

SEMANTIC COOCCURRENCE NETWORKS

AND

THE AUTOMATIC RESOLUTION

OF

LEXICAL AMBIGUITY

IN

MACHINE TRANSLATION

 APPROVED BY
 DISSERTATION COMMITTEE:

Copyright

by

Dan Walter Higinbotham

1990

To my father,

Oliver A. Higinbotham, Jr.

SEMANTIC COOCCURRENCE NETWORKS

AND

THE AUTOMATIC RESOLUTION

OF

LEXICAL AMBIGUITY

IN

MACHINE TRANSLATION

by

Dan Walter Higinbotham, B.S., M.S.

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Doctor of Philosophy

THE UNIVERSITY OF TEXAS AT AUSTIN

December 1990

ACKNOWLEDGEMENTS

 The research reported here has been assisted by many,

through contribution of time, data, and advice. I would

especially like to express appreciation to:

 My committee, Dr. Robert E. Wall, Dr. Robert F. Simmons,

Dr. Winfred P. Lehmann, Dr. Winfield S. Bennett, and Dr. Kent

Wittenberg, for their encouragement and direction.

 Larry Gibson and Executive Communications Systems, Inc.,

for allowing me to use computer facilities and company time to do

this research.

 Siemens Corporation, for providing a sample of parallel

English and German texts, on which the algorithms described here

were first tested.

 The Humanities Research Center at Brigham Young

University, for providing a machine readable copy of the Longman

Dictionary of Contemporary English.

 Alan Melby, for providing the parallel English and French

texts used in Chapter 5.

 My wife, Barbara, for her loving patience and support; my

mother, Birdie, for twice giving me life; and my father, Oliver,

for his encouragement and love.

V

SEMANTIC COOCCURRENCE NETWORKS

AND

THE AUTOMATIC RESOLUTION

OF

LEXICAL AMBIGUITY

IN

MACHINE TRANSLATION

Publication No. ____________

Dan Walter Higinbotham, Ph.D.
The University of Texas at Austin, 1990

 Supervisors: Robert E. Wall
 Robert F. Simmons

 Lexical ambiguities of major class words were categorized

according to approaches by which they might be correctly

resolved; manual analysis of sample texts revealed that none of

the methods previously proposed was sufficient to resolve more

than a fraction of the ambiguities found in real text. An

algorithm for combining the methods was proposed, including a new

method that uses cooccurrence statistics from parallel texts to

train neural networks to identify context words at arbitrary

distances that can trigger less frequent senses.

Vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTSv

ABSTRACTvi

Chapter
 1. THE RESOLUTION OF LEXICAL AMBIGUITIES 1

 2. PREVIOUS APPROACHES 5

 3. AMBIGUITIES IN REAL TEXT 64

 4. SPREADING ACTIVATION AND TRIGGER WORDS 80

 5. SEMANTIC COOCCURRENCE NETWORKS BASED ON
 PARALLEL TEXT CORPORA 100

 6. RESOLUTION OF LEXICAL AMBIGUITY IN MACHINE
 TRANSLATION 121

Appendix
 A. TEXTS WITH CLASSIFIED AMBIGUITIES 145

 B. A PROGRAM FOR WEISS RULES AND TRIGGER
 COUNTING 172

 C. A PROGRAM FOR CREATING A SEMANTIC
 COOCCURRENCE NETWORK 199

 D. A PROGRAM FOR EVALUATING SEMANTIC
 COOCCURRENCE NETWORKS 221

BIBLIOGRAPHY 250

vii

Chapter 1

THE RESOLUTION OF LEXICAL AMBIGUITIES

 Machine Translation is difficult at best. One

of the more challenging aspects is the resolution of

lexical ambiguities based on context. This study

concentrates on ambiguities in major class words

(nouns, verbs, adjectives, and adverbs).

 Even the earliest workers in machine

translation realized that the vagueness of word

boundaries and the mismatch in cultural perspective

would make word selection difficult in a second

language. They suggested limiting the subject area,

so that words would be more likely to have technical

meanings. They also suggested statistical methods

based on cooccurrence, but these were difficult to

implement. Some systems simply translated the most

frequent sense of each word, or included all of the

possibilities in the output document. Some projects

had an ad hoc rule on each word in the lexicon.

Several groups thought it might be possible to use

the semantic groupings in a thesaurus to associate

word senses. Others tried to classify selectional

restrictions that verbs have for

9

9

their arguments and modifiers have for their heads.

More recently, people have begun to build knowledge

bases, hoping that some kind of spreading activation

along connections in the knowledge base might

simulate contextual selection. Others have looked

to the budding technology of neural networks for a

solution.

 Of the methods that have actually been

attempted, many have led to years of long, tedious

labor followed by disappointment. Proposals of one

sort or another fill the literature, but reports of

results are sparse.

 One of the purposes of the research described

in this thesis was to determine what kinds of

lexical ambiguities actually occur in real text, and

which classes of proposed methods might be expected

to work for them. The results of a manual study of

actual text were rather surprising. None of the

proposed methods resolved more than about 45% of the

ambiguities correctly by themselves, and some of the

most highly touted theories proposed in the

literature averaged no more than 15%. It became

clear that no single method would ever work well

10

10

enough by itself. The only logical approach was a

combination of the methods.

