

Weights and biases are changed based on these values 

and constants which control the gradual descension 

of the network into a stable state which has learned 

the patterns presented.  The change in each bias and 

weight is stored for use the next time they are 

calculated; these are 

 

 _wij = _ij * Di * aj + µ * _wij 

 

 _bi = ßi * Di + µ * _bi 

 

The constants are µ (for momentum) and _ij for 

weight learning rate and ßi for bias learning rate.  

Each weight is then modified by adding the _wij 

term, and each bias is modified by adding the _bi 

term.  Each weight and bias in the network can be 
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modified once each time a training pattern is 

presented, or once after the whole set of training 

patterns has been presented.  For this test, weights 

were modified after each training pattern was 

presented, and the parameters were µ=.9, _=.5 for 

connections from hidden units to output units, _=.08 

for connections from input to hidden units, ß=.5 for 

output units, and ß=.08 for hidden units (see 

McLelland 1988). 

 The following pairs sharing a sense in the same 

category were presented as input to the network: 

 

pool bank    (water) pool pitcher (sports) 

pool bridge  (water) pool fence (sports) 

bank bridge  (water) pool squash (sports) 

bank bail    (money) pool bat  (sports) 

bank stock   (money) pitcher squash (sports) 

bail stock   (money) pitcher bat (sports) 

stock calf   (animal) fence squash (sports) 

stock bat    (animal) fence bat  (sports) 

calf bat    (animal) squash bat (sports) 

chest calf   (bodypart) bail chest (container) 

chest palm   (bodypart) bail pitcher (container) 

palm calf    (bodypart) bail fence (container) 
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squash palm  (plant) bail pen  (container) 

file pen    (office) chest pitcher (container) 

file spade   (tool)  chest fence (container) 

file poker   (tool)  chest pen  (container) 

bridge spade (cards) pitcher fence (container) 

bridge poker (cards) pitcher pen (container) 

 

For each training pattern, the activations of the 

input units corresponding to the two input words 

were set to 1, and the target activations of the 

correct output senses were set to 1, but the target 

activations of the incorrect senses were set to 0. 

The error terms of all output units which were not 

senses of the input words were set to 0.  The total 

sum of squares is a measure of how well the network 

has learned the input patterns; it is simply the sum 

of the squares of the error terms of the output 

units. The network in this test was trained until 

the total sum of squares fell below 0.4.  All of 

these parameters, as well as the architecture of the 

network, were specified in PDP network and pattern 

files. 

 After the network was trained, the values of 

the hidden units were examined for each of the 
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training patterns.  The activations for the hidden 

units of each pattern (rounded to 0 if less than .5, 

and to 1 otherwise) were as follows: 

 

11010000 pool bank  (water) 

11010000 pool bridge (water) 

11010000 bank bridge (water) 

 

10000010 bank bail  (money) 

10110110 bank stock (money) 

10100010 bail stock (money) 

 

00110000 stock calf  (animal) 

00110110 stock bat  (animal) 

00111100 calf bat  (animal) 

 

10101000 chest calf  (bodypart) 

10101000 chest palm  (bodypart) 

00101000 palm calf  (bodypart) 
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01000000 squash palm (plant) 

 

01011101 pool pitcher (sports) 

01011101 pool fence  (sports) 

01010100 pool squash (sports) 

01010100 pool bat  (sports) 

01010110 pitcher squash (sports) 

00010101 pitcher bat (sports) 

01010110 fence squash (sports) 

00010101 fence bat  (sports) 

01010100 squash bat  (sports) 

 

10101011 bail chest (container) 

10101111 bail pitcher (container) 

10001111 bail fence (container) 

10101111 bail pen  (container) 

10101111 chest pitcher (container) 

10001111 chest fence (container) 

10101111 chest pen  (container) 

10101111 pitcher fence (container) 

10001111 pitcher pen (container) 

 

00000111 file pen  (office) 

00010011 file spade (tool) 
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00010011 file poker (tool) 

 

10110000 bridge spade (cards) 

10110000 bridge poker (cards) 

 

  From this data, it appears that the network 

generalized to representing not specifically the 

pair of inputs, but rather the common class that 

both of their senses belong to when they appear 

together.  The classes could be summarized as 

follows: 

 

 office  00000111 

 tool   00010011 

 animal  0011???0 

 sports  0?01?1?? 

 plant  01000000 

 bodypart  ?0101000 

 container  10?01?11 

 money  10??0?10 

 cards  10110000 

 water  11010000 
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In other words, the network set up what could be 

considered a binary feature representation of the 

underlying cooccurrence classes. 

 

4.3 Training with Raw Text 

 

 Given a neural network structure that can 

potentially generalize cooccurrence classes, the 

next step is to train such a network with data from 

real text. 

 For this experiment, the Longman Dictionary of 

Contemporary English was searched for occurrences of 

the word 'bank' within the texts of definitions 

(parenthetical material was not considered).  The 

following are words that cooccur three or more times 

with 'bank' in its financial meaning within those 

definitions: 

 

account book business can central certain cheque 

close door give interest money order paper 

particular pay people person print public put record 

room state sum supply system take various 
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The following words cooccur at least three times 

with the geographical meaning of 'bank': 

 

built earth ground high lake overflow river rock 

sand sea stone stream underwater water wide 

 

 A program and parameters similar to the one 

above was used (see Appendices C and D), with eight 

hidden units; one input unit for each context word 

and one for 'bank'; and one output unit for each 

word except 'bank', which had one for financial 

'bank' and one for geographical 'bank'.  Each 

training pattern consisted of a pair of input words, 

namely 'bank' and one of the above context words; in 

the target patterns, the context word and the 

correct sense of 'bank' had target activations of 1, 

the incorrect sense of 'bank' had target activation 

of 0, and the error terms of other output units were 

set to 0. 

 Each definition containing the word 'bank' was 

then presented to the network as input.  For each 

definition, an input unit was given an activation of 

1 if the unit corresponded to a word which occurred 

in the definition (possibly more than once); 
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otherwise it was given an activation of 0.  The 

activation levels of the output units for the senses 

of 'bank' were then compared, and the one with the 

highest activation was chosen to be the proper 

meaning in that context. 

 Of 97 definitions including the word 'bank', 32 

referred to a geographical bank.  Of these 97 

definitions, the network got the wrong meaning of 

'bank' in only one case, namely the definition 

 

 a deep bank or mass of snow formed by the wind 

 

which includes none of the context words above. 

 The experiment was tried again, using only the 

first 76 definitions as input for training pairs. 

Only words which cooccurred three or more times with 

'bank' in these 76 definitions were used as 

companions for 'bank' in training pairs.  The words 

'door', 'particular', and 'room' were no longer 

paired with financial bank, and the words 'ground', 

'high', and 'underwater' were no longer paired with 

geographical bank.  The remaining 21 definitions 

were then presented as input, and the network failed 
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in 2 cases, one being the one above, and the other 

being 

a bridge consisting of a high tower on each 

bank connected by lengths of steel rail from 

which a flat carriage level with the ground 

hangs 

 

The words 'high' and 'ground' triggered correct 

resolution in the first case, but were not known as 

trigger words in the second.  The network therefore 

succeeded in over 90% of the cases of previously 

unseen definitions. 

 

4.4 Summary 

 

 One of the most difficult problems in resolving 

ambiguity is deciding when sufficient words are 

present in the given context to trigger a sense that 

is not the most frequent sense.  One would prefer a 

method that could automatically extract frequency 

and trigger information from real text, and use it 

in an automatic algorithm that would not have to 

depend on arbitrary coding of thesauri or knowledge 

bases. 
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 The experiment of section 4.2 showed that a 

neural network can correctly generalize cooccurrence 

classes if trained by presenting pairs of ambiguous 

words and the correct senses they induce in each 

other.  The network set up what could be regarded as 

a feature representation of the cooccurrence 

classes, as shown by the activations of the hidden 

units. 

 The experiment of section 4.3 showed that 

training pairs can be extracted from real text.  

Using a network similar to the one in section 4.2, 

and the automatically extracted training pairs, a 

network was built that could choose the correct 

sense of 'bank' in over 90% of the previously 

unknown test cases. 

 The next chapter will show how the same method 

can be applied to a large text corpus with many 

ambiguous words. 
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Chapter 5 

SEMANTIC COOCCURRENCE NETWORKS BASED ON 

 PARALLEL TEXT CORPORA 

 

5.1 Introduction 

 

 Unfortunately, many studies of lexical 

ambiguity have either been vague treatises that are 

difficult to formulate precisely, or detailed 

descriptions of toy systems that may or may not 

generalize for implementation in full systems.  Some 

approaches are based on hand-tailored thesauri or 

knowledge bases that take so long to create that 

full implementations have yet to be completed, so no 

information is available about how successful the 

approaches may actually be in the world of machine 

translation. 

 This chapter presents statistics from the 

application of the method described in chapter 4 to 

an English text of over a quarter million words, 

which contained a vocabulary of over 9000 base 

forms.  A parallel French text was used to determine 

different senses, and generate word pairs for 

training a large neural network. 
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 Section 5.2 discusses the problem of the number 

of word senses for a given word.  Section 5.3 

discusses the method for extracting training pairs 

from parallel text corpora.  Section 5.4 discusses 

training of the neural network.  Section 5.5 is an 

evaluation of the results.  Section 5.6 discusses 

problems that remain.  Section 5.7 summarizes the 

conclusions of the study. 

 

5.2 Word Senses 

 

 One of the problems in dealing with lexical 

ambiguity is deciding exactly how many different 

senses a word really has.  Yorick Wilks has 

considered 

 

 ... the suggestion that there never was 

lexical ambiguity until dictionaries were 

written in roughly the form we now have them, 

and that lexical ambiguity is no more or less 

than a product of scholarship ... 
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since 

 

 ... different dictionaries may give 1, 2, 

7, 34, or 87 senses for a single word and they 

cannot all be right.  Worse yet, different 

segmentations of usage into discrete senses may 

not even be inclusive.  Sometimes different 

dictionaries will segment usage into senses for 

a given word in non-comparable ways: perhaps 

play3 (the third of three) in dictionary A 

could not be associated with any one of the 

eight senses of 'play' in dictionary B. 

       (Wilks 1987, p. 

3) 

 

He later rejects the idea that lexical ambiguity 

exists only in the minds of lexicographers; his 

argument that words really do have different sense 

meanings essentially boils down to the fact that the 

same word in different contexts cannot always be 

translated by the same word in another language. 

 The question remains, how many senses does any 

particular word have?  But, perhaps that is the 

wrong question.  It doesn't really matter how senses 
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are divided up until the purpose for the division is 

known.  In terms of machine translation, the real 

question is, "How many words in the target language 

are necessary to sufficiently cover the possible 

meanings of a given source word?" 

 When the algorithm for resolution of lexical 

ambiguity is based on parallel text corpora, this 

question becomes relatively easy to answer.  The 

number of target words needed to translate the given 

word into the target language is no more than the 

actual number of target words that were used to 

translate that source word in the parallel texts.  

If some of the target words were synonymous, or some 

could cover the meanings of others, the actual 

number of target words needed could be less than the 

actual number used.  In any case, the text corpora 

give an upper bound to the number of ways the word 

can be divided into senses. 

 Furthermore, if the target translations are 

used to partition the meanings of the source word 

into senses, the frequency of usage of each of the 

senses can be immediately calculated, and contexts 

which may trigger each of the senses are also 

available.   
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5.3 Extracting Training Pairs from Parallel Texts 

 

 In order to test the reliability of the method 

presented in chapter 4, an experiment was conducted 

based on parallel texts of approximately a quarter 

million words of English and French text, which 

contained a variety of government and non-government 

documents (this text was obtained from Alan Melby, 

from some texts used to test the DLT algorithm 

discussed in chapter 2).  The text was divided into 

over 6000 parallel sections, each of which contained 

from one to seven sentences. 

 Function words were removed from the texts, and 

remaining words were reduced to base form.  A 

bilingual dictionary was created that showed nearly 

all of the French translations for the 9103 English 

base words that occurred in the corpus. 

 The parallel texts were divided into a sample 

corpus, namely the first 80% of the parallel texts, 

and a test corpus.  The sample corpus was searched 

for pairs of English words that occurred together 

five or more times within five words of each other; 

if the pair of English words mapped to the same pair 

of French translations in 85% of their 
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cooccurrences, the cooccurrence was deemed to be 

significant.  54 words had such cooccurrence data 

for more than one sense. The program in Appendix B 

was used to determine that  

67.3% of the instances of ambiguity of these words 

in the test corpus could be resolved correctly 

simply by picking the sense that had been most 

frequent in the sample corpus.  The trigger words 

collected from the sample corpus were then used to 

resolve ambiguity in the test corpus.  Trigger words 

within five words of the ambiguous word were 

counted, and the translation with the most trigger 

words was chosen.  If there was a tie, the 

translation among those that tied, which had been 

used most frequently in the sample text, was the one 

chosen.  If there were no trigger words within five 

words, the translation which had been most frequent 

in the sample text was chosen.  Using this method, 

76.4% of the ambiguities were resolved correctly. 

 



115 

115 

5.4 Training the Neural Network 

 

 Normally, the practice is to keep neural 

networks small.  The interaction of cooccurrence 

data, however, requires a critical mass of data in 

order for broad contextual information to affect the 

proper choice of sense.  In the network, there is 

one input node for each source word, and one output 

node for each target word.  Each input node is 

connected to every hidden node, and each output node 

is connected to every hidden node.  This means each 

source word has its own set of weights, which are 

connections to the hidden units, and each target 

word has its own weights, which are connections from 

the hidden units.  Source weights are only modified 

during training when the given source word is one of 

the two in the training pair; target weights are 

only modified when the given target word is one of 

the possible translations of the two source words, 

either a correct or an incorrect translation.  

Unless the training patterns overlap in either 

source or target words, the network will behave like 

many smaller networks, that just happen to use the 

same hidden units.  Much like the same park being 
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used one day for a church picnic and the next for a 

hard rock concert, the one will not have much effect 

on the other unless some of the participants meet 

each other.  When a source word maps to a particular 

target word, this combination could be considered to 

be a sense of the source word.  The set of senses of 

source words available in the training data 

constitutes a kind of semantic cooccurrence concept 

world, where each sense is treated as a concept.  

Senses in this concept world are connected if they 

cooccur.  In other words, each training pair can be 

considered to be two concepts in the concept world, 

which are connected by a cooccurrence line.  

Concepts can only have a contextual effect on other 

concepts if they are transitively connected by 

cooccurrences. 

 Only 54 of the words in the corpus had 

cooccurrence data for multiple senses, using 5 

cooccurrences within 5 words.  In order to establish 

greater connectivity among the senses in the corpus, 

pairs were extracted that occurred together 3 or 

more times in the parallel texts, and the context 

was allowed to be the whole segment in which the 

word was found; again, each pair of English words 
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was required to map to the same pair of French 

translations in 85% of their cooccurrences.  Using 

these parameters, there were 2855 English words with 

cooccurrence data, involving 2462 French words, with 

a total of 3835 unique source-target mappings in the 

cooccurrence data.  Considering each of these 

mappings as a concept in conceptual space, and 

connecting concepts that cooccurred, it was 

determined that the conceptual space would be 

partitioned into nine sets of concepts. Concepts in 

each set were related by the fact that some sequence 

of concepts could be found such that every pair of 

adjacent concepts in the sequence cooccurred in the 

training data.  It turned out that eight of the nine 

sets of concepts contained only two concepts each, 

and the ninth set contained the remaining 3817.  In 

other words, the training data allowed 3817 of the 

concepts to have a contextual influence on all of 

the others. 

 Now, armed with underlyingly connected training 

data, a neural network was created with one input 

unit for each English word and one output unit for 

each French word in the training data.  The network 

used 54 hidden units, approximately the square root 
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of the number of input units.  The learning 

parameter _ 

for input-to-hidden weights and the bias parameter 

ßfor hidden units was set to .5, and the learning 

parameter _ for hidden-to-output weights and the 

bias parameter ß for output units was set to .08.  

The momentum parameter µ was set to .9, and the 

epoch learning mode and permuted training were used. 

 Since the network was so large, the PDP 

software was unable to handle the task.  Therefore, 

the network training program in Appendix C was used.  

It uses the same algorithms as the PDP software, 

except that weights of connections emanating from a 

single input unit are normalized so that they form a 

vector of length 1.0.  It also interfaces better 

with large amounts of training data.  In this case, 

there were 20,738 training patterns.  Each 

cooccurring pair of English words was presented as 

the input pattern, with the French words they mapped 

to receiving positive feedback, and other French 

words they could have mapped to receiving negative 

feedback.  Each pattern was presented to the network 

176 times. 
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5.5 Evaluation of Network Performance 

 

 The program in Appendix D was written to test 

the performance of the network.  Input to the 

program included the ambiguous word, a list of 

context words, the list of possible translations of 

the ambiguous word in the original dictionary, and 

the correct translation in the given context. 

 The network was tested on the five English 

words 'articles', 'committee', 'company', 'major', 

and 'office.'  'Articles' was considered a base 

form, since it occurs as a key word in the Longman 

Dictionary of Contemporary English.  A modified 

version of the program in Appendix B was used to 

extract contexts and correct translations from the 

parallel texts for each of these five words. 

 Each of the five words will be listed below 

with its translations and common cooccurrences, the 

total number of test sections for that word, the 

percentage that could be achieved simply by choosing 

the most frequent translation, and the percentage 

achieved by the network. 
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articles articles  aid, appropriate, 

attendance, base, 

committee, confidential, 

council, debate, only, 

other, parliament, 

parliamentary, sign, 

substance, treaty, 

unofficial 

  statuts  accordance, activity, 

board, company, directive, 

dividend, entrust, form, 

limit, ordinary, 

possibility, proposal, 

protection, provisions, 

register, related, second, 

shares, status, statutory 

  32 instances, 56% translated 'statuts', 

  network achieved 87% 

 

committee commission apply, articles, brief, 

cassette, confidential, 

confidentiality, 

delegation, enable, 

experience, head, last, 
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open, option, parliament, 

political, sign, 

submission,substance, 

superior, unofficial 

  committee  trust 

  comité  alternance, centre, 

complementary, concrete, 

consultative, decision-

making, desirable, 

division, employment, 

especially, foreigner, 

generally, impact, 

importance, instrument, 

integration, language, 

least, needs, position, 

principle, problem, 

qualifications, 

recommendation, session, 

situation, social, 

standing, technology, town, 

unemployment 

  159 instances, 54% translated 'comité', 

  network achieved 60% 
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company compagnie  --- 

  entreprise acceptable, common, 

compensate, complexity, 

conditions, crisis, 

difficulty, discourage, 

education, expose, 

handicap, key, knowledge, 

lighting, manpower, 

objective, optical, 

organize, permit, 

population, possibly, 

potential, principle, 

productive, requirement, 

responsibility, signal, 

skill, sound, strengthen, 

technological, 

transmission, treat, type, 

venture 

  société  articles, corresponding, 

debtor, directive, entrust, 

explicitly, governing, 

indirectly, issue, legally, 

list, meeting, network, 

normal, bureau, orders, 
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payable, register, 

regulation, statutory, 

structural, third, three 

  166 instances, 62% translated 'entreprise', 

  network achieved 66% 

 

major grand  budgetary, machine, quality 

  gros   appliance, asset, domestic 

  important  lighting, steel 

  majeur  alternate, court 

  principal  --- 

  114 instances, 43% translated 'grand', 

  network achieved 47% 

 

office bureau  abroad, communication, 

hour, manual, migrant, 

transport 

  office   enterprise, federation, 

finance 

  37 instances, 54% translated 'bureau', 

  network achieved 62% 

 

 On these words, where sufficient cooccurrence 

data was available, the network was successful.  In 
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general, the network achieved 64.6% for the 909 

words with cooccurrence data, whereas picking the 

most frequent sense would have achieved 69.2%. 

 

5.6 Problems with Neural Cooccurrence Networks 

Based on Text Corpora 

 

 Naturally, the quality of the text corpora 

greatly affects the success of the network.  Human 

translators are not always consistent in their 

selection of translations for the same word. 

Approximate synonyms in the target language may be 

used almost interchangeably for what could be 

considered a single sense in the source language.  

In these cases, although either might be acceptable 

translations in a given context, the automatic 

method of measuring accuracy used here insisted that 

the network use the same translation that was found 

in the text.  This is more of a problem with the 

measuring algorithm used than the network itself, 

since either translation might be understandable to 

a human reader. 

 Subtle gradations of meaning in source words 

are difficult even for human translators, and also 



125 

125 

present a problem for the network.  Because the 

network is based on real number ranges of 

activations and weights, however, this problem is 

dealt with more realistically than in systems that 

use only discrete mathematics.  Most of the 

ambiguous words encountered in this text involved 

the subtle gradations of meaning, so their 

resolution was not as clear cut as the 'bank' 

example of chapter 4. 

 The parallel corpora used for this example 

included some odd cooccurrences.  For example, some 

of the texts reported vote tallies of countries in 

the United Nations.  Whenever countries voted 

similarly 3 or more times, the country names 

appeared together with the same translations enough 

times that the system considered them to be training 

pairs.  There were other cases in which the same 

wording was used in several different paragraphs, as 

if it were being quoted from some standard.  In 

these cases, words whose cooccurrence was really 

more accidental than meaningful became training 

pairs.  Parallel texts of any length will probably 

contain a certain amount of idiosyncratic 

cooccurrence.  If enough text is used, these kinds 
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of idiosyncracies should tend to cancel each other 

out. 