 Even after using syntactic clues, putting

idioms in the dictionary, flagging words with

technical meanings, using selectional restrictions,

and remembering the sense of the word selected in a

previous occurrence, there remained a difficult

class of problems. The disambiguation of some words

seemed to depend on words with only loose syntactic

relations if any, arbitrarily far away; the

influence of these words somehow triggered the

selection of the appropriate sense. In the absence

of such words, a default sense was used. The

thesaurus and spreading activation methods were

attempts to handle this kind of ambiguity, but the

results of such methods are either negative or

unknown.

 A new method was therefore invented to work

with trigger words and default senses. A toy

example showed that a neural network might set up a

feature representation of implicit cooccurrence

classes. Training data was then extracted from a

large sample of parallel texts in two languages, and

the same method that worked in the toy example was

11

11

shown to have positive results on the larger data

set.

 The set of methods for lexical disambiguation

were then studied, including the new semantic

cooccurrence network approach, and an algorithm

combining all of the methods was developed.

 The contribution of this thesis consists mainly

in the categorization of types of lexical ambiguity

in the manual study, the new neural network method,

and the organization of all of the methods into an

algorithm for lexical disambiguation.

 Chapter 2 discusses previous methods. Chapter

3 describes the manual study of text and

classification of types of lexical ambiguities.

Chapter 4 introduces the neural network method and

describes the toy example and an initial experiment

indicating the possible success of the method.

Chapter 5 describes an experiment in which training

data for the neural network was extracted from a

large sample of raw text. Chapter 6 discusses the

algorithm that combines all of the methods.

 Appendix A presents the texts analyzed in

Chapter 3. Appendix B presents a program that

resolves ambiguity in parallel texts based on lists

12

12

of trigger words. Appendix C gives a program for

creating semantic cooccurrence networks. Appendix D

is a program for evaluating semantic cooccurrence

networks.

13

13

Chapter 2

PREVIOUS APPROACHES

2.1 Introduction

 This chapter will be a survey of some of the

approaches that have been taken to resolving lexical

ambiguity in machine translation.

 The earliest approaches were based on a

suggestion in a memorandum by Warren Weaver in 1949,

that statistical studies of collocation frequencies

could at least partially solve the problem. Section

2.2 discusses some of the studies and approaches

that arose from this idea.

 Some of the early workers preferred a more

direct approach, and considered each word to be a

unique problem. They therefore encoded unique

disambiguation rules on each word in the lexicon.

An example of this approach is the CREWS project; a

similar but more sophisticated version of this

approach was Small's word expert parser. These are

discussed in section 2.3.

 Others suggested using the semantic categories

of Roget's Thesaurus as the basis of contextual

14

14

analysis, and some worked on developing their own

thesaurus especially for machine translation. Some

of the assumptions underlying their work, and some

details of their methods, are discussed in section

2.4.

 Wilks' Preference Semantics emphasized

selectional restrictions, but also recognized that

such restrictions should be treated as preferences

that could be violated. Later, Fass' Collative

Semantics used the idea of selection restrictions as

preferences in the context of semantic feature

structures. Some of the important ideas in these

approaches are mentioned in section 2.5.

 Marker passing systems that spread activation

along connected paths in knowledge-based frame

structures are briefly considered in section 2.6.

 Studies of spreading activation in neural

networks have led to local connectionist approaches,

exemplified by Cottrell's work, and distributed

connectionist approaches, such as Kawamoto's work.

These are briefly examined in section 2.7.

 Section 2.8 will be a short summary of the

various approaches to resolving lexical ambiguity.

15

15

2.2 Statistical Approaches

 In July of 1949, Warren Weaver sent a

memorandum to about 30 friends, suggesting the

possibility of using computers to translate text

from one language into another. This group and

their contacts began research in machine

translation, and much of the work in natural

language processing (and artificial intelligence)

has its roots in the early efforts of this group.

Since Weaver's memo was such an important influence

in the history of machine translation, it is

interesting to note Weaver's feeling about the

problem of ambiguity.

 Weaver began the memo by quoting from a letter

he had written to Norbert Wiener of MIT:

 Recognizing fully, even though necessarily

vaguely, the semantic difficulties of multiple

meanings, etc., I have wondered if it were

unthinkable to design a computer which would

translate only scientific material (where the

semantic difficulties are very notably less),

and even if it did produce an inelegant (but

16

16

intelligible) result, it would seem to me

worthwhile.

 (Weaver 1967, p.

190)

 Wiener's reply, also partially included in the

memo, contained the following:

 ... I frankly am afraid the boundaries of

words in different languages are too vague and

the emotional and international connotations

are too extensive to make any quasi mechanical

translation scheme very hopeful.

 (Weaver 1967, p.190)

 It is clear from these quotes that some of the

major doubts about the feasibility of translation by

machine were centered on the problem of the

vagueness of word boundaries and multiple meaning,

i.e. lexical ambiguity.

17

17

2.2.1 Domain Limitation

 Weaver's first suggestion for overcoming the

problem was to limit the domain of the input text

(an idea which has come to be known as the

"sublanguage" approach). The word 'log', for

example, would almost certainly need to be

translated differently if it meant 'logarithm' than

if it meant 'a piece of wood'; by limiting the text

to the sublanguage of mathematics, one could be

certain in the vast majority of cases that the

intended meaning was 'logarithm'. A computer lexicon

could be created specifically for mathematical text,

and the 'wood' meaning would not need to be included

at all. In mathematical text, this would produce

correct translations for most words that have a

sense with a mathematical meaning. It is not so

clear that it would be helpful for words with

several meanings, none of which are particular to

mathematics.

 Nevertheless, domain limitation is still the

most frequently used approach in actual systems.

Even knowledge-based machine translation projects

18

18

often resolve most cases of lexical ambiguity by

using domain-specific knowledge bases.

2.2.2 Contextual Windows

 Weaver's other approach to the lexical

ambiguity problem was based on the fact that a word

may be ambiguous in isolation, but given sufficient

context, should be unambiguous. He suggested using

a window of context of N words on either side of the

ambiguous word. The value of N would vary with the

type of text, the grammatical category, and perhaps

individually for each word. He says, however, that

 ... It would hardly be practical to do

this by means of a generalized dictionary which

contains all possible phrases 2N+1 long: for

the number of such phrases is horrifying, even

to a modern electronic computer. But it does

seem likely that some reasonable way could be

found of using the micro-context to settle the

difficult cases of ambiguity.

 (Weaver 1967, p. 195)

19

19

 The year after the appearance of Weaver's memo,

Abraham Kaplan wrote a paper called "An experimental

study of ambiguity and context." His basic purpose

was to discover the value of N, that is, to discover

how much context was necessary for humans to

disambiguate ambiguous words. He took examples of

140 (inflected) words in context from books on

mathematics. Seven types of contexts were used: (1)

One word before the ambiguous word, (2) one word

after, (3) one word before and one word after, (4)

two words before, (5) two words after, (6) two words

before and two words after, (7) and the whole

sentence. All 140 words were presented with a list

of ten possible meanings each. Only "clearly

distinguishable meanings" of a single grammatical

category were used. Words which had less than ten

"clearly distinguishable meanings" in the dictionary

were supplemented by false senses of the same

grammatical category; the average was 5.6 correct

senses per word. Each translator was presented each

of the words in isolation and asked to pick which

meanings were possible for the word; the average

percentage of senses classified correctly was 70%.

The contexts were then mixed up so that each

20

20

translator disambiguated each word once, but each of

the translators had the word in a different one of

the seven contexts described above. The contexts

for each translator were mixed, so that each

translator had a mixture of the types of context.

The most important of Kaplan's conclusions were

 ... A context consisting of one or two

words on each side of the key word has an

effectiveness not markedly different from that

of the whole sentence.

 ... Under optimal conditions ... ambiguity

is reduced from ... about 5½ senses to about 1½

or 2.

 (Kaplan 1955, pp. 46-

47)

Optimal conditions were obtained (1) when the

translator was trained in the subject of the text

(mathematics); (2) when the context included at

least one word on each side of the ambiguous word;

and (3) when the context words were content words

(nouns, verbs, adjectives, and adverbs) rather than

function words (prepositions, articles, etc.).

21

21

 Kaplan's results were encouraging to many,

because the study was taken as evidence that a local

context (of two to four words) was sufficient to

resolve lexical ambiguity; the study had shown that

such a context was nearly as useful as the whole

sentence for the purpose of resolving ambiguity. It

is odd that such optimism was generated by the

article, however, since the translators had only

achieved 70% accuracy picking possible senses of

words in isolation, and even with the whole sentence

context, ambiguities were reduced to "about 1½ or 2"

of the "clearly distinguishable meanings." Since

only one of the "clearly distinguishable meanings"

would probably be correct in the original text, that

means that a computer with the reasoning capability

of a human, using only a local or sentence context,

would choose the correct meaning, and therefore the

correct translation, between 50% and 67% of the

time.

 Although Kaplan's results were taken to mean

that the size of Weaver's context variable N need

not be greater than 2 words on each side of the word

in question, the method of storing all such contexts

was never applied directly. Even setting N to 1, it

22

22

would require a matrix of size M3 for a vocabulary

of size M, where the value at any position (X,Y,Z)

in the matrix would be the most frequently correct

sense number of word Y in the local context "X Y Z".

For example, in the phrase 'put into a bank

account', ignoring the function words 'into' and

'a', it is almost certain that the meaning of 'bank'

(Y) in the presence of 'put' (X) and 'account' (Z)

is the financial meaning rather than the geological

meaning; the sense number of the financial meaning

would be the value of the matrix at position

('put','bank','account'). Assuming that values in

the matrix could be automatically determined based

on frequencies in a text tagged with correct sense

numbers, and assuming a moderate vocabulary of

10,000 words, this would require a matrix of a

trillion entries, and, at a millisecond per entry,

would take over thirty years to fill. In order to

insure accuracy, the tagged text would have to

include multiple examples of all possible phrases of

3 words long (ignoring function words) in realistic

contexts. Sense-tagging an input text with even a

moderate coverage of contexts would take a

staggering amount of time, even after the "clearly

23

23

distinguishable meanings" for each word had been

determined. Moreover, even if such a matrix could be

prepared for translation into one language, it is

not at all clear that the same matrix could be used

for translation into another language.

Nevertheless, Kaplan's results were taken as

evidence that the problems of lexical ambiguity were

simply a matter of using local context in an

appropriate way.