 Unfortunately, some words occurred so 

infrequently in the text that very little 

cooccurrence data was generated for training 

purposes.  Infrequent words tend to be less 

ambiguous, and therefore somewhat more useful to 

humans for resolving ambiguity, but this is not 

sufficiently captured by the current approach.  

Although humans probably do not use words they have 

heard only 3 times for much of anything including 

lexical disambiguation, it is not currently feasible 

to present the machine with the massive amounts of 

input data that humans receive. The training data 

using a minimum of 3 cooccurrences was not as 

accurate as that using a minimum of 5 cooccurrences.  

Using the program in Appendix B and default 

translations from the sample text, the correct 

translation could be achieved in 69.2% of the cases 

of ambiguity for the 909 words in the corpus that 

had cooccurrence data.  Using the cooccurrence data 

as input to the same program, and picking 

translations based on tallying the number of trigger 

words in the context, 69.1% of the cases could be 
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resolved correctly.  Clearly, the training pairs 

were less accurate using a minimum of only 3 

cooccurrences.  It is anticipated that a larger 

training corpus would allow more accuracy in finding 

training pairs, and the performance of the network 

would be considerably better. 

  Although the matched training that humans do 

to learn word meanings is based on readily available 

source words and target situations, parallel 

translated texts may not be so easy to find. 

Naturally, the texts should reflect the kind of 

material to be translated, so that the contexts and 

frequencies are not too skewed.  It may not be easy 

to find or create parallel texts similar enough to 

the material to be translated and large enough to 

sufficiently train the network.  Fortunately, the 

availability of machine-readable texts in general, 

and parallel texts as well, should greatly increase 

in the future. 

 The approach as given here presents the entire 

context to the network at one time by turning on the 

input unit associated with each word that occurs in 

the context.  At first thought, this seems like an 

odd way to find words that trigger a particular 
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meaning, since it is common for only one or two 

words in a context to actually trigger the correct 

meaning.  An alternate method would be to present 

the ambiguous word and a context word as a pair to 

the network, once for each word in the context, and 

tally up the scores of each of the senses.  It turns 

out, however, that the more the network is trained, 

the more each context word has an opinion about what 

the correct sense of the ambiguous word ought to be, 

even if it is not really a trigger word for humans.  

Even establishing a threshold of activation for 

target senses in order to enter the tally does not 

seem to work, perhaps because different training 

pairs are learned by the network at different rates.  

Apparently, presenting the whole context as input to 

the network makes the words with uninformed opinions 

cancel each other out, leaving the trigger words to 

decide the correct sense. If insufficient context is 

presented, cancelling may not be complete enough. 
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5.7 Conclusion 

 

 This chapter has shown that the neural network 

approach for resolving lexical ambiguity that was 

introduced in the last chapter scales up for use in 

a real system, based on data automatically extracted 

from parallel texts.  Although the results are not 

as clear cut as the 'bank' example in chapter 4, the 

results of this chapter show that the network 

performs reasonably well even with words which have 

a subtle gradation in sense meanings. 
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Chapter 6 

RESOLUTION OF LEXICAL AMBIGUITY IN MACHINE 

TRANSLATION 

6.1 Introduction 

 

 Chapter 2 discussed previous approaches to the 

resolution of lexical ambiguity in Machine 

Translation.  Warren Weaver's first suggestion was 

to limit the text to technical areas in which the 

technical meanings appropriate to that area would be 

given preference.  His second suggestion was to use 

windows of context, but direct implementation of his 

idea was found to be impractical.  Methods based on 

word experts, routines particular to each ambiguous 

word, were found to be ad hoc and difficult to 

maintain.  Methods based on semantic groups found in 

a thesaurus were found to be inadequate if based on 

a published thesaurus, and custom-built thesauri 

suffered from the mistaken assumption that the only 

valid relationship for grouping was synonymy. 

Preference Semantics was found to be useful, but 

inadequate in scope.  Marker passing schemes are 

potentially useful, but extremely complex to 

implement 
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in a full system, since they depend on a full 

knowledge base, and no statistics are available 

about their actual usefulness in a full system.  

Previous connectionist schemes were either too vague 

or else just toy systems that would be difficult to 

scale up to a full implementation. 

 Chapter 3 discussed a manual analysis of four 

texts to determine the kinds of ambiguities that 

might actually occur, and methods that might be used 

to disambiguate them.  Some ambiguities were 

resolvable purely by syntactic restrictions.  Some 

could be resolved by entering idioms in the 

translation dictionary.  Some could have been 

resolved by more careful coding of the dictionary, 

so that specific target translations whose meanings 

could be covered by more general target words would 

not be included in the dictionary at all.  Some were 

resolvable by marking certain translations as 

especially appropriate for certain technical areas, 

and then marking texts to be translated with the 

technical area of their subject matter.  Some could 

be resolved simply by choosing the same translation 

that had been used for the word in its previous 

occurrence in the same text.  Some required some 
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kind of checking of argument or modifier 

preferences.  Others could only be resolved with the 

assumption that certain trigger words in the context 

would signal the appropriate meaning.  Some could be 

resolved correctly by simply choosing the most 

frequent translation.  Finally, some could be 

resolved only by using some form of logical 

reasoning, but only 3% of the cases were found to 

fall into this category. The most surprising result 

was that none of the methods alone would be 

sufficient.  In fact, to achieve 95% accuracy, a 

combination of all of the methods (except logical 

reasoning), would be required. 

   Chapter 4 discussed the difficulty of 

determining when trigger words could be used to 

indicate a translation should be chosen other than 

the most frequent translation.  An experiment was 

discussed that indicated that a neural network might 

be able to extract cooccurrence classes from 

cooccurrence pairs by developing an internal feature 

representation in its weights that would appear in 

the activations of hidden units.  The application of 

this kind of network to contexts of the word 'bank' 

in dictionary definitions showed that appropriate 
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training of the network could lead to over 90% 

correct selection of word sense in previously unseen 

text. 

 Chapter 5 presented results based on parallel 

English and French texts that showed that 

cooccurrence data can be successfully used to 

isolate trigger information for the resolution of 

lexical ambiguity. Neural networks were successfully 

trained to mirror this semantic cooccurrence 

information. 

 The next section will introduce an algorithm 

for combining the methods discussed in chapter 3, 

utilizing the neural network algorithm introduced in 

chapter 4.  Section 6.3 will discuss lexical 

information required by the algorithm.  Section 6.4 

will discuss the order and interaction of the steps 

of the algorithm. 

 

6.2 The Algorithm 

 

 The steps of the following algorithm include 

the methods discussed in chapter 3, and include the 

neural network algorithm of chapter 4: 
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1) If the ambiguous word occurs in an idiom, 

translate the entire phrase with its idiomatic 

meaning; otherwise 

2) Attempt to reduce the number of possible senses 

by using syntactic constraints; if only one 

sense is left, use the appropriate translation; 

otherwise 

3) Reduce the number of possible senses by taking 

into account argument preferences of verbs and 

prepositions, and modifier preferences of 

adjectives and prepositions; if only one sense 

is left, use the appropriate translation; if no 

senses are left, ignore the preferences and 

continue; otherwise 

4) If the word has already occurred in the text, 

use the same translation used in its previous 

occurrence; otherwise 

5) If any of the senses are marked with the same 

technical area as the text being translated, 

eliminate other senses; if only one is left, 

use the appropriate translation; otherwise 

6) Present context words as activations to input 

units of a neural network trained on 

cooccurrence pairs from parallel texts, as in 
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chapters 4 and 5; pick the target translation 

with the highest activation. 

 

6.3 The Order and Interaction of Steps in the 

     Algorithm 

 

 The purpose of the algorithm is to choose the 

correct word sense in the greatest majority of 

cases. The examples in this section are given to 

show the rationale behind the ordering of the steps. 

 

6.3.1  Idioms and Syntax 

 

 Idioms may need to be marked with some 

syntactic conditions.   

 



136 

136 

For example, 

 

 John kicked the buckets. 

 

should not mean that John died.  Similarly, in 

 

 John saw horses. 

 

the idiom 'saw horse' should not take precedence 

over the normal SVO reading.  Nevertheless, idioms 

take precedence over normal syntactic conditions.  

For example, in a sentence without idioms like 

 

 John took care of the impressive grounds. 

 

countability indicates that 'grounds' should be the 

sense meaning 'land around a building', rather than 

'earth'.  But in 

 

 John took care of the coffee grounds. 

 

the same countability conditions apply, but the 

idiom clearly takes precedence. 

6.3.2  Idioms and Preference 
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 Fixed idiomatic phrases usually retain their 

meanings even when they appear in positions where a 

semantic attribute of the head word alone would 

satisfy a preference.  For example, in the sentence 

 

 The snow man was asking for immediate 

attention. 

 

'snow man' is still the best reading, even though 

'ask' would normally prefer a human subject. 

 

6.3.3  Idioms and Discourse Memory 

 

 A word may appear by itself in a text, and be 

used later as part of an idiom. 

 

The engine had needed a new gasket.  As soon as 

it was fixed, the fire engine was ready to go 

again. 

 

The idiomatic meaning takes precedence in such a 

case. 
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6.3.4  Idioms and Technical Tags 

 The following could be a story problem in a 

mathematics text: 

 

If a coffee table is 2½ feet wide and five feet 

long, how many potted plants ten inches in 

diameter can it hold? 

 

Although 'table' would usually mean a chart of 

figures in a mathematics text, the idiom 'coffee 

table' clearly takes precedence.  

 

6.3.5  Idioms and Trigger Words 

 

 Idiomatic readings take precedence over 

meanings implied by trigger words. 

 

 The water tank was blown up by a bazooka. 

 

Although bazookas have more to do with military 

vehicles than storage containers, 'water tank' is 

clearly the intended meaning. 
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6.3.6  Syntax and Preference 

 

 Even if a preference is met more strongly by 

one reading than another, syntactic constraints may 

force the less preferred reading. 

 

 The man saw a two-by-four. 

 

Although a piece of wood would satisfy the material 

preference of the verb 'to saw', this 'saw' has to 

be the past tense of 'see', since the third person 

present of 'to saw' would be 'saws'. 

 

6.3.7  Syntax and Discourse Memory 

 

 Syntactic issues can force a meaning different 

than the one used previously in a text. 

 

The gardener could scarcely get a shovel in the 

ground during the frozen months.  But the owner 

insisted the grounds be immaculate year round. 

 

Here, the 'grounds' clearly refers to something 

other than the mass meaning of 'ground'.  
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6.3.8  Syntax and Technical Tags 

 

 Sometimes syntax indicates a different sense 

than the one which would be more likely in a 

technical text.  For example, 'time' might be 

expected to be the physical dimension in a high 

school physics text.  But in the sentence 

 

Comets pass near the earth several times each 

decade. 

 

the countability makes it clear that 'time' means 

'occurrence'. 

 

6.3.8  Syntax and Trigger Words 

 

 Syntactic constraints override weaker 

influences by trigger words. 
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 The carpenter saw where he had put his hammer. 

 

Here, the 'see' meaning wins, even though 

'carpenter' and 'hammer' are closely related to the 

verb meaning 'to saw'. 

 

6.3.9  Preference and Discourse Memory 

 

 Preference information can override a word 

sense used previously in a text. 

 

The sergeant drafted a memo to his commander, 

saying, "Today, we drafted ten more men." 

 

Both occurrences of 'draft' are determined by 

preferences, but the second gets a different reading 

than the first one, which has become the sense 

remembered in the discourse. 

 

6.3.10  Preference and Technical Tags 

 

 Preferences can take precedence over technical 

senses.  In a military document, one would expect 
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the verb 'draft' to be used in its military meaning 

of 'recruit', but in 

 

 The sergeant drafted a memo. 

 

the correct sense means something like 'outline' or 

'sketch'.  

 

6.3.11  Preference and Trigger Words 

 

 Preferences usually have a more binding 

influence than trigger words. 

 

 The astronomer married a star. 

 

Although they spend much of their time studying 

celestial objects, even astronomers normally prefer 

marrying humans. 

 

6.3.12  Discourse Memory and Technical Tags 

 

 The interaction of these two steps is quite 

rare, since the previous occurrence of a word in a 

technical document is usually the technical sense, 
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if it has one.  However, in a military text 

containing 

 

Two water tanks were punctured.  Each tank lost 

over 20 gallons. 

 

the latter 'tank' would have the same meaning as the 

non-technical sense in the first sentence. 

 

6.3.13  Discourse Memory and Trigger Words 

 

 Words are often introduced in a context which 

makes their intended sense clear, but are later used 

without clear context.  In these cases, the neural 

network will probably default to the most frequent 

sense, which may not be the one originally 

introduced. 

 

Wise fisherman usually fish on the south bank, 

because the underbrush gives more hiding places 

for the fish.  The less experienced often 

prefer the other bank, because it is easier to 

get to. 
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Although trigger words could conceivably indicate a 

new sense correctly, data from the survey of Chapter 

3 indicates that once a sense is introduced, the 

word appears with the same meaning in almost all 

cases.  If the original sense is not the default 

sense, the network would probably choose the wrong 

meaning in many of the later occurrences.  

 

6.3.14  Technical Tags and Trigger Words 

 

 Technical tags can overcome spurious 

triggering. In a sports column, 

 

The rain had little effect on the pitcher. 

 

'pitcher' is clearly a baseball player, even though 

pitchers often contain water and rain is made of 

water. 

 

6.4 Lexical Information Required by the Algorithm 

 

 One requirement in a practical Machine 

Translation system is the ability for end users to 

enter new words.  According to Mark Liberman, 
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although 12,000 words cover about 95% of the words 

in English text, it is nearly impossible to cover 

the other 5% with any dictionary of reasonable size.  

This estimate was based on 15 million words of 

English text from the AP wire service, in which he 

found a total of about 100,000 words (other than 

capitalized words, which were assumed to be names).  

He also reported that the data revealed no 

asymptotic behavior; above the 15 million words, 

each additional million words of text added about 

the same number of new words (Liberman 1989).  One 

might conclude from his report that it is nearly 

impossible to provide a dictionary that will contain 

all of the words that an end user may ever need.  

Particular end users also tend to have their own 

jargon and often coin new words, so it is essential 

for the end user to have the ability to add new 

words to the translation dictionary. 

 Naturally, the algorithm for resolving lexical 

ambiguity depends on having correct information in 

the dictionary.  Users can usually enter idiom and 

syntactic information if sufficient examples and 

helps are given, and once technical areas have been 

defined, it is easy to add technical tags. 
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 The preference information, however, may be 

somewhat more difficult.  Some have approached this 

problem by creating knowledge bases in which each 

word sense has its own knowledge frame (such as in 

Collative Semantics), and the frames are organized 

in a semantic hyponymy hierarchy (sometimes called 

an ISA hierarchy).  Preferences can either be 

matched by requiring a sense frame to have certain 

features, or by requiring the sense frame to be 

subordinate to the sense frame of some preference 

category in the hierarchy.  Because of inheritance 

mechanisms in the knowledge base, these may not 

realize the same results.  Typically, a sense frame 

has certain features of its own, and inherits others 

from parents in the ISA hierarchy; if any conflicts 

arise, the features of the sense frame take 

precedence.  For example, the sense frame of 

'mammal' might indicate something about the ability 

to walk, but although a 'whale' ISA 'mammal', 

'whale' would presumably have some feature 

indicating it does not have the ability to walk, and 

this would take precedence over conflicting 

information inherited from 'mammal'.  The sets of 

features and values available to be included in 
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different knowledge bases vary widely, and it is 

extremely difficult to get uniformity among 

different data entry operators creating a knowledge 

base. Requiring end users to have the expertise to 

decide exactly what features and values are required 

on a new entry may well be too much to ask, since 

there would have to be such a large set to choose 

from. 

 A simpler approach may be sufficient for 

lexical ambiguity resolution, however.  Most of the 

information that would appear in such a knowledge 

base would never actually be used by the algorithm. 

Although it is beyond the scope of this work to 

determine exactly, it seems very unlikely that the 

classes of preferences required by actual 

predicators and modifiers of a language would even 

nearly approach the number of words in a language, 

let alone the number of word senses.  If one could 

set up an ISA hierarchy of just the preference 

categories that are actually required in the 

language, this should be considerably simpler than 

an entire knowledge base.   

It would be unlikely that new words would require 

too much modification to this hierarchy, because 
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most new words would be nouns rather than 

predicators.  Once the hierarchy was determined, 

sufficient training should enable end users to be 

able to determine categories of new words to be 

added to the dictionary. 

 The creation of training data for the neural 

network is also something that end users could do. 

All that is required is a sufficient quantity of 

parallel text, and the algorithms for creating the 

network are completely automatic.  Incremental 

training on new data is also possible. 

 

6.5 Inevitable Errors 

 

 Human translators often balk at the idea that a 

computer can ever even approach the task of 

translation.  Translation is an art, and language is 

the ultimate mirror of human intelligence.  Mapping 

between the thought structures of different cultures 

is often difficult even for human translators.  How 

can a machine ever hope to even attempt such a task? 
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 Claude Piron, a translator who had experience 

at the United Nations, spoke at the New Directions 

in Machine Translation Conference held before COLING 

'88. He gave the following example: 

 

He could not agree with the amendments to the 

draft resolution proposed by the delegation of 

India. 

       (Piron 1988) 

 

In this case, another translator had assumed that it 

was the resolution that had been submitted by the 

delegation of India.  Mr. Piron checked, however, 

and determined that it was only the amendments that 

were proposed by the delegation of India.  This 

information was not in the document, and surely 

could not be expected to be in a world knowledge 

base.  Although the document could have been written 

more plainly, the translator had no control over the 

quality of the documents he was asked to translate.  

Some translations were required at night, and the 

translators were not allowed to contact the authors. 

Mr. Piron also reported a case in which he wrote a 

letter to ask an author his original intent, but was 
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informed that the author was no longer living.  In 

such cases, the translator had to guess. 

 Mr. Piron also stated that good translators can 

translate about 150 words per minute, and often read 

directly into a dictaphone in the target language 

until they meet a big problem, which may take hours 

or even days to research.  It is unreasonable to 

think that machines, even programmed with vast 

amounts of world knowledge, will be able to overcome 

these kinds of problems.  The correct translation 

may well depend on details of events, not 

necessarily given in the text, that have occurred 

more recently than the building of the knowledge 

base, which is necessarily limited to the time frame 

and perspectives of those who built it. 

 The conclusion has to be that no machine will 

ever translate perfectly, any more than a human can. 

There will inevitably be mistakes.  The only 

question is what kind of mistakes, and how many. 

 There will be cases in which the algorithm of 

this chapter gives the wrong answer.  The goal of 

the algorithm, however, is to give the correct 

answer in the highest possible percentage of cases.  

It is possible that a system using a world knowledge 
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base could be more accurate in resolving lexical 

ambiguity. But how much more accurate?  The data of 

chapter 3 indicate that only about 3% of the 

ambiguities in real text require logical reasoning.  

Surely even a system based on a world knowledge base 

will make mistakes when faced with the kinds of 

problems described above. Considering the major 

investment in time and resources required to produce 

a world knowledge base, and keep it current, such a 

system may never be economically feasible, if it is 

even possible.  Moreover, the assumption that a 

system based on a world knowledge base would be more 

accurate is merely a conjecture until it can be 

proven to be so. 

 In the meantime, the algorithm given here is a 

practical method that can be utilized by anyone 

attempting to build a machine translation system.  

The data in chapter 3 indicates that a system that 

ignores any of the major categories of ambiguities 

discussed will miss from 3% to 9% of the cases that 

will be encountered in real text.  The algorithm is 

a practical approach to recognizing categories of 

potential lexical ambiguities and integrating 

methods for their resolution. 
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6.5 Summary 

 

 One of the most difficult problems encountered 

in machine translation is the resolution of lexical 

ambiguities.  Many schemes have been tried to meet 

this problem, but most have lacked perspective about 

the kinds of ambiguities that actually exist in real 

text; this may have led to the claim that the 

machine must understand the text to be even 

moderately successful.  The data of chapter 3 

partitioned naturally occurring ambiguities into 

classes.  This showed that many of the ideas that 

had been tried before (a sample of which were 

discussed in chapter 2) were on the right track for 

certain classes of ambiguities.  It also showed that 

none of the methods for resolving ambiguities was 

sufficient by itself. 

 The insight of this thesis has been to identify 

the naturally occurring classes of lexical ambiguity 

(of content words), and to select from known methods 

of resolution for those classes, and then to combine 

the methods into a single resolution algorithm that 

incorporates the insights of many previous workers. 
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 Because one of the more difficult interactions 

of methods was found to be between using trigger 

words and simply using the most frequent 

translation, a new method using semantic 

cooccurrence networks was introduced in chapter 4.  

Cooccurrence data gathered from parallel texts was 

shown to be useful for detecting the interaction 

between trigger words and frequency.  Semantic 

cooccurrence networks were successfully trained to 

mirror the cooccurrence data. 