2.2.3 Frequency-based Default Translations

 Early translation programs had simply left the

problem up to the reader, by presenting translations

of each of the possible senses of a word, separated

by slashes, such as the following translation

simulation of a Russian to English chemistry

article:

 Saccharification cellulose begin

(use/employ) (in/into/at)

(technology/technique). For what waste product

(wood processing/wood working) (plant/factory)

heat (under/below) pressure (with/from) 0.1%

24

24

solution (sulfuric/sulfate) acid; obtained such

(means/way) syrup (process/convert) (on/at)

(wine/tartaric) alcohol. (According

to/Along/In accord with) other process

saccharification (accomplish/carry out) (on/at)

cold action very strong (sp. weight 1.21)

(salt/hydrochloric) acid. After removal acid,

remain solid product being used (as/how)

(food/forage) (medium/means).

 (Perry 1955, p.

18)

 However, "The most frequent criticism was

levelled at the excessive number of alternatives

given ..." and even in a word-for-word translation,

"... the proper selection of English correspondents

is by far the major problem facing a reader"

(Gould 1957, p. 14).

As a result,

 Booth and Richens proposed printing only

the symbol 'z' to indicate an unspecified word;

others have proposed leaving the word

25

25

untranslated, and others have proposed always

giving the most common translation.

 (King 1956, p.

38)

 The most common translation would give the best

probability of having chosen the correct translation

and should therefore be fairly successful.

 Sometimes the most common translation was

decided through introspection by the dictionary

maintenance people, but others felt that the

decision needed to be based on semantic frequencies

determined from sufficient examples of actual text.

 A trans-semantic frequency count is a

listing of the words of the source language,

together with the various possible renderings

of each in the target language, and the

frequency of occurrence of each of the latter.

Such a listing would resemble a normal

translation dictionary, with the addition of

information, probably in the form of

percentages, giving the frequency of occurrence

of each meaning in the target language.

26

26

 (Pimsleur 1957, p. 11)

Given such information, only the most common

translation for each word would need to be entered

in the computer's lexicon, and if texts to be

translated were consistent with the original text,

incorrect translations would be expected to be in

the minority. For example, according to one study,

the French word 'de' should be translated as 'of' in

English about 68% of the time (King 1956, p. 39), so

if the machine always translated 'de' as 'of', it

would also be correct about 68% of the time.

2.2.4 Cover Words

 A variation in the use of most common

translation was the use of "cover-words", which were

words "of relatively high semantic frequency which

can be used in place of words of lower semantic

frequency, with little possibility of misinforming

the reader." (Pimsleur 1957, p. 13) A target

language "cover-word" would be a word of relatively

broad coverage, whose available meanings could

"cover" most of the meanings of other more specific

27

27

translations of a given source word. For example,

the German word 'schwer' may mean (among other

things)

heavy as in 'ein schweres Stein',

 'a heavy stone'

laden as in 'Das Dach ist schwer von

Schnee',

 'the roof is laden with snow'

difficult as in 'Das fällt mir schwer',

 'I find that difficult'

unfortunate as in 'Er hat ein schwere Schicksal',

 'he has an unfortunate fate'

In the second case, it would be acceptable to say

'the roof is heavy with snow', and in the last case,

it would be understandable to say 'he has a heavy

fate'. By choosing the broader words 'heavy' and

'difficult', the more specific words 'laden' and

'unfortunate' might not need to be included in the

computer's lexicon (example from Pimsleur 1957, pp.

12-13). Even though such "cover-words" in the

target language would be relatively more vague in

isolation, the human reader would not notice the

28

28

ambiguity in context. Determination of cover-words

could not be based only on frequency studies of real

translations, since human translators would often

choose the more specific translation, but frequency

studies could give a good idea of what the possible

cover-words might be.

2.2.5 Frequency-based Technical Tagging

 Frequency studies could also be based on

various types of text.

Alternative frequencies should also be given

for various subject areas, scientific,

military, etc.

 (Pimsleur 1957, p. 11)

The "most common translation" could therefore be

refined to be "the most common translation" in a

particular domain (sublanguage).

 Researchers at the University of Washington in

1958 tried this approach by categorizing science

into about seventy subfields.

29

29

 A few of the words in the target language

were then tagged with numbers representing the

particular field in science in which they

occurred almost exclusively. Since the number

of words that could be tagged in this way was

small, the method was found to be successful in

a very small number of cases to which it was

applied.

 (Madhu and Lytle 1965, p.

9)

 A more refined approach was later developed,

which grouped these seventy subfields into ten

technical groups, namely

Group I Mathematics, Physics, Electrical

Engineering, Acoustics, Nuclear

Engineering

 II Chemistry, Chemical Engineering,

Photography

 III Biology, Medicine

 IV Astronomy, Meteorology

 V Geology, Geophysics, Geography,

Oceanography

30

30

 VI Mechanics, Structures

 VII Mechanical Engineering, Aeronautical

Engineering, Production and Manufacturing

Methods

 VIII Materials, Mining, Metals, Ceramics,

Textiles

 IX Political Science, Military Science

 X Social Sciences, Economics, Linguistics,

 Etc.

 Target language texts were examined, and each

paragraph in the text was tagged as belonging to one

of the ten groups. A count was made of how often

each content word in the sample occurred in a

paragraph labelled by each group. The chance that

target word Tk would occur in a paragraph that

should be classified as falling within subject group

N, was based on the sample text, and was given as

 (times Tk found in a group N paragraph)

 p(Tk,N) = ---------------------------------------

 (total words in target sample text)

31

31

The chance that a given paragraph in a new text

should be classified as belonging to subject group N

was then taken to be

32

32

 p(N) = p(W1,N) + p(W2,N) + ... + p(Wk,N)

where it was assumed that W1 through Wk were words

in the paragraph that had a single meaning. For a

word with more than one possible translation, the

best translation was selected by using a figure of

merit, defined by

 f(Tk) = _ p(N)·p(Tk,N)

 N

In other words, the figure of merit of a given

target word was the chance that the current

paragraph was of subject group 1 times the chance

that the target word would be used in a text of that

type, plus the chance that the current paragraph was

of subject group 2 times the chance that the target

word would be used in a text of subject group 2, and

so forth. The figure of merit would be calculated

for each possible translation, and the target word

with the highest figure of merit would be the

translation chosen.