 The result is an algorithm that can be utilized 

in a practical machine translation system. 

 Future research should include more rigorous 

testing of the algorithm, with various language 

pairs and more lengthy parallel texts.  The types of 

errors remaining could then be classified, and the 

algorithm improved.  The parameters of the neural 

networks should also be tuned, perhaps by varying 

the number of hidden units, or the strengths of 

contextual input units based on distance from the 

ambiguous word. 
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Appendix A 

TEXTS WITH CLASSIFIED AMBIGUITIES 

 

 The texts analyzed and described in Chapter 3 

are presented here.  Each word with an intra-

category ambiguity is annotated with its grammatical 

category, the number of intra-category senses that 

were listed in the English-Japanese translation 

dictionary, and the methods of disambiguation that 

might be successfully used. 

 The notation for each word is as follows: 

 

  /cnxyz 

 

where 

 C is a grammatical category 

  V verb 

  N noun 

  A adjective 

 n is the number of senses within that category 

 x, y, and z are methods that could be 

successfully used alone 

  A spreading activation 

  C cover term 
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  D discourse memory 

  F frequency 

  I idiom 

  L logical reasoning required 

  S selectional restrictions 

  T technical term 

  X syntax 

 

Note that an ambiguity that can be resolved by a 

combination of methods is marked (x+y). 

 

A.1 Newspaper Text 

 

     A huge icebreaking barge/N4F began its journey 

to rescue three trapped whales as scientists/N2FC 

worried/V3X that plunging temperatures/N2FC and 

polar/A2I bears would threaten the mammals they have 

named/V2X Bonnet, Crossbeak and Bone. 

     At dawn/N2X, a National/N2I Guard/N3I 

helicopter rigged/V2S to tow the 185-ton 

"hover-barge" was to resume/V2FS the 230-mile 

trip/N2AFS along the desolate/A2FS Arctic coast from 

Prudhoe Bay.  It moved/V3X about five miles 
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Wednesday through sand bars/N2I, mud and shallow 

water/N2F. 

     The 24- to 30-foot/N3X-long/A2S California gray 

whales, whose species/N2AS is endangered, became 

trapped in the ice/N2AS two weeks/N2C ago while 

migrating/V2S south. 

     Eskimo whalers/N2F using chain/N2I saws in 

sub-zero temperatures/N2F have been cutting 

holes/N2F in the thick/A4AFS Arctic Ocean/N2C 

ice/N2ADF to help/V3CF the mammals breathe.  They 

got a boost/N3I Wednesday when two brothers-in-law 

from Minnesota brought six $400 de-icers to the 

$500,000 rescue effort/N2CF. 

     Greg Ferrian and Rick Skluzacek, of Lakeland, 

flew to Alaska at their own expense to 

demonstrate/V2AS the devices, invented by 

Skluzacek's father/N3F, when rescue coordinators/N3C 

politely refused their offer/N2F to help/N3C. 

     Early today/N2X, under the skeptical 

supervision of the coordinators/N3CD, they quickly 

cleared/V2X ice/N2ADF and slush/N3AF from the two 

breathing holes/N2I, accomplishing in hours/N2X what 

had been taking the rescue team, using chain/N2I 
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saws, pick-axes and steel bars/N3AS, a day/N2X to 

do. 

     The cylindrical de-icer, about 9 inches around 

and 14 inches long/A2DS, floats in the water/A2X 

suspended beneath a styrofoam slab.  A small/A2FS, 

double-blade propeller pulls warmer water/N2X up 

from below and emits it with 34 pounds/N2X of 

thrust/N2S. 

     Within 24 hours/N2X, the breathing holes/N2I 

should be about 30 feet by 70 feet -- three to four 

times/N2X the original/N2(C+S) size/N2C, Skluzacek 

said. 

     The devices are used in marinas to keep 

boats/N2C from becoming frozen/V4FS in the winter, 

Ferrian said. 

     The tired/A3F whales can survive for several 

more weeks/N2X despite being battered/V2L and 

bleeding from grating against jagged ice/N2DF, said 

John Lien, professor/N2C of animal/N3(C+F) behaviour 

at Memorial University in Canada. 

     "They can bleed a barrel/N2C and still be 

fine/A2S," said Lien, who has helped/V3C free whales 

from ice/N2ADF for 20 years/N3F.  "We're talking/V2X 
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about a big animal/N3(C+F)D here, between five to 20 

tons/N2C." 

     The whales also may have to contend with 

polar/A2I bears.  Reporters flying/V3S by helicopter 

Wednesday spotted/V3FS five prowling the ice/N2DF a 

few miles from the whales. 

     "There are polar/A2I bears that are certainly 

going to be attracted to this," said Ron Morris of 

the National/A2X Marine Fisheries Service/N3I.  "If 

they're going to take/V4L the whales, we're not 

going to stop them." 

   (Daily Herald, 20 Oct 1988, page 1) 

 

A.2 Extracts from an Article on Artificial 

Intelligence 

 

Just constructing a knowledge/N3I base/N3I 

is a major intellectual research 

problem/N2AF ....  We still know far too 

little/A2X about the contents/N2F and 

structure/N2S of common-sense/N3I 

knowledge/N2AF.  A "minimal" common-sense 

system/N3F must "know" something about 

cause-effect, time/N3C, purpose/N3X, 
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locality/N3CF, process/N3(C+F), and 

types/N2X of knowledge/N2FD ....  We 

need/V2C a serious/A4(A+S) epistemological 

research effort/N2C in this area/N4A.  

 

     Minsky's naivete/N3F and faith/N3CF are 

astonishing.  Philosophers/N2F from Plato to 

Husserl, who uncovered all these problems/N2DF and 

more, have carried on serious/A4CD epistemological 

research in this area/N3AD for two thousand 

years/N3X without notable/A2S success.  Moreover, 

the list Minsky includes in this passage/N3AF deals 

only with natural/A2X objects/N3F, and their 

positions/N3FS and interactions.  As Husserl 

saw/V2X, intelligent behavior also presupposes a 

background/N3A of cultural practices/N3A and 

institutions/N3A.  Observations in the frame/N3T 

paper/N4T such as: "Trading/V2F normally occurs in a 

social context of law/N3C, trust/N3X, and 

convention/N3F.  Unless we also represent/V3T these 

other facts/N2X, most trade/N3AF transactions/N3AF 

will be almost meaningless" (p. 34/102) show/V5X 

that Minsky has understood this too.  But Minsky 

seems oblivious/A3L to the hand-waving optimism of 
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his proposal/N2C that programmers/N2T rush in where 

philosophers/N2DF such as Heidegger fear/V2F to 

tread, and simply make/V4X explicit/A2S the 

totality/N3F of human practices/N3D which pervade 

our lives/N3C as water encompasses the life/N3D of a 

fish. 

     ... 

     No doubt many of our social activities are 

stereotyped, and there is nothing in principle/N3I 

misguided in trying/V3X to work out primitives/N2T 

and rules/N3T for a restaurant game/N3F, the way/N3X 

the rules/N3S of Monopoly/N2X are meant to capture a 

simplified version/N2F of the typical/4AF moves/N3AF 

in the real estate/N3I business/N3F.  But Schank 

claims that he can use this approach/N2C to 

understand/V3X stories/N3F about actual 

restaurant-going -- that in effect/N3I he can 

treat/V2C the sub-world of restaurant going/V3X as 

if it were an isolated micro-world.  To do this, 

however, he must artificially limit the 

possibilities/N2X: for, as one might suspect, no 

matter/N3I how stereotyped, going/V3X to the 

restaurant is not a self-contained game/N3DF but a 

highly variable set/N2X of behaviors which open out 
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into the rest/N3I of human activity. What "normally" 

happens when one goes/V3X to a restaurant can be 

pre-selected and formalized by the programmer/N2T as 

default/N3T assignments/N3FT, but the background/N3D 

has been left out so that a program using such a 

script/N3T cannot be said to understand/V3X 

going/V3X to a restaurant at all.  This can easily 

be seen by imagining/V2X a situation/N3F that 

deviates from the norm/N2C.  What if when one 

tries/V3X to order/V2X he finds/V4X that the 

item/N2S in question/N3I is not available/A4C, or 

before paying/V2X he finds/V4X that the bill/N3AF is 

added/V3X up wrongly?  Of course/N3I, Schank would 

answer/V2X that he could build/V3X these normal 

ways/N3F restaurant-going breaks/V3I down into his 

script/N3DT.  But there are always abnormal 

ways/N3DF everyday activities can break/V3DI down: 

the juke box/N2I might be too noisy, there might be 

too many flies on the counter/N2F, or as in the file 

Annie Hall, in a New York delicatessen/N3C one's 

girl/N3I friend/N2I might order/V2X a pastrami 

sandwich on white/A3(F+S) bread with mayonnaise.  

When we understand/V3X going to a restaurant we 

understand/V3X how to cope with even these abnormal 
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possibilities/N2X because going/V3X to a restaurant 

is part/N3F of our everyday activities of going/V3X 

into buildings/N2X, getting things/N2F we want/V6F, 

interacting with people/N3F, etc. 

     To deal with this sort of objection Schank has 

added/V3X some general rules/N3DT for coping with 

unexpected/A2X disruptions/N2X.  The general 

idea/N3F is that in a story/N3DF "it is usual/A2X 

for non-standard/N3FS occurrences/N2X to be 

explicitly mentioned" (Schank and Abelson, 1977; p. 

51);  so the program can spot/V3F the abnormal 

events/N3C and understand/V3X the subsequent 

events/NCD as ways/N3X of coping with them.  But 

here we can see/V3F that dealing with stories/N3DF 

allows/V3X Schank to bypass the basic/A3C 

problem/N2DF, since it is the author's 

understanding/N3F of the situation/N3DF which 

enables him to decide/V3C which events/N3CD are 

disruptive enough to mention. 

     This ad hoc way/N3X of dealing with the 

abnormal can always be revealed/V2S by asking/V3I 

further/A2S questions/N3I, for the program has not 

understood a restaurant story/N3DF the way/N3DF 

people/N3DF in our culture do, until it can answer 
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such simple/A3L questions/N2DFS as: When the 

waitress came to the table/N2FS, did she wear/V2S 

clothes?  Did she walk forward or backward?  Did the 

customer eat his food with his mouth/N2X or his 

ear/N2X?  If the program answers, "I don't know," we 

feel/V2X that all of its right/A6(C+S) answers were 

tricks/N3C or lucky guesses/N2A and that it has not 

understood anything of our everyday restaurant 

behavior.  The point/N3F here, and throughout, is 

not that there are subtle things/N3S human/N1I 

beings can do and recognize which are beyond the 

low-level understanding/N3F of present/A4(F+S) 

programs, but that in any area/N3D there are 

simple/A3AD taken-for-granted responses/N3F 

central/A2X to human understanding/N3DF, lacking 

which a computer program cannot be said to have any 

understanding/N3DF at all.  Schank's claim/N3X, that 

"the paths/N2F of a script/N3DT are the 

possibilities/N2X that are extant in a 

situation/N3DF" (1975b; p.132) is insidiously 

misleading.  Either it means/V2X that the 

script/N3DT accounts for the possibilities/N2X in 

the restaurant game/N3D defined by Schank, in which 

case/N3C it is true/A3(F+S) but uninteresting; or he 
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is claiming that he can account for the 

possibilities/N2X in an everyday restaurant 

situation/N3DF which is impressive but, by Schank's 

own admission/N3L, false. 

 Real short/A4F stories/N3DF pose a further 

problem/N2DF for Schank's approach/N2CD, in a 

script/N3DT what the primitive actions/N3F and 

facts/N2T are is determined/V2X beforehand, but in a 

short/A4DF story/N3DF what counts/V2X as the 

relevant facts/N2DT depends on the story/N3DF 

itself.  For example, a story/N3DF that 

describes/V2F a bus trip/N2AF contains in its 

script/N3DT that the passenger thanks the driver/N3F 

(a Schank example). But the fact/N2DT that the 

passenger thanked the driver/N3DF would not be 

important/A3S in a story/N3DF in which the passenger 

simply took the bus as a part/N3F of a longer/A2S 

journey, while it might be crucially important/A3D 

if the story/N3DF concerned a misanthrope who had 

never thanked anyone before, or a very law-abiding 

young man/N3F who had courageously broken the 

prohibition/N3C against speaking/V2X to drivers/N3DF 

in order to speak/V2X to the attractive/A2C woman 

driving/V4S the bus.  Overlooking this point/N3DF, 
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Schank claimed at a recent meeting/N3C that his 

program, which can extract death/N3C statistics/N3X 

from newspaper accident reports/N2AF, had answered 

my challenge/N2L that a computer would count/V2X as 

intelligent only if it could summarize a short/A4DF 

story/N3DF.  But Schank's newspaper program cannot 

provide/V2F a clue concerning judgements/N3L of what 

to include in a story/N3DF summary because it 

works/V4L only where relevance/N2F and significance 

have been predetermined, and thereby avoids dealing 

with the world/N2F built up in a story/N3DF in 

terms/N3I of which judgments/N3DFS of relevance/N2DF 

and importance are made. 

 Nothing could ever call/V4I into question/N2I 

Schank's basic assumption that all human 

practice/N3X and know-how is represented/V3DT in the 

mind/N3A as a system/N2C of beliefs/N3C constructed 

from context-free primitive actions/N3DF and 

facts/N2DT, but there are signs/N3A of trouble/N3C.  

Schank does admit that an individual's "belief/N3CD 

system/N3DF" cannot be fully elicited from him; 

although he never doubts that it exists and that it 

could in principle/N3I be represented/V3DT in his 

formalism. He is therefore led to the desperate/A2F 
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idea/N3DF of a program which could learn/V2S about 

everything from restaurants to life/N3DF themes the 

way/N3DF people/N3DF do.  In one of his papers/N4DT 

he concludes/V3X: 

 

We hope/V3X to be able to build/V3X a program 

that can learn/V2DS, as a child/N2F does, how 

to do what we have described/V2DF in the 

paper/N4DT instead of being spoon-fed the 

tremendous information necessary. 

 

In any case/N3I, Schank's appeal/N3FS to learning is 

at best another evasion/N2X.  Developmental/A2I 

psychology/N2I has shown that children's learning 

does not consist merely in acquiring more and more 

information about specific/A2X routine/N3CF 

situations/N3CD by adding new primitives/N2DT and 

combining old/A3S ones as Schank's view/N3A would 

lead one to expect/V2X.  Rather, learning of 

specific/A2X details/N2C takes place/N3I on a 

background/N3AD of shared practices/N3D which seem 

to be picked/V3I up in everyday interactions not as 

facts/N2DT and beliefs/N3DF but as bodily skills for 

coping with the world/N2D.  Any learning presupposes 
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this background/N3D of implicit/A3F know-how which 

gives/V4S significance to details/N2CD.  Since 

Schank admits that he cannot see/V3X how this 

background/N3D can be made explicit/A2DS so as to be 

given/V4S to a computer, and since the 

background/N3D is presupposed for the kind/N3X of 

script/N3DT learning Schank has in mind/N3I, it 

seems that his project of using preanalyzed 

primitives/N2DT to capture common sense/N3I 

understanding/N3AD is doomed. 

     ... 

... AI researchers have consistently run/V4I up 

against the problem/N2DF of representing/V3DT 

everyday context.  Work/N3X during the first five 

years/N3X (1967-1972) demonstrated the futility/N2F 

of trying/V3X to evade the importance of everyday 

context by creating/V2F artificial/A2F gamelike/N3DF 

contexts preanalyzed in terms/N3I of a list of 

fixed-relevance features/N3T.  More recent work/N3X 

has thus been forced to deal directly with the 

background/N3D of common-sense know-how which guides 

our changing sense/N3S of what counts/V2X as the 

relevant facts/N2DT.  Faced with this necessity/N3C 

researchers have implicitly tried/V3X to treat/V3X 
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the broadest context or background/N3AD as an 

object/N3DF with its own set of preselected 

descriptive/A2F features/N3DT. This assumption, that 

the background/N3D can be treated/V3X as just 

another object/N3DF to be represented/V3DT in the 

same sort of structured description/N2T in which 

everyday objects/N3DF are represented/V3DT, is 

essential/A4C to our whole philosophical/A2F 

tradition/N2C.  Following Heidegger, who is the 

first to have identified and criticized this 

assumption, I will call/V4X it the metaphysical 

assumption. 

... Just as it seems plausible that I can learn/V2S 

to swim by practicing/V2F until I develop/V3X the 

necessary patterns of responses, without 

representing/V3DT my body/N3AF and muscular 

movements/N3A in some data structureN2T, so too what 

I "know" about the cultural practices/N3DF which 

enables me to recognize and act/V4F in specific/A2X 

situations/N3DF has been gradually acquired through 

training in which no one ever did or could, again on 

pain/N2C of regress/N3C, make/V4X explicit/A2DS what 

was being learned/V2X. 

     ... 
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     The idea/N3DF that feelings/N3DF, memories/N3X, 

and images/N3C must be the conscious/A3S tip/N3C of 

an unconscious/A2C framelike/N2DT data 

structure/N2DT runs/V4I up against both prima facie 

evidence/N2C and the problem/N2DF of explicating the 

ceteris paribus conditions/N3A.  Moreover, the 

formalist assumption is not supported by one shred 

of scientific/A2CF evidence/N2CD from 

neuro-physiology or psychology/N2A, or from the past 

successes of AI, whose repeated failures/N2X 

required/V4X appeal/N3DFS to the metaphysical 

assumption in the first place/N3I. 

     ... If one thinks/V2X of the importance of the 

sensory-motor skills in the development/N2C of our 

ability to recognize and cope with objects/N3CD, or 

of the role of needs/N3C and desires in structuring 

all social situations/N3A, or finally of the 

whole/A3X cultural background/N3AD of human 

self-interpretation involved in our simply knowing 

how to pick/V3I out and use chairs/N3FS, the idea 

that we can simply ignore this know-how while 

formalizing our intellectual understanding/N3DF as a 

complex system/N3DF of facts/N2DT and rules/N3DT is 

highly implausible. 
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      (Dreyfus 1981) 

A.3 A Religious Text 

 

 Sometime in the second year/N3X after our 

removal/N3C to Manchester, there was in the 

place/N3F where we lived/V2F an unusual 

excitement/N3C on the subject/N3C of religion.  It 

commenced/V2X with the Methodists, but soon became 

general among all the sects in that region of 

country/N3X.  Indeed, the whole district/N3C of 

country/N3X seemed affected/V2C by it, and 

great/A4AS multitudes/N3C united themselves to the 

different religious parties/N3C, which created/V2F 

no small/A2S stir/N3C and division/N3C amongst the 

people/N3F, some crying/V2X, "Lo, here!" and others, 

"Lo, there!"  Some were contending/V2X for the 

Methodist faith/N3A, some for the Presbyterian, and 

some for the Baptist. 

 For, notwithstanding the great/A4S love/N3C 

which the converts to these different faiths/N3DF 

expressed at the time/N3I of their conversion/N3T, 

and the great/A4DS zeal manifested by the respective 

clergy, who were active in getting/V5I up and 

promoting this extraordinary/A2L scene/N3C of 
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religious feeling/N3AF, in order/N4I to have 

everybody converted, as they were pleased to 

call/V4X it, let them join/V2ST what sect they 

pleased; yet when the converts began to file/V2X 

off, some to one party/N3CD and some to another, it 

was seen that the seemingly good feelings/N3DF of 

both the priests/N2C and the converts were more 

pretended than real; for a scene/N3CD of great/A4DS 

confusion/N3A and bad feeling/N3X ensued 

--priest/N2CD contending/V2X against priest/N2CD, 

and convert against convert; so that all their good 

feelings/N3DF one for another, if they ever had any, 

were entirely lost/A4(F+S) in a strife of words/N3X 

and a contest about opinions. 

 I was at this time/N3C in my fifteenth 

year/N3X. My father's family/N2C was proselyted to 

the Presbyterian faith/N3AD, and four of them 

joined/V2X that church, namely, my mother/N3CF, 

Lucy; my brothers Hyrum and Samuel Harrison; and my 

sister/N2C Sophronia. 

 During this time/N2CD of great/A4DFS 

excitement/N2CD my mind/N3A was called/V3I up to 

serious/A4S reflection and great/A4DS 

uneasiness/N2F; but though my feelings/N3ADF were 
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deep/A2F and often poignant, still I kept myself 

aloof from all these parties/N3CD, though I 

attended/V2S their several meetings/N3S as often as 

occasion/N2C would permit. In process/N2C of 

time/N3CD my mind/N3D became somewhat partial/A2L to 

the Methodist sect, and I felt/V2A some desire to be 

united with them; but so great/A4DS were the 

confusion/N3CD and strife among the different 

denominations/N2C, that it was impossible/A3L for a 

person/N3X young as I was, and so unacquainted/A3C 

with men and things/N2F, to come/V3I to any 

certain/A5C conclusion/N3I who was right/A6AF and 

who was wrong/A2AS. 

 My mind/N3AD at times/N3I was greatly 

excited/V2X, the cry/N3F and tumult were so 

great/A4DS and incessant.  The Presbyterians were 

most decidedly/V3X against the Baptists and 

Methodists, and used all the powers/N3FS of both 

reason/N3X and sophistry/N2C to prove/V3S their 

errors/N3L, or, at least, to make/V3X the people/N3F 

think/V2X they were in error/N3D.  On the other 

hand/N3I, the Baptists and Methodists in their 

turn/N3X were equally zealous/A2S in endeavoring to 



173 

173 

establish/V2S their own tenets and disprove all 

others.  

 In the midst of this war/N2A of words/N3X and 

tumult of opinions, I often said to myself: What is 

to be done?  Who of all these parties/N3CD are 

right/A6AD; or, are they all wrong/A2ADF together?  

If any one of them be right/A6AD, which is it, and 

how shall I know it? 

 While I was laboring/V2C under the extreme 

difficulties caused/V2X by the contests of these 

parties/N3CD of religionists, I was one day/N2X 

reading the Epistle of James, first chapter and 

fifth verse/N3X, which reads/V3CD: If any of you 

lack wisdom/N2F, let him ask/V3X of God, that 

giveth/V4X to all men/N3DF liberally, and upbraideth 

not; and it shall be given/V4X him.  

 Never did any passage/N4A of scripture come 

with more power/N3A to the heart/N3L of man/N3X than 

this did at this time/N3CD to mine.  It seemed to 

enter with great/A4DS force/N2C into every 

feeling/N3ADF of my heart/N3AD.  I reflected/V4(C+S) 

on it again and again, knowing that if any 

person/N3DF needed wisdom/N2DF from God, I did; for 

how to act/V4F I did not know, and unless I could 
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get/V5X more wisdom/N2DF than I then had, I would 

never know; for the teachers of religion of the 

different sects understood the same passages/N4AD of 

scripture so differently as to destroy all 

confidence/N3C in settling/V4S the question/N3F by 

an appeal to the Bible/N3C.  

 At length I came to the conclusion/N3C that I 

must either remain in darkness and confusion/N3C, or 

else I must do as James directs/V3F, that is, 

ask/V3X of God.  I at length came to the 

determination/V3C to "ask/V3X of God," 

concluding/V3X that if he gave wisdom/N2DF to them 

that lacked wisdom/N2DF, and would give/V4DF 

liberally, and not upbraid, I might venture/V2F. 

 So, in accordance with this, my 

determination/N3CD to ask/V3X of God, I retired/V2X 

to the woods to make/V4X the attempt.  It was on the 

morning/N2C of a beautiful, clear/A7S day/N2X, early 

in the spring/N3X of eighteen hundred and twenty.  

It was the first time/N3X in my life/N3C that I had 

made such an attempt, for amidst all my anxieties I 

had never as yet made the attempt to pray vocally. 

 After I had retired/V2X to the place/N3DF where 

I had previously designed/V3X to go/V3X, having 
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looked around me, and finding myself alone/A2X, I 

kneeled down and began to offer up the desires of my 

heart/N3ADF to God.  I had scarcely done so, when 

immediately I was seized/V2S upon by some 

power/N3ADF which entirely overcame me, and had such 

an astonishing influence/N2I over me as to bind/V2FS 

my tongue/N2S so that I could not speak/V2X.  

Thick/A4FS darkness gathered around me, and it 

seemed to me for a time/N3CD as if I were doomed to 

sudden destruction. 

 But, exerting all my powers/N3ADF to call/V3I 

upon God to deliver me out of the power/N3DF of this 

enemy/N2C which had seized/V2X upon me, and at the 

very moment/N2C when I was ready/A4L to sink/V2F 

into despair and abandon myself to destruction -- 

not to an imaginary ruin/N3L, but to the power/N3DF 

of some actual being from the unseen world/N2F, who 

had such marvelous power/N3DF as I had never before 

felt/V2D in any being -- just at this moment/N2DF of 

great/A4DS alarm/N2X, I saw/V2L a pillar/N2X of 

light/N3X exactly over my head/N3X, above the 

brightness/N3A of the sun, which descended/V2L 

gradually until it fell upon me. 
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 It no sooner appeared/V2X than I found myself 

delivered from the enemy/N2CD which held me 

bound/A4F. When the light/N3D rested upon me I 

saw/V2X two Personages/N3AF, whose brightness/N3A 

and glory/N3AT defy all description/N2F, standing 

above me in the air/N3F.  One of them spake unto me, 

calling/V4X me by name/N3I and said, pointing/V2X to 

the other -- This is My Beloved/A3L Son.  Hear Him! 

 My object/N3X in going/V3X to inquire of the 

Lord/N3X was to know which of all the sects was 

right/A6DF, that I might know which to join/V3DT.  

No sooner, therefore, did I get/V5X possession/N2X 

of myself, so as to be able to speak/V2X, than I 

asked/V3X the Personages/N3D who stood above me in 

the light/N3D, which of all the sects was 

right/A6DF. 

 I was answered that I must join/V2DT none of 

them, for they were all wrong/A2ADF; and the 

Personage/N3D who addressed me said that all their 

creeds/N2C were an abomination/N2X in his sight/N3F; 

that those professors/N2F were all corrupt; that: 

"They draw/V2I near to me with their lips/N2X, but 

their hearts/N3D are far from me; they teach/V2X for 

doctrines the commandments/N2C of men/N3DF, having a 
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form/N3(C+S) of godliness, but they deny the 

power/N3DF thereof." 

      (Smith 1978, v. 5-19) 

A.4 A Text from a Computer Manual 

 

Scope and Extent/N3T 

 

 Naming/V2S something and then referring to that 

thing/N2F by its name/N3F at some other place/N3F or 

time/N3C is a fundamental/A2C part/N2F of every 

language/N2C; be it a natural/A2I language/N2I like 

English/N2X, or an artificial/A2C language/N2CD like 

COMMON LISP/N2I.  Although English/N2X and COMMON 

LISP/N2I are very different languages/N2CD, their 

basic/A3F concepts of naming/V2ADF and referring (or 

referencing) are quite similar/A2X. 

 In COMMON LISP/N2I, every entity/N2X can have a 

name/N3DF.  When one wants to refer to an 

entity/N2X, one uses its name/N3DF.  As in 

English/N2X, a name/N3DF may refer to different 

entities/N2X at different places/N3DF and 

times/N3CD.  The word/N3X President/N3X exemplifies 

the context-sensitive nature of names/N3DF in 

English/N2X.  President/N3D refers to a different 
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person/N3F in different places/N3DF (e.g., Gold/N3I 

Hill Headquarters, Washington, D.C., Paris). Within 

the same place/N3DF, President/N3D may also refer to 

different people/N3F over the course/N4C of 

time/N3CD.  For example/N2I, within a single 

business/N3F meeting/N3F (held in 1984), 

President/N3D may refer to Stan Curtis, Ronald 

Reagan, and Francois Mitterand over the course/N4CD 

of the meeting/N3DF. 

 In COMMON LISP/N2I, the region in which a 

name/N3DF refers to a particular/A3S entity/N2X is 

called the scope of the name/N3DF.  The 

interval/N2AF of time/N3CD during which a name/N3DF 

refers to a particular/A3DS entity is called/V4X the 

extent/N3DT of the name/N3DF.  Scope concerns the 

spatial, textual, or lexical representation/N3T of a 

LISP/N2T form/N3T (e.g., its appearance/N2AF on a 

piece/N3I of paper/N4X).  Extent/N3DT concerns the 

time/N3CD during which the form/N3DT is being 

evaluated. 

 Before a name/N3DF can refer to an entity/N2X, 

however, a correspondence/N3T between the name/N3DF 

and that entity/N2X must be established/N2L.  Only 

functions/N3T and certain/A5L special/A2F forms/N3DT 
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(e.g., let) are able to establish/V2D names/N3DF.  

The scope and extent/N3DT of a name/N3DF are 

relative/A3X to the form/N3DT which established/V2D 

it.  The scope of the name/N3DF can be limited to or 

independent/A2C of the textual region which the 

establishing/V2D form/N3DT encloses.  Likewise, the 

interval/N2ADF of the time/N3CD during which the 

establishing/V2D form/N3DT is being evaluated. 

 These various kinds/N2DF of scope and 

extent/N3DT are defined in COMMON LISP/N2I as 

follows/V2I: 

 

Lexical Scope 

A name/N3DF which has lexical scope can 

only be used within the lexical (i.e., 

textual) region of the establishing/V2D 

form/N3DT. 

 

Indefinite/A2F Scope 

  A name/N3DF which has indefinite/A2DF 

scope can be used anywhere, regardless of 

the lexical region of the establishing/V2D 

form/N3DT. 
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Dynamic Extent/N2DT 

  A name/N3DF which has dynamic extent/N3DT 

can only be used during the interval/N2ADF 

of time/N3CD between the start/N3C and 

finish/N2C of the evaluation of the 

establishing/V2D form/N3DT. 

 

Indefinite/A2DF Extent/N2DT 

  A name/N3DF which has indefinite/A2DF 

extent/N3DT can be used at any time/N3CD 

after being established/V2D, regardless of 

whether the establishing/V2D form/N3DT is 

still in the process/N3C of being 

evaluated. 

 

    (GCLISP 1983, pp. 20-21) 
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Appendix B 

A PROGRAM FOR WEISS RULES AND TRIGGER COUNTING 

 

 The C program presented here implements two 

related algorithms.  The first is the algorithm of 

Stephen Weiss as given in section 2.2.7.  The second 

resolves lexical ambiguity by counting the number of 

trigger words for various senses of an ambiguous 

word in a given window of context; it picks the one 

with the highest count, or, if there is a tie, picks 

the highest frequency sense among those that tied. 

 Both algorithms are based on having parallel 

source and target texts available.  It is assumed 

that inflected words have been replaced by base 

forms, and function words have been removed, so that 

only base forms of context words remain.  Each 

source base form has an assigned index, and each 

target base form has an assigned index; each set of 

indexes starts at 1. There are source and target 

index files, which map indexes to the assigned base 

form strings.  There are also line files, that 

mirror the source and target texts, but are composed 

of numerical indexes instead of strings; lines end 

with a NULL.  There are source 
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and target line index files; given a line number, 

they map to the file position in the line file where 

the given line starts.  There is also a usage table. 

Every occurrence of every source word in the text is 

given, sorted by the source word.  A table index 

file points to the position in the table file where 

the lines are recorded in which the given source 

word occurs; if it occurs n times in the line, the 

line number is given n times in the table file.  

These files allow quicker access to the data in the 

correlated source and target texts. 

 In this program, each ambiguous source word 

(one that can map to more than one target word) in 

the text is examined.  For each instance, the 

corresponding target segment is searched for 

possible translations, according to the source-

target dictionary.  Only single words are handled; 

there is no idiom processing.  When the proper 

target word is found, the instance is recorded in 

the Instants array, with the file position of the 

source segment, the sentence position of the 

instance, and the index of the correct target 

translation.  The ambiguous word is required to 

occur the same number of times as its target 
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translation in the corresponding segment; otherwise, 

the segment is ignored for that word.  If several 

target words qualify, the one with the highest 

frequency in the full target text is chosen. 

 Once an array of instances and their correct 

translations has been determined for an ambiguous 

word, the input file of contextual rules is read in. 

The Weistabl array is indexed by the index of source 

words, and the value in each position of the array 

is the correct translation of the ambiguous word in 

the presence of the source word corresponding to the 

index.  If the value is 0, the source word has no 

contextual effect.  If the value is -1, it is on the 

exclusion list during training, meaning it has no 

contextual effect, and no further rule can be made 

with it.  The Weistabl array is cleared and then 

filled in from the input file.  The input file may 

also specify the default translation for the 

ambiguous word (stored in variable Devault). 

 The tryit routine does the training and 

testing. If the Weiss method was chosen, and there 

is no input file, Weiss training is done (see the 

<dbg> parameter and the discussion in section 

2.2.7).  In any case, each instance of the ambiguous 
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word is analyzed using either the Weiss method or 

the trigger counting method, as specified by the 

user. 

 The total number of trials and total number of 

errors for each ambiguous word are recorded and 

written to a file.  The cumulative totals are also 

written at the end.  At higher debug levels, the 

trigger words that caused certain senses to be 

chosen are also written in the statistics output 

file. Another file is written which records the 

rules 

which were used. 

 

The parallel texts are represented in an inverted 

file format, using the following input files: 

 

<stt> This file amounts to a source-target 

dictionary.  Each source and target word 

are assigned an index.  Each source word 

has 8 (POLYSEEM) possible target 

translations. For each one, their is an 8-

byte structure, the first 4 bytes of which 

are the index of target word. 
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<slin> This is a representation of the source 

document in which each source word has 

been replaced by its 4-byte index.  Each 

segment ends with a NULL. 

<slx> This is an index into the <slin> file.  It 

is simply an array of pointers into the 

<slin> file.  The nth 4-byte word in the 

file points to the nth segment of the 

source text in <slin>. 

<tlin> This is a representation of the target 

text similar to <slin>. 

<tlx> This is an index into <tlin>, similar to 

<slx>. 

<stbl> This lists, for each source word, the 

lines in which each of its instances 

occurs; each line is a 4-byte number.  If 

a source word occurs more than once in the 

same line, the line number occurs the same 

number of times in this file.  The list 

for each source word is NULL terminated. 

<sdex> This is an index into <stbl>.  It is an 

array, the nth position of which points to 

the postion in <stbl> where the list for 

the source word with index n begins. 
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<swd> This is a list of source words, each one 

terminated by a 0 byte. 

<swx> This is an index into <swd>.  It is an 

array of museum structures, the nth 

position of which points to the position 

in <swd> where the word starts (the freq 

field is not used). 

<twd> This is a list of target words, like 

<swd>. 

<twx> This is an index into <twd>, like <swx>. 

 

Output files are: 

 

<orul> This is a set of contextual rules, in the 

form 

   A <TAB> B <TAB> C 

  where A is the ambiguous word, B is the 

context word, and C is the correct target 

translation of A.  If B is 

  <CNTRL-A><CNTRL-A>, C is the default 

translation of A. 

<ostat> This lists each ambiguous word in the 

source text, how many times it was 

correctly resolved divided by its total 
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number of instances, and the percentage 

correct.  A cumulative total is given at 

the end of the file. 

 

Other parameters are: 

 

<wndw> This is the context window.  If it is 5, 

five words on either side of the ambiguous 

word are processed.  If it is 0, all words 

in the segment are used as context. 

<in>  This optional file is a file in the same 

format as <orul>, which is used as the 

contextual rules for processing. 

<dbg> This is a debug level, with three digits 

of significance XYZ.  If Y=1, the Weiss 

algorithm is used; if there is no input 

file, the text is used to train; 

otherwise, the text is tested.  If there 

is an input file, the first X0% of the 

segments of source and target data are 

ignored, and the rest is used to test on.  

If there is no input file, the first X0% 

is used.  Z determines how many debugs are 

shown. 
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#include <stdio.h> 
#include <dos.h> 
#include <string.h> 
 
#define YUP 1 
#define NOPE 0 
 
#define POLYSEEM 8 
 
#define MAXLINLN 4000 
 /* maximum line length for context segments */ 
#define MAXNSTNC 1000 
 /* maximum number of word instances in text */ 
#define NELFUB 200 
 /* buffer length */ 
 
#if defined(OS2) 
#define INCL_BASE 
#include <OS2.H> 
#endif 
 
typedef struct wax { 
  long freq; 
  long wdoff; 
} museum; 
 /* structure for index files */ 
 
typedef struct { 
  long philpos; 
 /* file position of a source line */ 
  long answer; 
 /* index of correct target sense */ 
  int sentpos; 
 /* position in the source sentence */ 
} NINSTANC; 
 
char *Insent,*calloc(),huge *halloc(); 
 
FILE *Ofp,*Nfp,*Ifp,*Sstfp,*Slxfp,*Slinfp; 
FILE *Tlxfp,*Tlinfp,*Sdexfp,*Stblfp; 
FILE *Swxfp,*Swdfp,*Twxfp,*Twdfp; 
 
int Showit; 
 /* debug level */ 
int Window; 
 /* number of words on each side to use as 
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        context; if 0, use whole segments */ 
int Frumafil; 
 /* true if there is an input file */ 
int Efil; 
 /* true if end of input file was reached */ 
int Weisteki; 
 /* true if operation in Weiss rule mode */ 
 
long Ssttot,Slxtot,Slintot,Tlxtot,Tlintot; 
long Sdextot,Stbltot,Swxtot,Swdtot,Twxtot,Twdtot; 
 /* sizes of input files */ 
long Instop; 
 /* number of instances of the ambiguous word */ 
long Tride; 
 /* number of trials */ 
long Blode; 
 /* number of errors */ 
long *Zazzoo; 
 /* for recording local context */ 
long Inkey,Incon,Intar; 
 /* input source, context, and target words */ 
long Devault; 
 /* default translation target word index */ 
long Lowlin,Hilin; 
 /* low and high line in input text to consider 
*/ 
long Zonk[POLYSEEM]; 
 /* records target translations with most 
        frequent first */ 
 
NINSTANC *Instants; 
 /* array recording instances of the current 
        ambiguous word in the source text */ 
 
long huge *Ssttab,huge *Slxtab,huge *Slintab; 
long huge *Tlxtab,huge *Tlintab; 
long huge *Sdextab,huge *Stbltab,huge *Weistabl; 
museum huge *Swxtab,huge *Twxtab; 
char huge *Swdtab,huge *Twdtab; 
 /* input file arrays */ 
main(argc,argv) 
int argc; 
char *argv[]; 
{ 
  short func,prcent; 
#if defined(OS2) 
  VioSetAnsi(1,0); 
#endif 
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  if (argc<9) 
  { 
   printf("\nweissrul 
<dbg><orul><ostat><stt><slx>"); 
   printf("<slin><tlx><tlin>"); 
   printf("\n         <sdex><stbl><swx><swd><twx>"); 
   printf("<twd><wndw>(<in>)"); 
   printf("\n  <dbg> =   1, no <in>     "); 
   printf("show stats using most frequent only"); 
   printf("\n  <dbg> =  11, no <in>     "); 
   printf("learn Weiss rules"); 
   printf("\n  <dbg> = Xyz, no <in>     "); 
   printf("do above to first X0%c of data 
lines",37); 
   printf("\n  <dbg> = Xyz, with <in>   "); 
   printf("do below to all but first X0%c of data"); 
   printf(" lines",37); 
   printf("\n  <dbg> =  11, with <in>   "); 
   printf("apply Weiss rules"); 
   printf("\n  <dbg> =   1, with <in>   "); 
   printf("apply rules using tally"); 
   printf("\n  <wndw> = n  use window of "); 
   printf("n words on each side"); 
   printf("\n  <wndw> = 0  "); 
   printf("use whole line as context"); 
   exit(1); 
  } 
  cls(); 
  pos(1,1); 
  Showit = 0; 
  if (sscanf(argv[1],"%d",&Showit)==0) 
  { 
    printf("\n\nNo debug level in command line: "); 
    printf("try again"); 
    exit(1); 
  } 
  prcent = Showit/100; 
   /* percentage of file to learn on */ 
  Showit %= 100; 
  Weisteki = Showit/10; 
   /* Weiss method or counting method */ 
  Showit %= 10; 
  if (Showit<0 || Showit>5) 
    Showit = 0; 
  if ((Ofp=fopen(argv[2],"w"))==NULL) 
  { 
    printf("Error opening output file %s",argv[2]); 
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    queeut(1); 
  } 
  if ((Nfp=fopen(argv[3],"w"))==NULL) 
  { 
    printf("Error opening input file %s",argv[3]); 
    queeut(1); 
  } 
  indat(argc,argv); 
 /* read in input files */ 
  makary(); 
 /* allocate and initialize arrays */ 
  Lowlin = 1L; 
  Hilin = Slxtot; 
  if (prcent!=0) 
  { 
    if (Frumafil) 
      Lowlin = ((long )prcent*Slxtot/10L)+1L; 
    else 
      Hilin = (long )prcent*Slxtot/10L; 
  } 
 /* determines which section of the text to use 
*/ 
  lesdoit(); 
  fcloseall(); 
} 
 