33

33

 For example, consider the phrase

"structure/building of an algae colony", where the

only ambiguity is in the choice between 'structure'

and 'building'. Based on a small text corpus, the

study showed the chance that the word 'structure'

would occur in a paragraph of group I (multiplied by

a scaling factor) was P('structure',I)=.1.

Similarly, P('structure',III)=1.9,

P('structure',V)=.8, P('structure',X)=.3,

P('building',I)=.1, P('building',V)=.4,

P('building',VI)=.1, P('building',IX)=.1,

P('algae',III)=.5, P('algae',V)=1.4, and the ities

for these words with other groups were 0. If the

phrase is considered a text unit, the only

unambiguous word known to the text corpus was

'algae'. Therefore, the chance that this phrase

should belong to group III is P(III)=.5, P(V)=1.4,

and P(n)=0 for the other groups. Therefore, the

figure of merit for 'structure' would be

f('structure')=(.5*1.9)+(1.4*.8)+(0*.1)+(0*.1)=2.07,

and the figure of merit for 'building' would be

f('building')=(.5*.1)+(1.4*.4)+(0*.1)+(0*.1)=.61.

Since the figure of merit for 'structure' is greater

34

34

than that for 'building', 'structure' would be the

word chosen.

 In a small test of 21 Russian sentences

translated into English using this technique, the

correct alternate was chosen in 87% of the cases

(Madhu and Lytle 1965, pp. 10-12).

2.2.6 Category Counting

 Walker and Amsler suggested using frequencies

of occurrence of domain codes in the Longman

Dictionary of Contemporary English (LDOCE). In the

typesetting tape, certain senses of some words are

given a four-character domain code. The first two

characters are field codes, and the second two

characters are subfield codes; there are 120 fields,

212 subfields, and about 2600 domain code

combinations actually used. Given a segment of text

with ambiguous words, the domain codes on each of

the senses of each of the words in the text are

assembled and counted. The domain code with the

highest frequency is assumed to be the main subject

of the text; word senses which are marked with this

domain code are chosen as the correct senses of the

35

35

given words in the text. This reduces the number of

ambiguous word in the text. The next pass works

exactly as the first pass, assembling domain codes

of only those words which are still ambiguous.

Again, the domain code with the highest frequency

wins, and word senses marked with that code are

chosen. The process continues in cycles.

 Although this process yielded some interesting

results for classifying the domain of some documents

(the most frequent of all the codes), there were

some problems. Walker and Amsler reported that in

an eight million word corpus, only 23% of the words

were in the LDOCE (Walker 1986). Even of the words

that do occur in the dictionary, most of the senses

are not marked with domain codes. In cases where

only some senses of a word are marked, the algorithm

may not choose the correct sense, and, of course, in

cases where none of its senses are marked, the

algorithm makes no choice at all. It is not clear

what to do when more than one code ties for the lead

at any point in the algorithm, especially at the

end, when competing codes occur only once or twice.

One must also be careful about the quantity of text

used, so that enough codes can be

36

36

 assembled to make choices, but there is not so much

text that too many topics are addressed.

 Because of the lack of domain codes on most

senses in the dictionary, no data is available on

the potential success rate of this method.

2.2.7 Proximity Lists

 Stephen Weiss developed an algorithm for

determining contextual rules for disambiguation

based on proximity of context. Each ambiguous word

has an associated list of contextual rules. Each

contextual rule consists of a context word and a

sense of the ambiguous word. When the ambiguous

word A occurs in the context

 ... 9 7 5 3 1 A 2 4 6 8 10 ...

where each of the numbers represents a context word,

the context words are checked in the order shown,

beginning with 1. Each context word is checked to

see if it occurs in a contextual rule for the

ambiguous word; if it does, the sense listed in the

contextual rule is the one chosen.

37

37

 The set of contextual rules for an ambiguous

word is generated based on a training text in the

following way. For each instance of the ambiguous

word A, each context word C is examined in the same

order as above. There are three possibilities:

1) If C is mentioned in the contextual rules, and C

is associated with the correct sense of A, the

training jumps to the next instance of A in the

text.

2) If C is mentioned in the contextual rules, and C

is associated with an incorrect sense of A, the

contextual rule containing C is removed from the

list, and C is added to an exclusion list; then the

next context word is examined.

3) If C is not mentioned in the contextual rules

generated so far, and C is not on the exclusion

list, a new contextual rule is added with C and the

correct sense of A, and the training then jumps to

the next instance of A in the text; if C is on the

exclusion list, the next context word is examined.

38

38

 The training text can be examined in this way

for every ambiguous word of interest, generating

contextual rules for each one.

 Weiss tested this algorithm on three words,

with 180 instances each. After training each word

on its first 80 instances, Weiss found that the

correct sense was chosen 97% of the time in the

remaining 100 cases (Weiss 1973).