/*************************************************** 
This routine reads in the input files for the 
parallel texts. 
****************************************************
/ 
 
indat(filnum,filnams) 
int filnum; 
char *filnams[]; 
{ 
  FILE *ripopen(); 
  long aboutnow; 
  Sstfp = ripopen(filnams[4],&aboutnow, 
            &(long huge * )Ssttab,YUP); 
  Ssttot = aboutnow/(sizeof(long)); 
  Slxfp = ripopen(filnams[5],&aboutnow, 
            &(long huge * )Slxtab,YUP); 
  Slxtot = aboutnow/(sizeof(long)); 
  Slinfp = ripopen(filnams[6],&aboutnow, 
             &(long huge * )Slintab,NOPE); 
  Slintot = aboutnow/(sizeof(long)); 
  Tlxfp = ripopen(filnams[7],&aboutnow, 
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             &(long huge * )Tlxtab,YUP); 
  Tlxtot = aboutnow/(sizeof(long)); 
  Tlinfp = ripopen(filnams[8],&aboutnow, 
             &(long huge * )Tlintab,NOPE); 
  Tlintot = aboutnow/(sizeof(long)); 
  Sdexfp = ripopen(filnams[9],&aboutnow, 
             &(long huge * )Sdextab,YUP); 
  Sdextot = aboutnow/(sizeof(long)); 
  Stblfp = ripopen(filnams[10],&aboutnow, 
             &(long huge * )Stbltab,NOPE); 
  Stbltot = aboutnow/(sizeof(long)); 
  Swxfp = ripopen(filnams[11],&aboutnow, 
             &(long huge * )Swxtab,YUP); 
  Swxtot = aboutnow/(sizeof(museum)); 
  Swdfp = 
ripopen(filnams[12],&aboutnow,&Swdtab,YUP); 
  Swdtot = aboutnow/(sizeof(char)); 
  Twxfp = ripopen(filnams[13],&aboutnow, 
            &(long huge * )Twxtab,YUP); 
  Twxtot = aboutnow/(sizeof(museum)); 
  Twdfp = 
ripopen(filnams[14],&aboutnow,&Twdtab,YUP); 
  Twdtot = aboutnow/(sizeof(char)); 
  if (sscanf(filnams[15],"%d",&Window)==0) 
    Window = 5; 
  if (Window<0 || Window>=MAXLINLN) 
    Window = 5; 
  if (filnum>16) 
  { 
    if ((Ifp=fopen(filnams[16],"r"))==NULL) 
    { 
      printf("Error opening input file %s", 
        filnams[16]); 
      queeut(1); 
    } 
    Inkey = 0L; 
    Incon = 0L; 
    Intar = 0L; 
    Efil = NOPE; 
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    Frumafil = YUP; 
 /* set up to read input file for rules */ 
  } 
  else 
    Frumafil = NOPE; 
  if (Tlxtot!=Slxtot) 
  { 
    printf("\n\nFatal: Source and Target have the 
"); 
    printf("different number of lines"); 
    queeut(1); 
  } 
} 
 
/*************************************************** 
This routine reads one input files into memory. 
****************************************************
/ 
 
FILE *ripopen(filnam,siz,ptr,readit) 
char *filnam; 
char huge **ptr; 
long *siz; 
int readit; 
{ 
  FILE *fp; 
  long curptr=0L,ftell(); 
  if ((fp=fopen(filnam,"rb"))==NULL) 
  { 
    printf("Error opening input file %s",filnam); 
    queeut(1); 
  } 
  if (fseek(fp,0L,SEEK_END)!=0) 
  { 
    printf("Error sizing input file %s",filnam); 
    queeut(1); 
  } 
  if ((*siz=ftell(fp))==-1L) 
  { 
    printf("Error measuring input file %s",filnam); 
    queeut(1); 
  } 
  if (fseek(fp,0L,SEEK_SET)!=0) 
  { 
    printf("Error positioning input file 
%s",filnam); 
    queeut(1); 
  } 
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  if (readit) 
  { 
    if ((*ptr=(char huge *) 
      (long huge * )halloc(*siz+2L,1))==NULL) 
    { 
      printf("\nError allocating memory for file "); 
      printf(" '%s'",filnam); 
      queeut(1); 
    } 
    clearerr(fp); 
    for(;!feof(fp) && !ferror(fp);curptr+=512L) 
      fread((char * )&(*ptr)[curptr],512,1,fp); 
    if (ferror(fp)!=0) 
    { 
      printf("Error reading input file %s",filnam); 
      queeut(1); 
    } 
  } 
  return(fp); 
} 
 
/*************************************************** 
This routine allocates and initializes arrays. 
****************************************************
/ 
 
makary() 
{ 
  if ((Insent=calloc(NELFUB,sizeof(char)))==NULL) 
  { 
    printf("\nNot enough room for Input Buffer"); 
    queeut(1); 
  } 
  if ((Zazzoo= 
    (long * )calloc(MAXLINLN,sizeof(long)))==NULL) 
  { 
    printf("\nNot enough room for Zazzoo array"); 
    queeut(1); 
  } 
  if ((Weistabl= 
    (long huge * 
)halloc(Swxtot,sizeof(long)))==NULL) 
  { 
    printf("\nNot enough room for trigger array"); 
    queeut(1); 
  } 
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  if ((Instants=(NINSTANC huge * ) 
      halloc((long 
)MAXNSTNC,sizeof(NINSTANC)))==NULL) 
  { 
    printf("\nNot enough room for Weiss Link 
array"); 
    queeut(1); 
  } 
} 
 
/*************************************************** 
This routine starts reading a file at a given 
position. 
****************************************************
/ 
 
long tabloid(eon,fp) 
long eon; 
FILE *fp; 
{ 
  long chime=0L,tabridges(); 
  if (fseek(fp,eon,SEEK_SET)==0) 
    chime = tabridges(fp); 
  clearerr(fp); 
  return(chime); 
} 
 
/*************************************************** 
This routine continues reading a file at a given 
position. 
****************************************************
/ 
 
long tabridges(fp) 
FILE *fp; 
{ 
  long john; 
  fread(&john,4,1,fp); 
  if (ferror(fp) || feof(fp)) 
  { 
    clearerr(fp); 
    john = 0L; 
  } 
  return(john); 
} 
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/*************************************************** 
This is the standard error exit routine. 
****************************************************
/ 
 
queeut(oot) 
int oot; 
{ 
  fcloseall(); 
  exit(oot); 
} 
 
/*************************************************** 
This routine pauses display for user input. 
****************************************************
/ 
 
contin() 
{ 
  char dum; 
  pos(23,77); 
  printf("~"); 
  pos(23,77); 
  printf("  "); 
  dum = toupper((getch()&0xFF)); 
  if (dum=='x' || dum=='X') queeut(0); 
} 
 
/*************************************************** 
This routine clears a line on the screen. 
****************************************************
/ 
 
clreol(row,col) 
int row,col; 
{ 
  int i; 
  if (row<0 || row>25 || col<1 || col>80) 
    return; 
  pos(row,col); 
  i = 81 - col; 
  while(i--) 
    printf(" "); 
  pos(row,col); 
} 
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/*************************************************** 
This routine is the heart of the processing.  For 
each ambiguous word, instances in the text are 
located and correct target translations determined.  
Tryit is called to train or test each occurrence.  
Success rates are then written to the statistics 
file, and contextual rules are written to the rule 
file. 
****************************************************
/ 
 
lesdoit() 
{ 
  short poof,linlen,sentpos,showiz; 
  short showaint,foople,mountain,majesty; 
  long timenow,timewas,zoot1,woid1,woid2; 
  long kook1,kook2,oozzaz,tzaz,answer,mistooks; 
  long zcnt[POLYSEEM],zlincnt[POLYSEEM]; 
  cls(); 
  pos(7,33); 
  printf("Weissrul Program"); 
  Tride = 0L; 
  Blode = 0L; 
  for(woid1=1L;woid1<Swxtot;woid1++) 
  /* for each word in the dictionary */ 
  { 
    for(woid2=1L;woid2<Swxtot;woid2++) 
      Weistabl[woid2] = 0L; 
  /* clear the rule table */ 
    zoot1 = 2*POLYSEEM*(woid1-1); 
    for(poof=0;poof<POLYSEEM;poof++) 
      if ((Zonk[poof]= 
           Ssttab[zoot1+(long )(2*poof)])==0L) 
        break; 
  /* put the possible translations in Zonk 
*/ 
    foople = poof; 
  /* number of senses */ 
    if (foople<=1) 
      continue; 
    if (Showit) 
    { 
      clreol(12,48); 
      pos(12,29); 
      printf("Source word %6ld = %s", 
        woid1,&Swdtab[Swxtab[woid1].wdoff]); 
    } 
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    else 
    { 
      pos(12,38); 
      printf("%6ld",woid1); 
    } 
    for(poof=0;poof<foople;poof++) 
      zcnt[poof] = 0L; 
    for(timenow=tabloid(Sdextab[woid1-1L],Stblfp); 
        timenow!=0L;timenow=timewas) 
  /* look at each line containing the 
             ambiguous word */ 
    { 
      kook1 = 1L; 
      
for(timewas=tabridges(Stblfp);timenow==timewas;) 
      { 
        timenow = timewas; 
        timewas = tabridges(Stblfp); 
        kook1++; 
      } 
      if (timenow<Lowlin || timenow>Hilin) 
        continue; 
  /* only consider lines in the specified 
             range */ 
      for(poof=0;poof<foople;poof++) 
        zlincnt[poof] = 0L; 
      for(oozzaz=tabloid(Tlxtab[timenow-1L],Tlinfp); 
          oozzaz!=0L; 
          oozzaz=tabridges(Tlinfp)) 
      { 
        for(poof=0;poof<foople;poof++) 
          if (Zonk[poof]==oozzaz) 
            zlincnt[poof]++; 
      } 
  /* count translations in the corresponding 
             target line */ 
      for(poof=0;poof<foople;poof++) 
        if (zlincnt[poof]==kook1) 
          zcnt[poof] += kook1; 
  /* accumulated target sense frequencies */ 
    } 
    for(mountain=0;mountain<foople;mountain++) 
  /* sort Zonk by frequency */ 
    { 
      
for(majesty=mountain+1;majesty<foople;majesty++) 
      { 
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        if (zcnt[majesty]>zcnt[mountain]) 
        { 
          oozzaz = Zonk[majesty]; 
          Zonk[majesty] = Zonk[mountain]; 
          Zonk[mountain] = oozzaz; 
          kook1 = zcnt[majesty]; 
          zcnt[majesty] = zcnt[mountain]; 
          zcnt[mountain] = kook1; 
        } 
      } 
    } 
    Instop = 0L; 
    showiz = NOPE; 
    for(timenow=tabloid(Sdextab[woid1-1L],Stblfp); 
        timenow!=0L;timenow=timewas) 
  /* go back through source text and 
determine 
             instances of the ambiguous word and the 
             correct target translation of each */ 
    { 
      if (showiz) 
        break; 
      kook1 = 1L; 
      
for(timewas=tabridges(Stblfp);timenow==timewas;) 
      { 
        timenow = timewas; 
        timewas = tabridges(Stblfp); 
        kook1++; 
      } 
      if (timenow<Lowlin || timenow>Hilin) 
        continue; 
      for(poof=0;poof<foople;poof++) 
        zlincnt[poof] = 0L; 
      for(oozzaz=tabloid(Tlxtab[timenow-1L],Tlinfp); 
          oozzaz!=0L; 
          oozzaz=tabridges(Tlinfp)) 
      { 
        for(poof=0;poof<foople;poof++) 
        { 
          if (Zonk[poof]==oozzaz) 
            zlincnt[poof]++; 
        } 
      } 
      mountain = -1; 
      for(poof=0;poof<foople;poof++) 
      { 
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        if (zlincnt[poof]==kook1) 
        { 
          mountain = poof; 
          tzaz = Zonk[poof]; 
          break; 
        } 
      } 
  /* find a translation that occurred the 
same 
             number of times as the ambigous word */ 
      if (mountain==-1) 
        continue; 
  /* if there is none, skip the source line 
*/ 
      for(poof=mountain+1;poof<foople;poof++) 
      { 
        if (zlincnt[poof]==kook1) 
          zcnt[poof] -= kook1; 
      } 
  /* alter total frequencies by eliminating 
             incorrect translations */ 
      for(linlen=0,Zazzoo[0]= 
            tabloid(Slxtab[timenow-1L],Slinfp); 
          Zazzoo[linlen]!=0L && linlen<MAXLINLN; ) 
      { 
        linlen++; 
        Zazzoo[linlen] = tabridges(Slinfp); 
      } 
  /* put the whole source line in memory */ 
      for(sentpos=0;sentpos<linlen;sentpos++) 
      { 
        if (Zazzoo[sentpos]==woid1) 
        { 
          if (Instop<(long )MAXNSTNC) 
          { 
            Instants[Instop].philpos = 
                             Slxtab[timenow-1L]; 
            Instants[Instop].sentpos = sentpos; 
            Instants[Instop++].answer = tzaz; 
   /* record instances of the ambiguous 
                  word, the file position of the 
                  source line, and the correct 
                  target translation */ 
          } 
          else 
          { 
            pos(21,2); 
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            printf("Skipping instances of '%s'", 
              &Swdtab[Swxtab[woid1-1L].wdoff]); 
            showiz = YUP; 
            break; 
          } 
        } 
      } 
    } 
    Devault = 0L; 
    if (Frumafil) 
      weedit(woid1); /* read initial rules */ 
    if (!Devault) 
      Devault = Zonk[0]; 
   /* if input file has not set a 
default 
                  translation, choose the sense that 
                  is most frequent in the text */ 
    tryit(foople,(Weisteki && !Frumafil),woid1); 
   /* train and test */ 
    fprintf(Ofp,"\n%s __ %s", 
             &Swdtab[Swxtab[woid1].wdoff], 
             &Twdtab[Twxtab[Zonk[0]].wdoff]); 
    for(kook1=1L;kook1<Swxtot;kook1++) 
    /* write it out */ 
    { 
      if ((tzaz=Weistabl[kook1])>0) 
        fprintf(Ofp,"\n%s %s %s", 
                 &Swdtab[Swxtab[woid1].wdoff], 
                 &Swdtab[Swxtab[kook1].wdoff], 
                 &Twdtab[Twxtab[tzaz].wdoff]); 
    } 
    pos(14,33); 
    printf("Errors %7ld",Blode); 
    pos(15,33); 
    printf("Trials %7ld",Tride); 
    if (Tride) 
    { 
      pos(16,33); 
      printf("Correct %6f%c", 
        (float )(Tride-Blode)*100.0/(float 
)Tride,37); 
    } 
  } 
  if (Tride) 
    fprintf(Nfp,"\n\nCorrect %6f%c", 
      (float )(Tride-Blode)*100.0/(float )Tride,37); 
  pos(24,1); 
} 
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/*************************************************** 
This routine trains and tests the rules.  See 
section 2.2.7 for the Weiss training method.  The 
immediate context of each ambiguous word is 
examined.  If in Weiss mode, the trigger word 
nearest the ambiguous word determines the 
hypothesized sense.  Otherwise, all trigger words in 
the context are counted, and the sense with the 
highest score wins; if there is a tie, the sense 
with the highest frequency among those that tied is 
chosen. 
****************************************************
/ 
 
tryit(foople,learn,woid) 
long woid; 
int foople,learn; 
{ 
  int showiz,mistooks,poof,offit,drect; 
  int linlen,topsy,toivy,sentpos,woidpos; 
  long timenow,answ,answer; 
  long oozzaz,zcnt[POLYSEEM],bescnt; 
  showiz = YUP; 
  /* keep training until no new rules can be 
             added */ 
  while(showiz) 
  { 
    showiz = NOPE; 
    mistooks = 0L; 
    for(timenow=0L;timenow<Instop;timenow++) 
    { 
      if (!Weisteki) 
        for(poof=0;poof<foople;poof++) 
          zcnt[poof] = 0L; 
   /* initialize trigger count to 0 */ 
      for(linlen=0,Zazzoo[0]= 
            
tabloid(Instants[timenow].philpos,Slinfp); 
          Zazzoo[linlen]!=0L && linlen<MAXLINLN; ) 
      { 
        linlen++; 
        Zazzoo[linlen] = tabridges(Slinfp); 
      } 
  /* read source line into memory */ 
      sentpos = Instants[timenow].sentpos; 
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      toivy = (Window) 
                ? ((sentpos-Window>=0) 
                     ? (sentpos-Window) 
                     :0 
                  ) 
                : 0; 
      topsy = (Window) 
                ? ((sentpos+Window<linlen) 
                    ? (sentpos+Window) 
                    :linlen-1 
                  ) 
                : linlen - 1; 
  /* determine limits of context */ 
      answer = Instants[timenow].answer; 
  /* correct target sense */ 
      for(offit=1;offit<MAXLINLN;offit++) 
      { 
        if (sentpos-offit<toivy && 
            sentpos+offit>topsy) 
          break; 
  /* ignore words outside specified context 
*/ 
        for(drect=-1;drect<2;drect+=2) 
  /* look at context words in the order 
      ... 9 7 5 3 1 A 2 4 6 8 10 ... 
             where A is the ambiguous word, 
beginning 
             with context word 1 */ 
        { 
          woidpos = sentpos+drect*offit; 
          if (woidpos<toivy || woidpos>topsy) 
            continue; 
          if (oozzaz=Zazzoo[woidpos]) 
          { 
            if ((answ=Weistabl[oozzaz])>0L) 
     /* used in a rule */ 
            { 
              if (!Weisteki) 
              { 
                for(poof=0;poof<foople;poof++) 
                  if (Zonk[poof]==answ) 
                    zcnt[poof]++; 
    /* if not in Weiss mode, simply 
                       count trigger words */ 
              } 
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              else if (answ==answer) 
    /* right answer */ 
              { 
                drect = 0; 
    /* double break */ 
                offit = MAXLINLN; 
              } 
              else if (learn) 
         /* delete the wrong rule, and 
        add the context word to the 
                        exclusion list in training 
*/ 
              { 
                Weistabl[oozzaz] = -1L; 
                showiz = YUP; 
       /* a change means continue */ 
              } 
              else 
    /* test mode, got wrong answer 
*/ 
              { 
                drect = 2; 
    /* double break */ 
                offit = MAXLINLN; 
              } 
            } 
            else if (learn && answ==0 && 
                     answer!=Devault) 
            { 
              Weistabl[oozzaz] = answer; 
                    /* not used in a rule yet 
                       and not default, so record 
the 
                       right answer */ 
              showiz = YUP; 
              drect = 0; 
            /* double break */ 
              offit = MAXLINLN; 
            } 
          } 
        } 
      } 
      if (!Weisteki) 
      { 
        answ = Devault; 
        bescnt = 0L; 
        for(poof=0;poof<foople;poof++) 
        { 
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          if (zcnt[poof]>bescnt) 
          { 
            bescnt = zcnt[poof]; 
            answ = Zonk[poof]; 
          } 
        } 
  /* find the sense with the most triggers 
*/ 
        if (answ!=answer) 
          mistooks++; 
  /* record if an error */ 
      } 
      else 
      { 
        if (drect==3) 
          answ = Devault; 
  /* if no triggers were found, use default 
*/ 
        if (drect!=2 && answ!=answer) 
          mistooks++; 
  /* record an error in Weiss mode */ 
      } 
    } 
  } 
  Tride += Instop; 
  Blode += mistooks; 
  if (Instop) 
    fprintf(Nfp,"\n%s %ld/%ld  %c%f", 
      &Swdtab[Swxtab[woid].wdoff], 
      Instop-mistooks,Instop,37, 
      (float )(Instop-mistooks)*100.0/(float 
)Instop); 
} 
 
/*************************************************** 
This routine reads in the context rule file. 
The format is 
 A <TAB> B <TAB> C <TAB> 
where A is the ambiguous source word, 
      B is context source word, 
  and C is the target translation that is 
        correct for A when near B. 
****************************************************
/ 
 
weedit(woid) 
long woid; 
{ 
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  char *frog; 
  long gtndx(); 
  if (Inkey==woid) 
  { 
    Weistabl[Incon] = Intar; 
    if (Incon==0L) 
      Devault = Intar; 
  } 
  if (!Efil) 
  { 
    while(fgets(Insent,NELFUB-1,Ifp)!=NULL) 
    { 
      if (Insent[strlen(Insent)-1]=='\n') 
        Insent[strlen(Insent)-1] = '\0'; 
      if (strlen(Insent)<=0) 
        continue; 
      frog = strtok(Insent," "); 
      if ((Inkey=gtndx(frog,Swxtot,Swxtab,Swdtab)) 
          ==Swxtot) 
      { 
        fprintf(Nfp,"\n  Unknown key %s",frog); 
        Inkey = -1L; 
      } 
      frog = strtok(NULL," "); 
      if ((Incon=gtndx(frog,Swxtot,Swxtab,Swdtab)) 
          ==Swxtot) 
      { 
        fprintf(Nfp, 
          "\n  Unknown context word %s",frog); 
        Incon = -1L; 
      } 
      frog = strtok(NULL," "); 
      if ((Intar=gtndx(frog,Twxtot,Twxtab,Twdtab)) 
          ==Twxtot) 
      { 
        fprintf(Nfp, 
          "\n  Unknown translation %s",frog); 
        Intar = -1L; 
      } 
      if (Inkey==woid) 
      { 
        if (Incon>=0L && Intar>=0L) 
        { 
          Weistabl[Incon] = Intar; 
          if (Incon==0L) 
            Devault = Intar; 
        } 
      } 



207 

207 

      else if (Inkey>woid) 
        break; 
    } 
    if (feof(Ifp)) 
      Efil = YUP; 
    else if (ferror(Ifp)) 
    { 
      fprintf(Nfp,"\n\nRead error on input file"); 
      pos(8,11); 
      printf("Read error on input file"); 
      queeut(1); 
    } 
  } 
} 
 
/*************************************************** 
Given a string, this routine determines its index in 
a given sorted index list. 
****************************************************
/ 
 
long gtndx(symbol,ndxtot,ndxtab,wdtab) 
char *symbol,huge *wdtab; 
long ndxtot; 
museum huge *ndxtab; 
{ 
  int cond; 
  long low=0L,high=(ndxtot-1L),mid=0L; 
  while (low<=high) 
  { 
    mid = low + (high-low)/2L; 
    if ((cond= 
          
strcmp(symbol,&wdtab[ndxtab[mid].wdoff]))<0) 
      high = mid - 1L; 
    else if (cond>0) 
      low = mid + 1L; 
    else 
      return(mid); 
  } 
  return(ndxtot); 
} 
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Appendix C 

A PROGRAM FOR CREATING A SEMANTIC COOCCURRENCE 

NETWORK 

  

 This program trains a neural network based on 

cooccurrence data.  The number of input, hidden, and 

output units is specified on the command line. 