 Since this is such an impressive result, this

algorithm was implemented and tested as part of this

dissertation, using the program in Appendix B; 80%

of the text used in Chapter 5 was used as training

text, and the remaining 20% was used for testing.

Although the algorithm resolved ambiguity nearly

perfectly for the training text (correctly resolving

over 99.5% of the cases), the algorithm only

achieved 63.4% on the approximately 1250 ambiguous

words in the test text, whereas simply choosing the

most frequent sense in the sample text would have

achieved 67.2%.

39

39

2.3 Word Experts

 Some researchers felt that waiting for detailed

frequency data of any kind was impractical with the

resources they had available. They felt that each

word was a unique entity, and every ambiguous word

was a unique problem. The best way to solve such a

problem, they felt, was to attack it head on.

 The CREWS project developed a special language

in which to describe possible local conditions that

might affect lexical selection. This language

allowed them to check for certain grammatical

categories, or specific words, a certain number of

words before or after the ambiguous word, or within

a certain range of the words near the ambiguous

word. In this way, much of the syntactic and

semantic processing was mixed in a way that was

unique for each word. A word such as 'bank', for

example, would have a specific rule to look for

words in its immediate vicinity such as 'river' or

'money'. Failing to find any such words in the

context, the most likely sense would be chosen as a

default. Naturally, such a system continually

40

40

needed to be refined, until conditions on commonly

used words became extremely difficult to maintain.

 In a similar vein, Small's Word Expert Parser

simply executed the procedures that were associated

in the lexicon with each word in the sentence. Each

procedure was a discrimination net. For example, a

discrimination net for the adjectival use of the

word 'deep' would be as follows:

(a) What view best describes the concept?

 PERSON -------------> (1) Intellectual

 ART-OBJECT ---------> (2) Ethereal

 VOLUME: (b) Which view best describes the

concept?

 AIR-VOLUME ------> (3) Large Vertical Distance

 Through Air

 WATER-VOLUME ----> (4) Large Vertical Distance

 Through Water

By answering the questions (a) and (b), the computer

could arrive at one of the senses marked (1)-(4).

By asking questions, and receiving answers based on

the procedures of nearby words, such nets could be

traversed until a unique meaning was reached.

41

41

Unfortunately, the procedures were long and

cumbersome; the one for the word 'throw', for

example, was six pages long (Hirst 1987, p. 83).

Some of the questions were of a more global nature,

and plans were made to define a conceptual proximity

measure based on a semantic network. Developing the

procedures was so time consuming, however, that

questions of a global nature were just relegated to

interaction with an on-line user, thus begging all

the more important questions of automatic

disambiguation (Adriens and Small 1988, p.18).

2.4 Approaches Based on a Thesaurus

 Word by word definition of unique procedures

was time-consuming, inelegant, and mostly

ineffective. Scientific classification of words into

ten groups or even seventy subfields was useful for

resolution of some lexical ambiguities, but many

ambiguities were left unresolved and unresolvable.

It seemed clear that what was needed was a more

thorough scheme of semantic classification that was

better at capturing generalizations. The

organization of Roget's Thesaurus, which lists

42

42

content words under more than 1000 concept headings,

presented the possibility of being just such a

semantic classification.

2.4.1 Sequences of Thesaurus Categories

 Roderick Gould of Harvard noticed that

different senses of a word in a dictionary usually

correspond to different concept categories in

Roget's Thesaurus. His idea was to store lists of

possible semantic category sequences. These lists

would be based on an automatic frequency analysis of

a large sample of source language text, in which

each word had been manually tagged with the Roget

concept category number of the sense in which it was

being used. At first, he suggested expanding

Roget's classification to include uses of

prepositions and other function words, but soon

found this extension to be problematic. He

subsequently suggested storing possible sequences of

content word semantic categories. He did not report

any implementation of his method, but only noted

that it would have to be based on a large text

sample in order to be effective. He did not present

43

43

a specific algorithm for resolving lexical ambiguity

on the basis of the frequencies stored, but noted it

would be complicated by the fact that even if a

stored two category sequence selected senses for two

adjacent words, those senses could be disallowed by

the lack of a sequence for the first word and its

preceding word, or the second word and its following

word (Gould 1957, pp. 15-27). It should also be

noted that a matrix for sequences of two categories

would require a million entries; Kaplan's data

suggests that at least sequences of three categories

would be required, and a matrix storing three

category sequences would need a billion entries.

2.4.2 Synonymy in a Thesaurus

 The Cambridge Language Research Group thought

of using the thesaurus in a more practical and

immediate way. The idea was that a text about a

certain subject or situation would probably employ a

number of words that could be classified under the

same concept heading in the thesaurus. For example,

in the phrase 'flowering plant', 'flowering' and

'plant' are each listed in the thesaurus under a

44

44

number of different headings, but the only heading

under which both are listed is 'vegetable'; we

therefore assume that the correct sense of each word

in the current context is the 'vegetable' sense

(Masterman 1957, p. 36). It was soon discovered,

however, that the method was only partially

successful, and it was assumed that this was due to

problems with Roget's Thesaurus. Some words were

not listed at all, and other words were not listed

in all of their senses.

 The solution was to develop a new thesaurus

more appropriate for use in machine translation. It

was assumed that in this new thesaurus, "... if a

set of words all come under one heading, they must

be semantically related, and if a number of words

are semantically related to one another, they will

come together under some heading." (Sparck-Jones

1965, p. 97) Some of the relations examined were

hyponomy, antonymy, incompatibility, collocation,

and synonymy. It was claimed that collocation was

not a genuine linguistic relationship, antonymy

would be hard to determine empirically, and hyponymy

and incompatibility could not be satisfactorily

defined, so synonymy was the only viable semantic

45

45

basis for determining the vocabulary structure of a

language, and, therefore, the contents of the new

thesaurus. Two words were held to be synonymous if

they had two uses that were synonymous, i.e. if they

could be mutually substituted in some sentence

without changing the meaning. The set of words that

could be mutually substituted in a given context was

called a row. Rows were then "clumped" together if

each row in the clump was more "similar" to members

of the "clump" than to nonmembers. A pair of rows

was given a similarity score based on the number of

words they shared, such that if a shared word had 10

senses, a similarity score of .1 was added based on

that word; if a shared word had only two senses, .5

was added. In this way, rows were clumped together,

and each clump was given a heading and listed as a

new category in the thesaurus.

 For example, rows could be abstracted from the

examples in the definitions of the Oxford English

Dictionary. One definition of the word 'toil' is

"Severe labour; hard or continuous work or exertion

which taxes the bodily or mental powers." An

associated example is "You are many of you

accustomed to toil manual; I am accustomed to toil

46

46

mental." In the example, 'toil' could be replaced

by 'labour' without loss, so one possible row would

be

 toil labour

One definition of 'task' is "A piece of work that

has to be done; something that one has to do

(usually involving labour or difficulty); a matter

of difficulty, a 'piece of work'." One example

associated with this definition is "He had taken

upon himself a task beyond the ordinary strength of

man." As the definition might suggest, 'task' could

be substituted with 'labour', so another row would

be

 task labour

These two rows share a word, 'labour', so if

'labour' had 5 senses, these two rows would be given

a similarity score of .2. Assuming a clump

threshold of .15, these rows could be grouped

together as a clump, perhaps with the heading

'labour', and could be added to the thesaurus as a

47

47

new category (see Sparck-Jones 1965, pp. 102-103,

for a less simplified version of this example).

 There was also a notion of semantic distance

between words. If words A and B occurred together

in the same row, they were said to have distance 0

(i.e. they were synonymous). If a word C occurred

with word A in some row, and with word B in another

row, but A and B never occurred in the same row, A

and B were said to have distance 1. This distance

could also be used in resolution of lexical

ambiguity, if nearby words were not found under the

same heading in the thesaurus. (Sparck-Jones 1965,

pp. 97-112)

 For example, if there are rows

 function capacity capability

 function purpose business

 business affair job matter

the semantic distance between 'function' and

'capacity' is 0 (they are "synonymous"), the

distance between 'capacity' and 'business' is 1, and

the distance between 'capacity' and 'job' is 2. In

the sentence "the job was beyond his capacity", the

48

48

sense of 'job' would mean something closer to

'matter' than 'employment' or some other sense; the

sense of 'capacity' would be closer to 'capability'

than another sense like 'volume'. The proper senses

would be chosen automatically because the semantic

distance between them is only 2, whereas the

distance between other senses (as determined in

other rows) would presumably be greater than 2.

 The intention was that words that were

semantically related to each other would be found

together under some heading, and that words that

were semantically related would be found in the near

context of an ambiguous word. Using the thesaurus

method, however, two words were "semantically

related" only if they were synonymous or nearly

synonymous. It was evidently either not noticed or

not regarded as important that two words could be

semantically related without having that property.

For example, in the sentence

I slept poorly, because I kept rolling over

onto an exposed spring.

The word 'spring' could be a season of the year, a

fountain of water, or a metal spiral. Clearly,

49

49

sleeping and bedsprings are related, but it is very

doubtful that they or their synonyms could be

substituted for each other in any context. They are

related, but not by synonymy. It appears that the

premise of the endeavor was somewhat flawed.

 Furthermore, the procedure for building the new

thesaurus was quite complicated, and the number and

content of headings was completely dependent on the

set of contexts that were used to determine the

rows. Producing a new thesaurus with better coverage

than Roget's required a tremendous amount of work,

and there never had been a guarantee that it would

be more suitable for machine translation than

Roget's had been.

2.4.3 Chains in the Thesaurus

 Later work returned to the original Roget's

Thesaurus, once machine readable copies became

available. A model of chaining in the Thesaurus was

developed by Robert Bryan at San Francisco State

University. He defined chains of entries according

to word-groups and categories (Sedelow 1986). The

Thesaurus is divided into eight major classes,

50

50

comprised of 1042 groupings. Each grouping is

divided into paragraphs, which are subdivided into

semi-colon groups, which each contain a number of

entries. The entries within one semi-colon group

formed one of Bryan's categories. A word group

consisted of all entries in the Thesaurus that were

spelled the same; therefore, homographs belong to

the same word group. Entries in the Thesaurus could

be thought of as points in a two-dimensional matrix,

with word groups as rows, and categories as columns.