Training is based on two files, a pattern file, and 

a pattern index file. 

 The pattern file consists of a list of 

patterns. Each one is composed of two lists.  The 

first list is a list of indexes of source words.  

The second list is a list of indexes of target 

words; correct target senses are positive, and 

incorrect ones are negative. Each list ends with a 

0.  The pattern index file points to the beginning 

of a pattern given its pattern number. 

 The network is trained by setting input units 

corresponding to the indexes of the source words to 

have an activation of 1.  Errors are generated when 

the activations of output units corresponding to 

correct target senses are not equal to 1, and those 

corresponding to incorrect target senses are not 

equal 
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to 0.  The algorithm is based on the back 

propogation program in the PDP software (McClelland 

1988). 

 The network is trained once for each pattern 

during each epoch.  The patterns are permuted before 

each epoch, so that the training is in random order 

during each epoch. 
  
 
#include <stdio.h>  
#include <dos.h>  
#include <string.h>  
#include <math.h>  
  
#define YUP 1  
#define NOPE 0  
  
#if defined(OS2)  
#define INCL_BASE  
#include <OS2.H>  
#endif  
  
#define rnd() ((float)rand()*3.0518507e-5)   
  
#define WRANGE 0.8  
#define MOMENTUM 0.9  
#define IHRATE 0.5  
#define HORATE .08  
  
char *Winnam,*Wtccnam,*Woutnam; 
char *strdup(),*calloc(),huge *halloc();  
  
FILE *Owfp,*Otssfp,*Pxfp,*Patfp,*Lfp,*Iwfp,*fopen();  
  
int Showit,filinit,shobad;  
  
long Epoch,Nepochs,Pxtot,Pattot;  
long john,silver,flipper,Imps,Hided,Oups;  
  
float huge *Ihwts,huge *Howts,huge *Obias,huge 
*Odbias,huge *Ihdw,huge *Hodw;  
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float *Hacts,*Hbias,*Hdbias,*Hdelta,*Herr,*Hnetin;  
float 
Ihlrate,Holrate,Obrate,Hbrate,Momentum,Tss,Pss;  
  
long huge *Used;  
long huge *Pxtab;  
short huge *Pattab;  
  
void srand();  
int rand();  
long time();  
  
main(argc,argv)  
int argc;  
char *argv[];  
{  
#if defined(OS2)  
  VioSetAnsi(1,0);  
#endif  
  
  if (argc<14)  
  {  
    printf("\nwhinney <dbg><x><owt>"); 
    printf("<px><pat><#in><#hid><#out><#ep>"); 
    printf("<ih><ho><hb><ob>(<iwt>)");  
    exit(1);  
  }  
 /* <dbg> debug level 
        <x>    no longer used 
        <owt>  output file of connection weights and 
               biases 
        <px>   pattern index file 
        <pat>  pattern file 
        <#in>  number of input units 
        <#hid> number of hidden units 
        <#out> number of output units 
        <#ep>  modulo of epochs on which to write 
the 
               output weights file 
        <ih>   learning rate for input to hidden 
units 
        <ho>   learning rate for hidden to output 
               units 
        <hb>   learning rate for hidden biases 
        <ob>   learning rate for output biases 
        <iwt>  file name for initial connection 
               weights and biases 
     */ 
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  cls();  
  pos(1,1);  
  Showit = 0;  
  if (sscanf(argv[1],"%d",&Showit)==0)  
  {  
    printf("\n\nNo debug level in command line: "); 
    printf("try again");  
    exit(1);  
  }  
  if (Showit<0 || Showit>5)  
    Showit = 0;  
  Wtccnam = strdup(argv[2]);  
  Woutnam = strdup(argv[3]);  
  indat(argc,argv);  
 /* read in the pattern files */ 
  makary();  
 /* allocate and initialize arrays */ 
  initwits();  
 /* initialize weights of connections */ 
  loooop();  
 /* train the network */ 
  fcloseall();  
}  
  
/*************************************************** 
This routine reads in the pattern and pattern index 
files, and the command line parameters. 
****************************************************
/ 
 
indat(numfil,filnams)  
int numfil;  
char *filnams[];  
{  
  FILE *ripopen();  
  long aboutnow;  
  Pxfp = ripopen(filnams[4],&aboutnow, 
                 &(long huge * )Pxtab);  
  Pxtot = aboutnow/(sizeof(long));  
  Patfp = ripopen(filnams[5],&aboutnow, 
                  &(short huge * )Pattab);  
  Pattot = aboutnow/(sizeof(short));  
  Momentum = MOMENTUM;  
  if (!sscanf(filnams[6],"%ld",&Imps) || Imps<1L)  
  {  
    printf("\nNumber of input units is illegal");  
    queeut(1);  
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  }  
 /* number of input units */ 
  if (!sscanf(filnams[7],"%ld",&Hided) || Hided<1L)  
  {  
    printf("\nHided unit number is illegal");  
    queeut(1);  
  } 
 /* number of hidden units */  
  if (!sscanf(filnams[8],"%ld",&Oups) || Oups<1L)  
  {  
    printf("\nNumber of output units is illegal");  
    queeut(1);  
  }  
 /* number of output units */ 
  if (!sscanf(filnams[9],"%ld",&Nepochs) || 
      Nepochs<1L)  
  {  
    printf("\nNepochs is illegal");  
    queeut(1);  
  }  
 /* modulo of epochs on which to output weights 
*/ 
  if (!sscanf(filnams[10],"%f",&Ihlrate) || 
      Ihlrate<0.0)  
  {  
    printf("\nIhlrate is illegal");  
    queeut(1);  
  }  
 /* learning rate for input to hidden units */ 
  if (!sscanf(filnams[11],"%f",&Holrate) || 
      Holrate<0.0)  
  {  
    printf("\nHolrate is illegal");  
    queeut(1);  
  }  
 /* learning rate for hidden to output units */ 
  if (!sscanf(filnams[12],"%f",&Hbrate) || 
      Hbrate<0.0)  
  {  
    printf("\nHbrate is illegal");  
    queeut(1);  
  }  
 /* learning rate for hidden biases */ 
  if (!sscanf(filnams[13],"%f",&Obrate) || 
Obrate<0.0)  {  
    printf("\nObrate is illegal");  
    queeut(1);  
  }  
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 /* learning rate for output biases */ 
  if (numfil>14)  
  {  
    Winnam = strdup(filnams[14]);  
 /* file name for input weights and biases */ 
    filinit = YUP;  
  }  
  else  
    filinit = NOPE;  
  flipper = 100L;  
}  
  
/*************************************************** 
This routine allocates and initializes arrays. 
****************************************************
/ 
 
makary()  
{  
  if (filinit)  
    bringiin(Winnam);  
  silver = Imps*Hided;  
  if ((Ihwts=(float huge *)(long huge *) 
             halloc(silver,sizeof(float)))==NULL)  
  {  
    printf("\n\nOut of memory allocating "); 
    printf("IH weights");  
    queeut(1);  
  }  
 /* input to hidden weights */ 
  if ((Ihdw=(float huge *)(long huge *) 
            halloc(silver,sizeof(float)))==NULL)  
  {  
    printf("\n\nOut of memory allocating "); 
    printf("IH delta weights");  
    queeut(1);  
  }  
 /* input to hidden delta terms */ 
  silver = Oups*Hided;  
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  if ((Howts=(float huge *)(long huge *) 
             halloc(silver,sizeof(float)))==NULL)  
  {  
    printf("\n\nOut of memory allocating "); 
    printf("HO weights");  
    queeut(1);  
  }  
 /* hidden to output weights */ 
  if ((Hodw=(float huge *)(long huge *) 
            halloc(silver,sizeof(float)))==NULL)  
  {  
    printf("\n\nOut of memory allocating "); 
    printf("HO delta weights");  
    queeut(1);  
  }  
 /* hidden to output delta terms */ 
  if ((Obias=(float huge *)(long huge *) 
    halloc(Oups,sizeof(float)))==NULL)  
  {  
    printf("\n\nOut of memory allocating "); 
      output biases");  
    queeut(1);  
  }  
 /* output biases */ 
  if ((Odbias=(float huge *)(long huge *) 
              halloc(Oups,sizeof(float)))==NULL)  
  {  
    printf("\n\nOut of memory allocating "); 
    printf("output biases");  
    queeut(1);  
  }  
 /* output bias delta terms */ 
  if ((Hacts=(float *)(long *) 
             
calloc((int)Hided,sizeof(float)))==NULL)  
  {  
    printf("\n\nOut of memory allocating "); 
    printf("hidden activations");  
    queeut(1);  
  }  
 /* hidden unit activations */ 
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  if ((Hbias=(float *)(long *) 
             
calloc((int)Hided,sizeof(float)))==NULL)  
  {  
    printf("\n\nOut of memory allocating "); 
      hidden biases");  
    queeut(1);  
  }  
 /* hidden unit biases */ 
  if ((Hdbias=(float *)(long *) 
           calloc((int)Hided,sizeof(float)))==NULL)  
  {  
    printf("\n\nOut of memory allocating "); 
    printf("hidden biases");  
    queeut(1);  
  }  
 /* hidden bias delta terms */ 
  if ((Hdelta=(float *)(long *) 
    calloc((int)Hided,sizeof(float)))==NULL)  
  {  
    printf("\n\nOut of memory allocating "); 
    printf("hidden biases");  
    queeut(1);  
  }  
 /* hidden activation delta terms */ 
  if ((Herr=(float *)(long *) 
            calloc((int)Hided,sizeof(float)))==NULL)  
  {  
    printf("\n\nOut of memory allocating "); 
    printf("hidden deltas");  
    queeut(1);  
  }  
 /* error terms for hidden units */ 
  if ((Hnetin=(float *)(long *) 
           calloc((int)Hided,sizeof(float)))==NULL)  
  {  
    printf("\n\nOut of memory allocating "); 
    printf("hidden net Imps");  
    queeut(1);  
  }  
 /* net input for hidden units */ 
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  if ((Used=(long huge *) 
            halloc(Pxtot,sizeof(long)))==NULL)  
  {  
    printf("\n\nOut of memory allocating "); 
    printf("permutation table");  
    queeut(1);  
  }  
 /* permute array for pattern numbers */ 
}  
  
/*************************************************** 
This routine reads a pattern or pattern index file 
into memory. 
****************************************************
/ 
 
FILE *ripopen(filnam,siz,ptr)  
char *filnam;  
char huge **ptr;  
long *siz;  
{  
  FILE *fp;  
  long curptr=0L,ftell();  
  if ((fp=fopen(filnam,"rb"))==NULL)  
  {  
    printf("Error opening input file %s",filnam);  
    queeut(1);  
  }  
  if (fseek(fp,0L,SEEK_END)!=0)  
  {  
    printf("Error sizing input file %s",filnam);  
    queeut(1);  
  }  
  if ((*siz=ftell(fp))==-1L)  
  {  
    printf("Error measuring input file %s",filnam);  
    queeut(1);  
  }  
  if (fseek(fp,0L,SEEK_SET)!=0)  
  {  
    printf("Error positioning input file %s", 
      filnam);  
    queeut(1);  
  }  
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  if ((*ptr=(char huge *)(long huge * ) 
            halloc(*siz+2L,1))==NULL)  
  {  
    printf("\nError allocating memory "); 
    printf("for file '%s'",filnam);  
    queeut(1);  
  }  
  clearerr(fp);  
  for(;!feof(fp) && !ferror(fp);curptr+=512L)  
    fread((char * )&(*ptr)[curptr],512,1,fp);  
  if (ferror(fp)!=0)  
  {  
    printf("Error reading input file %s",filnam);  
    queeut(1);  
  }  
  return(fp);  
}  
  
/*************************************************** 
This is a standard error exit routine. 
****************************************************
/ 
queeut(oot)  
int oot;  
{  
  fcloseall();  
  exit(oot);  
}  
  
/*************************************************** 
This routine pauses for user input. 
****************************************************
/ 
 
contin()  
{  
  char dum;  
  pos(23,77);  
  printf("~");  
  pos(23,77);  
  printf("  ");  
  dum = toupper((getch()&0xFF));  
  if (dum=='x' || dum=='X') queeut(0);  
}  
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/*************************************************** 
This routine clears a line on the screen. 
****************************************************
/ 
 
clreol(row,col)  
int row,col;  
{  
  int i;  
  if (row<0 || row>25 || col<1 || col>80)  
    return;  
  pos(row,col);  
  i = 81 - col;  
  while(i--)  
    printf(" ");  
  pos(row,col);  
}  
  
/*************************************************** 
This routine initializes weights and biases and 
delta terms.  Delta terms are initialized to 0.  
Either weights and biases are read in from the 
weights input file, or biases are set to 0, and 
weights are set to random numbers between -0.5 and 
0.5. 
****************************************************
/ 
 
initwits()  
{  
  int oogle;  
  long nose;  
  float alone;  
  unsigned seed;  
  printf("\nThis program is partly based on "); 
  printf("software with the following note");  
  printf("\n  Copyright 1987 by James L. "); 
  printf("McClelland and David E. Rumelhart.");  
  cls();  
  pos(9,31);  
  printf("Initializing Weights");  
  if (filinit)  
    bringdat(Winnam);  
  else  
    Epoch = 1;  
  srand((unsigned)time(NULL));  
  seed = (unsigned)rand();  
  srand(seed);  
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  seed = (unsigned)rand();  
  srand(seed);  
  silver = Hided*Imps;  
  for(john=0L;john<silver;john++)  
  {  
    Ihdw[john] = 0.0;  
    if (john/1000L*1000L==john)  
    {  
      pos(11,37);  
      printf("%6ld",john);  
    }  
  }  
  silver = Hided*Oups;  
  for(john=0L;john<silver;john++)  
  {  
    Hodw[john] = 0.0;  
    if (john/1000L*1000L==john)  
    {  
      pos(11,37);  
      printf("%6ld",john);  
    }  
  }  
  if (!filinit)  
  {  
    silver = Hided*Imps;  
    alone = 0.0;  
    nose = Hided;  
    for(john=0L;john<silver;john++)  
    {  
      Ihwts[john] = ((float)(WRANGE)) * (rnd()-.5);  
      alone += Ihwts[john];  
      if (!--nose)  
      {  
        if (alone>1.0)  
        {  
          alone = (float )sqrt((double )alone);  
          for(nose=john-Hided+1;nose<john;nose++)  
            Ihwts[nose] /= alone;  
        }  
        nose = Hided;  
        alone = 0.0;  
      }  
      if (john/1000L*1000L==john)  
      {  
        pos(11,37);  
        printf("%6ld",john);  
      }  
    }  
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    silver = Hided*Oups;  
    for(john=0L;john<silver;john++)  
    {  
      Howts[john] = (float)(WRANGE) * (rnd()-.5);  
      if (john/1000L*1000L==john)  
      {  
        pos(11,37);  
        printf("%6ld",john);  
      }  
    }  
  }  
  silver = Oups;  
  for(john=0L;john<silver;john++)  
  {  
    Odbias[john] = 0.0;  
    if (john/100L*100L==john)  
    {  
      pos(13,37);  
      printf("%6ld",john);  
    }  
  }  
  if (!filinit)  
  {  
    for(john=0L;john<silver;john++)  
    {  
      Obias[john] = 0.0;  
      if (john/1000L*1000L==john)  
      {  
        pos(13,37);  
        printf("%6ld",john);  
      }  
    }  
  }  
  for(oogle=0;oogle<(int)Hided;oogle++)  
  {  
    Hdbias[oogle] = 0.0;  
    pos(15,37);  
    printf("%6ld",john);  
  }  
  if (!filinit)  
  {  
    for(oogle=0;oogle<(int)Hided;oogle++)  
    {  
      Hbias[oogle] = 0.0;  
      pos(15,37);  
      printf("%6ld",john);  
    }  
  }  
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}  
  
/*************************************************** 
This routine randomly permutes the order in which 
patterns will be used in the next epoch to train the 
network. 
****************************************************
/ 
 
permute()  
{  
  long feller,yeller,beller;  
  for(feller=0L;feller<Pxtot;feller++)  
    Used[feller] = feller;  
  for(feller=0L;feller<Pxtot;feller++)  
  {  
    yeller = (long)(rnd() * (Pxtot-feller) + 
feller);  
    beller = Used[feller];  
    Used[feller] = Used[yeller];  
    Used[yeller] = beller;  
  }  
}  
  
/*************************************************** 
This routine computes the activation of a unit, 
based on the net input to that unit. 
****************************************************
/ 
 
float  logistic (x) 
   /* copied from PDP bp.c */  
float  x;  
{  
    double  exp ();  
    if (x > 11.5129)  
 return(.99999);  
      else  
 if (x < -11.5129)  
     return(.00001);  
    else  
       return(1.0 / (1.0 +  
         (float) exp( (double) ((-1.0) * x))));  
}  
  
/*************************************************** 
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This is the main training routine.  During each 
epoch, use each pattern to update weights and 
biases. 
****************************************************
/ 
 
loooop()  
{  
  float impetus,acticus,logistic(); 
  float oerr,delta,dwight,scalar,gutter;  
  long curin,curout,curpat,cur,row,goseek;  
  long absout,windex,gindex;  
  cls();  
  pos(6,31);  
  printf("Quiet! I'm thinking!");  
  shobad = NOPE;  
  row = Hided;  
  Tss = 0.0;  
  if (Showit>2 && (Lfp=fopen("hors.lst","w")) 
      ==NULL)  
  {  
    printf("Error opening output file hors.lst");  
    queeut(1);  
  }  
  for(;;Epoch++)  
  {  
    pos(12,37);  
    printf("%6ld",Epoch);  
    Tss = 0.0;  
    permute();  
  /* randomly order patterns */ 
    for(john=0L;john<Pxtot;john++)  
    {  
  /* for each pattern */ 
      Pss = 0.0;  
      memset(Hacts,0,((int)Hided)*sizeof(float));  
      memset(Herr,0,((int)Hided)*sizeof(float));  
      memset(Hdelta,0,((int)Hided)*sizeof(float));  
  /* initialize hidden activations, errors, 
             and delta terms */ 
      
memcpy(Hnetin,Hbias,((int)Hided)*sizeof(float));   
             the hidden biases */ 
      cur = curpat = Pxtab[Used[john]]/2;  
  /* current pattern number */ 
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      for(curin=(long)Pattab[cur++]; 
          curin!=0L;curin=(long)Pattab[cur++])  
      {  
        if (curin>Imps || curin<=0L)  
          continue;  
        gindex = (curin-1L)*row;  
        for(goseek=0L;goseek<row;goseek++)  
          Hnetin[goseek] += Ihwts[gindex++];  
      } 
   /* calculate inputs to hidden units 
*/  
      for(goseek=0L;goseek<row;goseek++)  
        Hacts[goseek] = logistic(Hnetin[goseek]);  
   /* calculate hidden activations */ 
      for(curout=(long)Pattab[cur++]; 
          curout!=0L;curout=(long)Pattab[cur++])  
      {  
        absout = (curout>0L) ? curout : -curout;  
        absout -= 1L;  
        if (absout>=Oups)  
          continue;  
        impetus = Obias[absout];  
   /* initialize output unit net input 
to 
                  current value of output bias */ 
        gindex = windex = absout*row;  
        for(goseek=0;goseek<row;goseek++)  
          impetus += Howts[gindex++] * 
Hacts[goseek];               /* accumulate input to 
output unit */  
        acticus = logistic(impetus); 
               /* output unit activation */  
        oerr = ((curout>0L) ? 1.0 : 0.0) - acticus; 
               /* output unit error */  
        if (Showit>2 && (oerr>0.5 || oerr<-0.5))  
          fprintf(Lfp,"%4ld %ld %9.8g\n", 
                      Used[john],curout,oerr);  
        Pss += oerr*oerr; 
   /* add squared error to partial sum 
of 
                  squares */ 
        delta = oerr*acticus*(1.0-acticus); 
               /* output delta */  
        dwight = Odbias[absout] = 
          Obrate*delta+Momentum*Odbias[absout];  
               /* delta weight */ 
        Obias[absout] += dwight; 
               /* change output bias */  
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        gindex = windex;  
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        for(goseek=0L;goseek<row;goseek++)  
        {  
          Herr[goseek] += delta*Howts[gindex];  
          dwight = Hodw[gindex] = 
            Holrate*delta*Hacts[goseek]+ 
            Momentum*Hodw[gindex];  
          Howts[gindex++] += dwight; 
               /* change hidden to output weights */  
        }  
      }  
      for(goseek=0L;goseek<row;goseek++)  
      {  
        Hdelta[goseek] = Herr[goseek]*Hacts[goseek]* 
                        (1.0-Hacts[goseek]);  
        dwight =Hdbias[goseek] = 
          Hbrate*Hdelta[goseek]+ 
          Momentum*Hdbias[goseek];  
        Hbias[goseek] += dwight;  
      }  
   /* change hidden biases */ 
      cur = curpat;  
      for(curin=(long)Pattab[cur++]; 
          curin!=0L;curin=(long)Pattab[cur++])  
      {  
        if (curin>Imps || curin<=0L)  
          continue;  
        gindex = (curin-1L)*row;  
        gutter = 0.0; 
        for(goseek=0L;goseek<row;goseek++)  
        {  
          dwight = Ihdw[gindex] = 
            Ihlrate*Hdelta[goseek]+ 
            Momentum*Ihdw[gindex];  
          Ihwts[gindex] += dwight;  
          gutter += Ihwts[gindex]*Ihwts[gindex];  
          gindex++;  
        }  
  /* change input to hidden weights */ 
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        if (gutter>1.0)  
        {  
          gutter = (float )sqrt((double )gutter);  
          gindex = (curin-1L)*row;  
          for(goseek=0L;goseek<row;goseek++)  
            Ihwts[goseek] /= gutter;  
        }  
  /* normalize connecting weights from input 
             to hidden units so that the weights 
             leading out of each input unit form a 
             vector of length 1.0: note that this is 
             different from the PDP software */ 
      }  
      Tss += Pss;  
  /* update total sum of squares */ 
      if (john/flipper*flipper==john)  
      {  
        pos(15,36);  
        printf("%4ld %4ld",john+1L,Used[john]+1L);  
        pos(18,36);  
        printf("%9.8g    ",Tss);  
        if (Showit==2)  
          contin();  
      }  
    }  
    if (shobad)  
    {  
      pos(17,31);  
      printf("                  ");  
    }  
    pos(19,36);  
    printf("%9.8g    ",Tss);  
    if (!shobad && Tss<(float)Pxtot)  
      shobad = YUP;  
    if ((Epoch-((Epoch/Nepochs)*Nepochs))==0L)  
      poodiout();  
    if (Showit>2)  
      break;  
  }  
}  
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/*************************************************** 
This routine writes weights and biases to an output 
file so that training can continue at a later time 
using this file as input. 
****************************************************
/ 
 
poodiout()  
{  
  if ((Owfp=fopen(Woutnam,"wb"))==NULL)  
  {  
    printf("Error opening output file %s",Woutnam);  
    queeut(1);  
  }  
  fwrite(&Epoch,sizeof(long),1,Owfp);  
  fwrite(&Tss,sizeof(float),1,Owfp);  
  fwrite(&Imps,sizeof(long),1,Owfp);  
  fwrite(&Hided,sizeof(long),1,Owfp);  
  fwrite(&Oups,sizeof(long),1,Owfp);  
  silver = Hided*Imps;  
  for(john=0L;john<silver;john++)  
    fwrite(&Ihwts[john],sizeof(float),1,Owfp);  
  silver = Hided*Oups;  
  for(john=0L;john<silver;john++)  
    fwrite(&Howts[john],sizeof(float),1,Owfp);  
  silver = Hided;  
  for(john=0L;john<silver;john++)  
    fwrite(&Hbias[john],sizeof(float),1,Owfp);  
  silver = Oups;  
  for(john=0L;john<silver;john++)  
    fwrite(&Obias[john],sizeof(float),1,Owfp);  
  fclose(Owfp);  
  pos(22,37);  
  printf("(%6ld)",Epoch);  
}  
 
/*************************************************** 
This routine reads network configuration and epoch 
data from a weights input file. 
****************************************************
/ 
 
bringiin(phil)  
char *phil;  
{  
  if ((Iwfp=fopen(phil,"rb"))==NULL)  
  {  
    printf("Error opening input file %s",phil);  
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    queeut(1);  
  }  
  fread(&Epoch,sizeof(long),1,Iwfp);  
  if (ferror(Iwfp)!=0)  
  {  
    printf("Error reading input file %s",phil);  
    queeut(1);  
  }  
  fread(&Tss,sizeof(float),1,Iwfp);  
  if (ferror(Iwfp)!=0)  
  {  
    printf("Error reading input file %s",phil);  
    queeut(1);  
  }  
  pos(19,28);  
  printf("Epoch %ld  Tss %9.8g",Epoch,Tss);  
  Epoch++;  
  fread(&Imps,sizeof(long),1,Iwfp);  
  if (ferror(Iwfp)!=0 || Imps<=0L)  
  {  
    printf("Error reading number of input "); 
    printf("units from input file %s",phil);  
    queeut(1);  
  }  
  fread(&Hided,sizeof(long),1,Iwfp);  
  if (ferror(Iwfp)!=0 || Hided<=0L)  
  {  
    printf("Error reading number of hidden "); 
    printf("units from input file %s",phil);  
    queeut(1);  
  }  
  fread(&Oups,sizeof(long),1,Iwfp);  
  if (ferror(Iwfp)!=0 || Oups<=0L)  
  {  
    printf("Error reading number of output units "); 
    printf("from input file %s",phil);  
    queeut(1);  
  }  
}  
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/*************************************************** 
This routine reads weights and biases from an input 
file. 
****************************************************
/ 
 
bringdat(phil)  
char *phil;  
{  
  silver = Hided*Imps;  
  for(john=0L;john<silver;john++)  
  {  
    fread(&Ihwts[john],sizeof(float),1,Iwfp);  
    if (john/1000L*1000L==john)  
    {  
      pos(11,37);  
      printf("%6ld",john);  
    }  
    if (ferror(Iwfp)!=0)  
    {  
      printf("Error reading input file %s",phil);  
      queeut(1);  
    }  
  }  
  silver = Hided*Oups;  
  for(john=0L;john<silver;john++)  
  {  
    fread(&Howts[john],sizeof(float),1,Iwfp);  
    if (john/1000L*1000L==john)  
    {  
      pos(11,37);  
      printf("%6ld",john);  
    }  
    if (ferror(Iwfp)!=0)  
    {  
      printf("Error reading input file %s",phil);  
      queeut(1);  
    }  
  }  
  silver = Hided;  
  for(john=0L;john<silver;john++)  
  {  
    fread(&Hbias[john],sizeof(float),1,Iwfp);  
    pos(15,37);  
    printf("%6ld",john);  
    if (ferror(Iwfp)!=0)  
    {  
      printf("Error reading input file %s",phil);  
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      queeut(1);  
    }  
  }  
  silver = Oups;  
  for(john=0L;john<silver;john++)  
  {  
    fread(&Obias[john],sizeof(float),1,Iwfp);  
    if (john/100L*100L==john)  
    {  
      pos(13,37);  
      printf("%6ld",john);  
    }  
    if (ferror(Iwfp)!=0)  
    {  
      printf("Error reading input file %s",phil);  
      queeut(1);  
    }  
  }  
  fclose(Iwfp);  
  Iwfp = NULL;  
}  
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Appendix D 

A PROGRAM FOR EVALUATING SEMANTIC COOCCURRENCE 

NETWORKS 

 

 This program evaluates the ambiguity resolution 

power of a trained neural network.  It takes as 

input an ASCII file in groups of three or four 

lines.  Each group is as follows: 

 

 S 

 C1 C2 C3 C4 C5 C6 ... 

 T1 T2 ... 

 TC 

 

where S is the ambiguous source word, Ci are the 

source context words, Ti are the possible target 

translations, and TC is the correct target 

translation.  Normally, the ambiguous word should 

not be one of the words listed as context words.  In 

test mode, the TC line is required, but if the 

program is run in resolution mode, the TC line is 

not allowed and the network simply resolves the 

ambiguity without checking against any predetermined 

standard.  



232 

232 

 Inputs to the program are the file just 

discussed, the weights file created by the program 

in Appendix C, and the word index files described in 

Appendix B. 

 The program can be run with two algorithms.  

The first, called default mode, presents the entire 

context to the network as inputs at once.  The 

second, called pair mode, presents the ambiguous 

word and one context word to the network, and counts 

the context word as a trigger word if the activation 

of the most activated target word output unit 

exceeds a certain threshold (a command line 

parameter); each context word is presented in this 

manner, the target word counts are then tallied, and 

the most triggered sense is chosen.  If none of the 

context words are known, the algorithm picks T1 as 

the correct default translation. 

 

 
#include <stdio.h> 
#include <dos.h> 
#include <string.h> 
 
#define YUP 1 
#define NOPE 0 
 
#define TIMIL 500 
 /* number of context words allowed */ 
#define TNETXE 20 



233 

233 

 /* number of target translations allowed */ 
#define NELFUB 2000 
 /* input buffer length */ 
#define NELMANF 80 
 /* screen input buffer length */ 
 
#if defined(OS2) 
#define INCL_BASE 
#include <OS2.H> 
#endif 
 
char *Wonnam,*Winnam,*Woutnam,*Waitnam; 
char *strdup(),*calloc(),huge *halloc(); 
 
FILE 
*Foup,*Iwfp,*Swxfp,*Swdfp,*Twxfp,*Twdfp,*fopen(); 
 
float Tss,Accrate,huge *Ihwts,huge *Howts,huge 
*Obias; 
 
int Showit; 
 /* screen debug level */ 
int Filit; 
 /* file information level */ 
int Checkit; 
 /* true if checking against known value */ 
int Defaulit; 
 /* true if presenting whole context at once */ 
int Quickit; 
 /* true if doing only one command line file */ 
 
long Swxtot,Twxtot,Swdtot,Twdtot; 
 
long Epoch,Nepochs,john,silver,Imps,Hided,Oups; 
 
float huge *Ihwts,huge *Howts,huge *Obias; 
float *Hacts,*Hbias,*Hnetin; 
 
typedef struct wax { 
  long freq; 
  long wdoff; 
} museum; 
 
museum huge *Swxtab,huge *Twxtab; 
char huge *Swdtab,huge *Twdtab; 
 
main(argc,argv) 
int argc; 
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char *argv[]; 
{ 
#if defined(OS2) 
  VioSetAnsi(1,0); 
#endif 
 
  if (argc<7) 
  { 
    printf("\nwindext <dbug><wts><swx><swd>"); 
    printf("<twx><twd><rate>(<infil>)"); 
    exit(1); 
  } 
  cls(); 
  pos(1,1); 
  Showit = 0; 
  if (sscanf(argv[1],"%d",&Showit)==0) 
  { 
    printf("\n\nNo debug level in command line: "); 
    printf("try again"); 
    exit(1); 
  } 
  /* Debug level WXYZ means 
   W 1 if all context words are to be 
                      presented to the network at 
once 
    0 if context words should be 
                      presented one-by-one with the 
                      ambiguous word and tallied 
               X 1 if input files contain the TC 
                      line to check results against 
                    0 if no checking is to be done 
               Y      file level information 
                    0 writes word, context, sense 
                      chosen and statistics if 
Checkit 
                    1 0-level info plus trigger 
words 
                    2 1-level info plus activations 
                    3 2-level info plus tallies 
                    4 3-level info plus hidden units 
                    9 0-level without contexts 
               Z      screen debug level 
           */ 
  Defaulit = Showit/1000; 
  if (Defaulit!=1) 
    Defaulit = 0; 
  Showit %= 1000; 
  Checkit = Showit/100; 
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  if (Checkit!=1) 
    Checkit = 0; 
  Showit %= 100; 
  Filit = Showit/10; 
  Quickit = (Filit==9) ? YUP : NOPE; 
  if (Filit<0 || Filit>5) 
    Filit = 0; 
  Showit %= 10; 
  if (Showit<0 || Showit>5) 
    Showit = 0; 
  Winnam = NULL; 
  indat(argc,argv); 
 /* read in indexes */ 
  bringiin(Waitnam); 
 /* read in weight file info */ 
  makary(); 
 /* allocate arrays */ 
  initwits(); 
 /* read in weights */ 
  ovrnover(); 
 /* evaluate the neural network */ 
  fcloseall(); 
} 
 
/*************************************************** 
This routine reads in the index files and command 
line parameters. 
****************************************************
/ 
 
indat(numfil,filnams) 
int numfil; 
char *filnams[]; 
{ 
  FILE *ripopen(); 
  long aboutnow; 
  Waitnam = strdup(filnams[2]); 
  Swxfp = ripopen(filnams[3],&aboutnow, 
                  &(char huge *)Swxtab); 
  Swxtot = aboutnow/(sizeof(museum)); 
  Swdfp = ripopen(filnams[4],&aboutnow,&Swdtab); 
  Swdtot = aboutnow/(sizeof(char)); 
  Twxfp = ripopen(filnams[5],&aboutnow, 
                  &(char huge *)Twxtab); 
  Twxtot = aboutnow/(sizeof(museum)); 
  Twdfp = ripopen(filnams[6],&aboutnow,&Twdtab); 
  Twdtot = aboutnow/(sizeof(char)); 
  if (numfil>7) 



236 

236 

  { 
    if (sscanf(filnams[7],"%f",&Accrate)==0) 
    { 
      printf("\n\nNo debug level in command line: 
"); 
      printf("try again"); 
      exit(1); 
    } 
  } 
  else 
    Accrate = 0.8; 
  /* trigger threshold in pair mode */ 
  if (numfil>8) 
    Wonnam = filnams[8]; 
  else 
    Wonnam = NULL; 
  /* ASCII input data for resolution */ 
} 
 
/*************************************************** 
This routine allocates the arrays. 
****************************************************
/ 
 
makary() 
{ 
  silver = Imps*Hided; 
  if ((Ihwts=(float huge *)(long huge *) 
             halloc(silver,sizeof(float)))==NULL) 
  { 
    printf("\n\nOut of memory allocating IH 
weights"); 
    queeut(1); 
  } 
  silver = Oups*Hided; 
  if ((Howts=(float huge *)(long huge *) 
             halloc(silver,sizeof(float)))==NULL) 
  { 
    printf("\n\nOut of memory allocating HO 
weights"); 
    queeut(1); 
  } 
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  if ((Obias=(float huge *)(long huge *) 
             halloc(Oups,sizeof(float)))==NULL) 
  { 
    printf("\n\nOut of memory allocating "); 
    printf("output biases"); 
    queeut(1); 
  } 
  if ((Hacts=(float *)(long *) 
             
calloc((int)Hided,sizeof(float)))==NULL) 
  { 
    printf("\n\nOut of memory allocating "); 
    printf("hidden activations"); 
    queeut(1); 
  } 
  if ((Hbias=(float *)(long *) 
             
calloc((int)Hided,sizeof(float)))==NULL) 
  { 
    printf("\n\nOut of memory allocating "); 
    printf("hidden biases"); 
    queeut(1); 
  } 
  if ((Hnetin=(float *)(long *) 
              
calloc((int)Hided,sizeof(float)))==NULL) 
  { 
    printf("\n\nOut of memory allocating hidden "); 
    printf("net inputs"); 
    queeut(1); 
  } 
} 
 
/*************************************************** 
This routine reads an input file into memory. 
****************************************************
/ 
 
FILE *ripopen(filnam,siz,ptr) 
char *filnam; 
char huge **ptr; 
long *siz; 
{ 
  FILE *fp; 
  long curptr=0L,ftell(); 
  if ((fp=fopen(filnam,"rb"))==NULL) 
  { 
    printf("Error opening input file %s",filnam); 
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    queeut(1); 
  } 
  if (fseek(fp,0L,SEEK_END)!=0) 
  { 
    printf("Error sizing input file %s",filnam); 
    queeut(1); 
  } 
  if ((*siz=ftell(fp))==-1L) 
  { 
    printf("Error measuring input file %s",filnam); 
    queeut(1); 
  } 
  if (fseek(fp,0L,SEEK_SET)!=0) 
  { 
    printf("Error positioning input file 
%s",filnam); 
    queeut(1); 
  } 
  if ((*ptr=(char huge * )(long huge * ) 
            halloc(*siz+2L,1))==NULL) 
  { 
    printf("\nError allocating memory for file 
'%s'", 
           filnam); 
    queeut(1); 
  } 
  clearerr(fp); 
  for(;!feof(fp) && !ferror(fp);curptr+=512L) 
    fread((char * )&(*ptr)[curptr],512,1,fp); 
  if (ferror(fp)!=0) 
  { 
    printf("Error reading input file %s",filnam); 
    queeut(1); 
  } 
  return(fp); 
} 
 
/*************************************************** 
This is the standard error exit routine. 
****************************************************
/ 
 
queeut(oot) 
int oot; 
{ 
  fcloseall(); 
  exit(oot); 
} 
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/*************************************************** 
This routine pauses for user input. 
****************************************************
/ 
 
contin() 
{ 
  char dum; 
  pos(23,77); 
  printf("~"); 
  pos(23,77); 
  printf("  "); 
  dum = toupper((getch()&0xFF)); 
  if (dum=='x' || dum=='X') queeut(0); 
} 
 
/*************************************************** 
This routine clears a line on the screen. 
****************************************************
/ 
 
clreol(row,col) 
int row,col; 
{ 
  int i; 
  if (row<0 || row>25 || col<1 || col>80) 
    return; 
  pos(row,col); 
  i = 81 - col; 
  while(i--) 
    printf(" "); 
  pos(row,col); 
} 
 
/*************************************************** 
This routine initializes weights and biases in the 
neural network based on the weights file. 
****************************************************
/ 
 
initwits() 
{ 
  int oogle; 
  unsigned seed; 
  printf("\nThis program is partly based on "); 
  printf("software with the following note"); 
  printf("\n  Copyright 1987 by James L. "); 
  printf("McClelland and David E. Rumelhart."); 
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  cls(); 
  pos(9,31); 
  printf("Initializing Weights"); 
  bringdat(Waitnam); 
} 
 
/*************************************************** 
This routine calculates activations based on net 
inputs. 
****************************************************
/ 
 
float  logistic (x) 
   /* copied from PDP bp.c */ 
float  x; 
{ 
    double  exp (); 
    if (x > 11.5129) 
 return(.99999); 
      else 
 if (x < -11.5129) 
     return(.00001); 
    else 
       return(1.0 / (1.0 + (float) exp( (double) 
((-1.0) * x)))); 
} 
 
/*************************************************** 
This is the main routine for evaluation.  In a loop, 
it asks for a filename; it expects the ASCII input 
data to be in filename.won in Checkit mode, and 
filename.win otherwise; output is to filename.wot.  
It reads each group, finds the indices of the 
ambiguous word, source context words, target 
translations, and correct translation.  It calls 
figrdout to choose a sense, and reports the results. 
****************************************************
/ 
 
ovrnover() 
{ 
  FILE *finp; 
  char philenam[NELMANF],philein[NELMANF]; 
  char phileout[NELMANF],**trw; 
  char ambwoid[NELMANF],chkwoid[NELMANF]; 
  char curwrd[NELMANF],*insent,*frog; 
  long errnum,totnum,*srccon,*targposs,gtndx(); 
  short *targscr,fndout; 
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  unsigned short srcnum,trgnum,bestran,figrdout(); 
  if ((srccon= 
       (long *)calloc(TIMIL,sizeof(long)))==NULL) 
  { 
    printf("\n\nOut of memory on allocation "); 
    printf("of source array!"); 
    queeut(1); 
  } 
 /* source context array */ 
  if ((targposs=(long *) 
                calloc(TNETXE,sizeof(long)))==NULL) 
  { 
    printf("\n\nOut of memory on allocation "); 
    printf("of target array!"); 
    queeut(1); 
  } 
 /* target possible translations array */ 
  if ((trw=(char **) 
           calloc(TNETXE,sizeof(char *)))==NULL) 
  { 
    printf("\n\nTRW is too big!"); 
    queeut(1); 
  } 
 /* array pointing to target strings */ 
  if ((targscr=(short *) 
               calloc(TNETXE,sizeof(short)))==NULL) 
  { 
    printf("\n\nOut of memory on allocation "); 
    printf("of target score array!"); 
    queeut(1); 
  } 
 /* array for tallies */ 
  if ((insent=calloc(NELFUB,sizeof(char )))==NULL) 
  { 
    printf("\n\nPassed out making insents!"); 
    queeut(1); 
  } 
 /* input buffer from ASCII file */ 
  Winnam = &philein[0]; 
  Woutnam = &phileout[0]; 
  while(1) 
  { 
    if (!Wonnam) 
    { 
      cls(); 
      pos(1,31); 
      printf("THE CONTEXT MACHINE"); 
      pos(3,27); 
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      printf("File of contexts:  "); 
      philenam[0] = 0; 
      if (scanf("%s",philenam)<=0 || 
                     philenam[0]=='x' || 
                     philenam[0]=='X') 
        break; 
      strcpy(Winnam,philenam); 
      strcpy(Woutnam,philenam); 
    } 
    else 
    { 
      strcpy(Winnam,Wonnam); 
      strcpy(Woutnam,Wonnam); 
    } 
    if (Checkit) 
      strcat(Winnam,".won"); 
    else 
      strcat(Winnam,".win"); 
    strcat(Woutnam,".wot"); 
    if ((Foup=fopen(Woutnam,"w"))==NULL) 
    { 
      pos(8,11); 
      printf("\n\nError opening output file %s", 
             Woutnam); 
      contin(); 
      continue; 
    } 
    if ((finp=fopen(Winnam,"r"))==NULL) 
    { 
      pos(8,11); 
      printf("Error opening output file %s",Winnam); 
      contin(); 
      fclose(Foup); 
      continue; 
    } 
    fprintf(Foup,"Processing contextual patterns "); 
    fprintf(Foup,"using file %s, Epoch %ld, rate 
%f.", 
      Waitnam,Epoch-1L,Accrate); 
    if (Defaulit) 
      fprintf(Foup,"\nDefault processing"); 
    fprintf(Foup,"\n\n=================="); 
    fprintf(Foup, 
      "================================\n"); 
    fprintf(Foup,"\nContext analysis of patterns "); 
    fprintf(Foup,"from file %s.",Winnam); 
    errnum = 0L; 
    totnum = 0L; 
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    while(1) 
    { 
      fprintf(Foup,"\n\n----------------"); 
      fprintf(Foup, 
        "----------------------------------"); 
      if (Showit>1) 
      { 
        cls(); 
        pos(1,31); 
        printf("THE CONTEXT MACHINE"); 
        pos(3,40-strlen(philein)/2); 
        printf("%s",philein); 
      } 
      if (fgets(ambwoid,NELMANF-1,finp)==NULL) 
  /* read ambiguous word */ 
      { 
        if (feof(finp)) 
          break; 
        if (ferror(finp)) 
        { 
          fprintf(Foup,"\n\nRead error on input "); 
          fprintf(Foup,"file %s",Winnam); 
          if (Showit) 
          { 
            pos(8,11); 
            printf("Read error on input "); 
            printf("file %s",Winnam); 
            if (Showit>1) 
            { 
              contin(); 
              clreol(8,11); 
            } 
          } 
          break; 
        } 
      } 
      if (ambwoid[strlen(ambwoid)-1]=='\n') 
        ambwoid[strlen(ambwoid)-1] = '\0'; 
      srcnum = 0; 
      if ((srccon[srcnum++]= 
             gtndx(ambwoid,Swxtot,Swxtab,Swdtab)) 
          ==Swxtot) 
      { 
        fprintf(Foup,"\n\n  UNKNOWN keyword "); 
        fprintf(Foup,'%s'",ambwoid); 
        if (Showit) 
        { 
          pos(5,31-strlen(ambwoid)/2); 
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          printf("UNKNOWN keyword 
'%s'",&ambwoid[0]); 
          if (Showit>3) 
            contin(); 
          clreol(7,1); 
        } 
        if (fgets(insent,NELFUB-1,finp)==NULL) 
        { 
          if (feof(finp)) 
            break; 
          if (ferror(finp)) 
          { 
            fprintf(Foup,"\n\nRead error on input 
"); 
            fprintf(Foup,"file %s",Winnam); 
            if (Showit) 
            { 
              pos(8,11); 
              printf("Read error on input "); 
              printf("file %s",Winnam); 
              if (Showit>1) 
              { 
                contin(); 
                clreol(8,11); 
              } 
            } 
            break; 
          } 
        } 
        if (fgets(insent,NELFUB-1,finp)==NULL) 
        { 
          if (feof(finp)) 
            break; 
          if (ferror(finp)) 
          { 
            fprintf(Foup,"\n\nRead error on input 
"); 
            fprintf(Foup,"file %s",Winnam); 
            if (Showit) 
            { 
              pos(8,11); 
              printf("Read error on input "); 
              printf("file %s",Winnam); 
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              if (Showit>1) 
              { 
                contin(); 
                clreol(8,11); 
              } 
            } 
            break; 
          } 
        } 
        continue; 
      } 
      else 
      { 
        fprintf(Foup,"\n\nKeyword '%s'",ambwoid); 
        if (Showit) 
        { 
          pos(5,35-strlen(ambwoid)/2); 
          printf("Keyword '%s'",ambwoid); 
        } 
      } 
      if (fgets(insent,NELFUB-1,finp)==NULL) 
  /* read context line */ 
      { 
        if (feof(finp)) 
        { 
          fprintf(Foup,"\n\nUnexpected end of "); 
          fprintf(Foup,"input file %s",Winnam); 
          if (Showit) 
          { 
            pos(8,11); 
            printf("Unexpected end of input "); 
            printf("file %s",Winnam); 
            if (Showit>1) 
            { 
              contin(); 
              clreol(8,11); 
            } 
          } 
          break; 
        } 
        if (ferror(finp)) 
        { 
          fprintf(Foup,"\n\nRead error on input "); 
          fprintf(Foup,"file %s",Winnam); 
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          if (Showit) 
          { 
            pos(8,11); 
            printf("Read error on input "); 
            printf("file %s",Winnam); 
            if (Showit>1) 
            { 
              contin(); 
              clreol(8,1); 
            } 
          } 
          break; 
        } 
      } 
      if (insent[strlen(insent)-1]=='\n') 
        insent[strlen(insent)-1] = '\0'; 
      if (!Quickit) 
        fprintf(Foup,"\nContext: '%s'",insent); 
      if (Showit>1) 
      { 
        pos(9,1); 
        printf("Context: '%s'",insent); 
      } 
      frog = strtok(insent," "); 
      fndout = NOPE; 
      while(frog!=NULL) 
      { 
        if ((srccon[srcnum]= 
              gtndx(frog,Swxtot,Swxtab,Swdtab)) 
            ==Swxtot) 
        { 
          if (!fndout) 
          { 
            if (!Quickit) 
            { 
              fprintf(Foup,"\n  UNKNOWN words: "); 
              fprintf("%s",frog); 
            } 
            fndout = YUP; 
          } 
          else if (!Quickit) 
            fprintf(Foup," %s",frog); 
          if (Showit) 
          { 
            pos(8,30-strlen(frog)/2); 
            printf("UNKNOWN source word %s",frog); 
            if (Showit>3) 
              contin(); 
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            clreol(8,1); 
          } 
          frog = strtok(NULL," "); 
          continue; 
        } 
        if (++srcnum>=TIMIL) 
        { 
          fprintf(Foup,"Out of space in context "); 
          fprintf(Foup," array; ignoring remainder 
"); 
          fprintf(Foup,"of context"); 
          if (Showit) 
          { 
            pos(8,11); 
            printf("Out of space in context 
array;"); 
            printf(" ignoring remainder of 
context"); 
            if (Showit>1) 
            { 
              contin(); 
              clreol(8,1); 
            } 
          } 
          break; 
        } 
        frog = strtok(NULL," "); 
      } 
      if (fgets(insent,NELFUB-1,finp)==NULL) 
  /* read target translation line */ 
      { 
        if (feof(finp)) 
        { 
          fprintf(Foup,"\nUnexpected end of input 
"); 
          fprintf(Foup,"file %s",Winnam); 
          if (Showit) 
          { 
            pos(8,11); 
            printf("Unexpected end of input "); 
            printf("file %s",Winnam); 
            if (Showit>1) 
              contin(); 
          } 
          break; 
        } 
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        if (ferror(finp)) 
        { 
          fprintf(Foup,"\nRead error on input file 
"); 
          fprintf(Foup," %s",Winnam); 
          if (Showit) 
          { 
            printf("\n\nRead error on input "); 
            printf("file %s",Winnam); 
            if (Showit>1) 
              contin(); 
          } 
          break; 
        } 
      } 
      if (insent[strlen(insent)-1]=='\n') 
        insent[strlen(insent)-1] = '\0'; 
      trgnum = 0; 
      fprintf(Foup,"\nSenses: '%s'",insent); 
      if (Showit>1) 
      { 
        pos(12,1); 
        printf("Senses: '%s'",insent); 
      } 
      fndout = NOPE; 
      frog = strtok(insent," "); 
      while(frog!=NULL) 
      { 
        if ((targposs[trgnum]= 
               gtndx(frog,Twxtot,Twxtab,Twdtab)) 
            ==Twxtot) 
        { 
          if (!fndout) 
          { 
            fprintf(Foup,"\n  UNKNOWN words: "); 
            fprintf(Foup," %s",frog); 
            fndout = YUP; 
          } 
          else 
            fprintf(Foup," %s",frog); 
          if (Showit) 
          { 
            pos(8,30-strlen(frog)/2); 
            printf("UNKNOWN target word %s",frog); 
            if (Showit>3) 
              contin(); 
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            clreol(8,1); 
          } 
          frog = strtok(NULL," "); 
          continue; 
        } 
        trw[trgnum] = frog; 
        if (++trgnum>=TNETXE) 
        { 
          fprintf(Foup,"Out of space in sense "); 
          fprintf(Foup,"array; ignoring remainder 
"); 
          fprintf(Foup,"of context"); 
          if (Showit) 
          { 
            pos(8,11); 
            printf("Out of space in sense "); 
            printf("array; ignoring remainder "); 
            printf("of context"); 
            if (Showit>1) 
            { 
              contin(); 
              clreol(8,1); 
            } 
          } 
          break; 
        } 
        frog = strtok(NULL," "); 
      } 
      if (trgnum<=0) 
      { 
        fprintf(Foup,"\nNo targets were specified"); 
        if (Showit>1) 
        { 
          pos(7,28); 
          printf("No targets were specified"); 
          contin(); 
        } 
        continue; 
      } 
      if (Checkit) 
      { 
        if (fgets(chkwoid,NELMANF-1,finp)==NULL) 
  /* read correct translation line */ 
        { 
          if (feof(finp)) 
          { 
            fprintf(Foup,"\n\nUnexpected end of "); 
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            fprintf(Foup,"file on input 
file",Winnam); 
            if (Showit) 
            { 
              pos(8,11); 
              printf("Unexpected end of file "); 
              printf("on input file %s",Winnam); 
              if (Showit>1) 
              { 
                contin(); 
                clreol(8,11); 
              } 
            } 
            break; 
          } 
          if (ferror(finp)) 
          { 
            fprintf(Foup,"\n\nRead error on input 
"); 
            fprintf(Foup,"file %s",Winnam); 
            if (Showit) 
            { 
              pos(8,11); 
              printf("Read error on input "); 
              printf("file %s",Winnam); 
              if (Showit>1) 
              { 
                contin(); 
                clreol(8,11); 
              } 
            } 
            break; 
          } 
        } 
        if (chkwoid[strlen(chkwoid)-1]=='\n') 
          chkwoid[strlen(chkwoid)-1] = '\0'; 
      } 
      bestran = figrdout(srccon,srcnum, 
                         
targposs,trgnum,trw,targscr); 
  /* figure out best translation */ 
      if (bestran==trgnum) 
        bestran = 0; 
  /* if none chosen, use first translation 
             on the translation line */ 
      frog = trw[bestran]; 
      fprintf(Foup, 
        "\n\nBest translation is '%s'",frog); 
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      if (Checkit) 
      { 
        totnum++; 
        if (chkwoid && strlen(chkwoid)>0 && 
            strcmp(trw[bestran],chkwoid)==0) 
          fprintf(Foup,"  (correct)"); 
        else 
        { 
          fprintf(Foup,"  { # '%s'}",chkwoid); 
          errnum++; 
        } 
      } 
      if (Showit>1) 
      { 
        pos(7,30-strlen(frog)/2); 
        printf("Best translation is '%s'",frog); 
        contin(); 
      } 
    } 
    fclose(finp); 
    fprintf(Foup,"\n"); 
    if (Checkit && totnum) 
    { 
      fprintf(Foup,"\n%ld/%ld = %f%c correct\n\n", 
              totnum-errnum,totnum, 
              ((float )(((float )(totnum-errnum))/ 
                ((float )totnum)))*100.0,37); 
    } 
    fclose(Foup); 
    if (Wonnam) 
      break; 
  } 
} 
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/*************************************************** 
This is the routine that uses the neural network to 
determine the correct translation.  In default mode, 
it simply calls wipadout.  In pair mode, the 
ambiguous word and one context word are presented as 
input to the network.  If the activation of the most 
activated target translation exceeds the threshold, 
the context word is counted as a trigger word and is 
tallied. 
****************************************************
/ 
 
unsigned short figrdout(srcary,srcnum,trgary, 
                        trgnum,wort,tally) 
unsigned short srcnum,trgnum; 
long *srcary,*trgary; 
char **wort; 
short *tally; 
{ 
  short nap,very,relaxing,too; 
  float axe; 
  unsigned short grin,wipadout(); 
  long twoary[2]; 
  if (!Defaulit) 
  { 
    if (srcnum>1) 
    { 
      too = 2; 
      for(nap=0;nap<trgnum;nap++) 
        tally[nap] = 0; 
  /* initialize tallies */ 
      twoary[0] = srcary[0]; 
      if (Showit==1) 
        pos(12,1); 
      for(nap=1;nap<srcnum;nap++) 
      { 
  /* use each context word in turn */ 
        twoary[1] = srcary[nap]; 
        if (Filit>3) 
          fprintf(Foup,"\n\n>> %s %s", 
            &Swdtab[Swxtab[twoary[0]].wdoff], 
            &Swdtab[Swxtab[twoary[1]].wdoff]); 
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        if (Showit>1) 
        { 
          pos(11,1); 
          printf("< %s %s > ", 
            &Swdtab[Swxtab[twoary[0]].wdoff], 
            &Swdtab[Swxtab[twoary[1]].wdoff]); 
        } 
        grin = wipadout(twoary,too, 
                        trgary,trgnum,wort,&axe); 
  /* determine most activated translation */ 
        if (grin!=trgnum && axe>=Accrate) 
  /* if it exceeds threshold, tally it */ 
        { 
          tally[grin]++; 
          if (Showit==1) 
            printf("\n  '%s' triggers '%s' (%f)", 
                   &Swdtab[Swxtab[twoary[1]].wdoff], 
                   wort[grin],axe); 
          if (Filit) 
          { 
            fprintf(Foup,"\n  '%s' triggers '%s'", 
                    
&Swdtab[Swxtab[twoary[1]].wdoff], 
                    wort[grin]); 
            if (Filit>1) 
              fprintf(Foup," (%f)",axe); 
          } 
        } 
      } 
      very = NOPE; 
      relaxing = 0; 
      if (Filit>2) 
        fprintf(Foup,"\n\nTallies:"); 
      for(nap=0;nap<trgnum;nap++) 
      { 
        if (Filit>2) 
          fprintf(Foup,"\n  %s = %hd", 
                  wort[nap],tally[nap]); 
        if (tally[nap]>tally[relaxing]) 
        { 
          relaxing = nap; 
          very = NOPE; 
        } 
        else if (nap!=0 && 
                 tally[nap]==tally[relaxing]) 
          very = YUP; 
      } 
      if (!very && tally[relaxing]!=0) 
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        return(relaxing); 
    } 
    fprintf(Foup,"\n\nDefault Used"); 
  } 
  return(wipadout(srcary,srcnum, 
                trgary,trgnum,wort,&axe)); 
} 
 
/*************************************************** 
This routine uses the neural network to determine 
the most activated translation. 
****************************************************
/ 
 
unsigned short wipadout(srcary,srcnum, 
                        trgary,trgnum,wort,indyact) 
unsigned short srcnum,trgnum; 
long *srcary,*trgary; 
char **wort; 
float *indyact; 
{ 
  float impetus,acticus,logistic(),numma1; 
  short rowum,colum; 
  unsigned short beswoid,cur; 
  long curin,curout,row,goseek,absout,gindex; 
  row = Hided; 
  memset(Hacts,0,((int)Hided)*sizeof(float)); 
  memcpy(Hnetin,Hbias,((int)Hided)*sizeof(float)); 
  for(cur=0;cur<srcnum;cur++) 
  { 
    curin = srcary[cur]; 
    if (curin>Imps || curin<=0L) 
      continue; 
    gindex = (curin-1)*row; 
    for(goseek=0L;goseek<row;goseek++) 
      Hnetin[goseek] += Ihwts[gindex++]; 
        /* calculate inputs to hidden units */ 
  } 
  if (Filit>3) 
    fprintf(Foup,"\n"); 
  if (Showit>1) 
    pos(24,40-Hided/2); 
  for(goseek=0L;goseek<row;goseek++) 
  { 
    Hacts[goseek] = logistic(Hnetin[goseek]); 
       /* and hidden activations */ 
    if (Filit>3) 
      fprintf(Foup,"%c", 
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        (Hacts[goseek]>0.5) ? '1' : '0'); 
    if (Showit>1) 
      printf("%c",(Hacts[goseek]>0.5) ? '1' : '0'); 
  } 
  beswoid = trgnum; 
  numma1 = -1.0; 
  for(cur=0;cur<trgnum;cur++) 
  { 
    absout = trgary[cur]-1L; 
    if (absout>=Oups || absout<0L) 
      continue; 
    impetus = Obias[absout]; 
    gindex = absout*row; 
    for(goseek=0;goseek<row;goseek++) 
      impetus += Howts[gindex++] * Hacts[goseek]; 
        /* inputs to output unit */ 
    acticus = logistic(impetus); 
        /* output unit activation */ 
    if (acticus>numma1) 
    { 
      beswoid = cur; 
      numma1 = acticus; 
    } 
   /* find the most activated translation */ 
    if (Filit>3) 
      fprintf(Foup,"\n%9.8g
 %s",acticus,wort[cur]); 
    if (Showit>1) 
    { 
      rowum = 13+cur-(cur/7)*7; 
      colum = 1+(cur/7)*26; 
      pos(rowum,colum); 
      printf("%9.8g",acticus); 
      pos(rowum,colum+12); 
      printf("%s",wort[cur]); 
    } 
  } 
  *indyact = numma1; 
  return(beswoid); 
} 
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/*************************************************** 
This routine reads network information. 
****************************************************
/ 
 
bringiin(phil) 
char *phil; 
{ 
  if ((Iwfp=fopen(phil,"rb"))==NULL) 
  { 
    printf("Error opening input file %s",phil); 
    queeut(1); 
  } 
  fread(&Epoch,sizeof(long),1,Iwfp); 
  if (ferror(Iwfp)!=0) 
  { 
    printf("Error reading input file %s",phil); 
    queeut(1); 
  } 
  fread(&Tss,sizeof(float),1,Iwfp); 
  if (ferror(Iwfp)!=0) 
  { 
    printf("Error reading input file %s",phil); 
    queeut(1); 
  } 
  pos(19,28); 
  printf("Epoch %ld  Tss %9.8g",Epoch,Tss); 
  Epoch++; 
  fread(&Imps,sizeof(long),1,Iwfp); 
  if (ferror(Iwfp)!=0 || Imps<=0L) 
  { 
    printf("Error reading number of input units "); 
    printf("from input file %s",phil); 
    queeut(1); 
  } 
  fread(&Hided,sizeof(long),1,Iwfp); 
  if (ferror(Iwfp)!=0 || Hided<=0L) 
  { 
    printf("Error reading number of hidden units "); 
    printf("from input file %s",phil); 
    queeut(1); 
  } 
  fread(&Oups,sizeof(long),1,Iwfp); 
  if (ferror(Iwfp)!=0 || Oups<=0L) 
  { 
    printf("Error reading number of output units "); 
    printf("from input file %s",phil); 
    queeut(1); 
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  } 
} 
 
/*************************************************** 
This routine reads weights and biases. 
****************************************************
/ 
 
bringdat(phil) 
char *phil; 
{ 
  silver = Hided*Imps; 
  for(john=0L;john<silver;john++) 
  { 
    fread(&Ihwts[john],sizeof(float),1,Iwfp); 
    if (john/1000L*1000L==john) 
    { 
      pos(11,37); 
      printf("%6ld",john); 
    } 
    if (ferror(Iwfp)!=0) 
    { 
      printf("Error reading input file %s",phil); 
      queeut(1); 
    } 
  } 
  silver = Hided*Oups; 
  for(john=0L;john<silver;john++) 
  { 
    fread(&Howts[john],sizeof(float),1,Iwfp); 
    if (john/1000L*1000L==john) 
    { 
      pos(11,37); 
      printf("%6ld",john); 
    } 
    if (ferror(Iwfp)!=0) 
    { 
      printf("Error reading input file %s",phil); 
      queeut(1); 
    } 
  } 
  silver = Hided; 
  for(john=0L;john<silver;john++) 
  { 
    fread(&Hbias[john],sizeof(float),1,Iwfp); 
    pos(15,37); 
    printf("%6ld",john); 
    if (ferror(Iwfp)!=0) 
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    { 
      printf("Error reading input file %s",phil); 
      queeut(1); 
    } 
  } 
  silver = Oups; 
  for(john=0L;john<silver;john++) 
  { 
    fread(&Obias[john],sizeof(float),1,Iwfp); 
    if (john/100L*100L==john) 
    { 
      pos(13,37); 
      printf("%6ld",john); 
    } 
    if (ferror(Iwfp)!=0) 
    { 
      printf("Error reading input file %s",phil); 
      queeut(1); 
    } 
  } 
  fclose(Iwfp); 
  Iwfp = NULL; 
} 
 
/*************************************************** 
Given a string, this routine returns an index into a 
sorted list. 
****************************************************
/ 
 
long gtndx(symbol,ndxtot,ndxtab,wdtab) 
char *symbol,huge *wdtab; 
long ndxtot; 
museum huge *ndxtab; 
{ 
  int cond; 
  long low=0L,high=(ndxtot-1L),mid=0L; 
  while (low<=high) 
  { 
    mid = low + (high-low)/2L; 
    if ((cond=strcmp(symbol, 
                     &wdtab[ndxtab[mid].wdoff]))<0) 
      high = mid - 1L; 
    else if (cond>0) 
      low = mid + 1L; 
    else 
      return(mid); 
  } 
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  return(ndxtot); 
} 
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