For example,

 c1 c2 c3

 w1 e1 e2

 w2 e3 e4

 w3 e5 e6 e7

 w4 e8

A chain was simply a sequence of entries. Bryan

defined ten types of chains, each a subtype of the

previous type. Type-10 chains were the most

constrained and of the greatest interest. These

were defined in terms of word-links and category

links. A pair <ei,ei+1> was a word-link if both

51

51

entries belonged to the same word group (so they

were in the same row of the matrix). A pair

<ei,ei+1> was a category-link if both entries

belonged to the same category (so they were in the

same column of the matrix). A type-10 chain was a

sequence of entries such that word-links and

category-links alternated, no entry was repeated, no

word group or category was repeated, and every word-

link and category-link was strong. A word-link was

strong if the two categories it connected were also

connected in the matrix by another word-link (though

this second word link was not required to be in the

chain being considered). A category-link was strong

if the two words it connected were also connected by

another category link (again, this second link was

not required to be in the chain). This meant that

in terms of the matrix, strong links always came in

fours, called quartets, and were composed of four

entries that formed a square in the matrix. For

example, the entries e1, e2, e5, and e7 in the

matrix above form a square, so <e1,e5> and <e2,e7>

would be strong category-links, and <e1,e2> and

<e5,e7> would be strong word-links.

52

52

 Evidence suggested that entries which had

strong word-links belonged to the same sense of the

word, and entries which had a strong category link

were semantically related (perhaps synonymous

according to the usage of Sparck-Jones as discussed

in the previous section). Therefore, entries which

could be connected in type-10 chains were expected

to be semantically related. It was possible to

partition the Thesaurus in such a way that only

entries which could be connected by type-10 chains

would be in the same group. This was done by

Talburt and Mooney. They discovered that of the

199,427 entries in Roget's International Thesaurus,

there were 113,963 distinct word groups. It turned

out that 133,672 of the entries had no strong links

with any other entry. The remainder of the

Thesaurus contained 65,755 entries and was

partitioned into 5966 groups. One of these groups

contained 22,480 entries, or about one-third of the

remaining entries. Although some of the entries in

this group were instances of the words 'cozy',

'intimate', 'snug', 'familiar', 'close', 'near',

'tight', 'thick', and 'compact', the group also

contained instances of words such as 'vile' and

53

53

'humble'. Of the other groups, 3373 were formed

from a single quartet, so they each consisted of

four entries. The other groups ranged in size from

six entries to 229 (Talburt 1990).

 Although this work was interesting, it is not

immediately obvious how to use the results for the

resolution of lexical ambiguity. The classification

is too general in some cases (such as the group with

22,480 entries), and too specific in others (such as

the 3373 groups with four entries each, which

connect only two words). The partitioning of

133,672 entries into singleton groups completely

loses the semantic information that the thesaural

classification affords for those entries.

2.4.4 Thesaural Category Counting

 An approach similar to Walker's idea of

counting categories, as discussed above, was

suggested for thesaural categories by John Brady

(Brady 1990). Given a text with ambiguous words, the

codes for each of the words in the text would be

assembled and counted (using the 1042 groupings in

Roget's Thesaurus). For each word, the sense would

54

54

be chosen that corresponded to the thesaurus code

that occurred most frequently in the text. If this

was insufficient to disambiguate a particular word,

higher levels of classification in the Thesaurus

would be used in the same manner (Sedelow 1990).

 It is difficult to tell how successful this

approach might be in actual practice.

2.5 Preference Semantics and Collative Semantics

 Yorick Wilks developed "... a set of formal

procedures for representing the meaning structure of

natural language, with a view to embodying that

structure within a system that can be said to

understand ..." (Wilks 1975, p. 329). Preference

Semantics attempted to use insights of artificial

intelligence to approach the problems of semantics,

including the problem of lexical ambiguity. Since

the goal was somewhat broader than just resolving

lexical ambiguity, and Preference Semantics has been

developed over a period of some twenty years, it

includes many mechanisms that are well beyond the

scope of this thesis. The most important idea, as

applied to the resolution of lexical ambiguity, is

55

55

that predicators have preference for certain

semantic classes of arguments, and modifiers have

preference for certain semantic classes of head.

The verb 'drink', for example, prefers an animate

subject, and the adjective 'blue' prefers a concrete

head. Although semantic restrictions on arguments

had been previously discussed in the form of

selectional restrictions, an important contribution

of Preference Semantics is the idea that argument

and head preferences can be violated.

 Preferences themselves are represented as

expectations for arguments and heads to belong to

certain semantic classes. These classes are defined

by a set of semantic primitives (from about 60 to

100 of them, depending on the version of the

theory). Each sense of a word is defined by a

semantic formula built up from these primitives,

with one primitive as its central meaning. The

formulas for verbs and prepositions include

preferences for their arguments, and those for

adjectives, adverbs, and prepositions include

preferences for their head. During parsing, the

central meaning of a potential argument is matched

against the preference of the predicator. If the

56

56

potential argument is ambiguous, the formulas of

each of its possible senses are matched against the

preference of the predicator for that argument; if

only one of the senses fulfills the preferences,

that is the one that is chosen. Although greatly

oversimplified, this is the basic mechanism in

Preference Semantics for the resolution of lexical

ambiguity. (Wilks 1975)

 Recently, Brian Slator, working under Wilks,

has implemented a program for extracting semantic

data from the Longman Dictionary of Contemporary

English, and automatically creating semantic

formulae for each sense of each of the words listed

there (Slator 1988). A considerable amount of

information still needs to be added to the formulae

before they can be used in a full Preference

Semantics system. In any case, no data is yet

available about the success of a full-scale

Preference Semantics system in resolving lexical

ambiguity.

57

57

 Dan Fass, another of Wilks' students, has

recently recast Preference Semantics in terms of

frame-based feature structures. The same idea of

preference is carried over, but the way in which

preferences are satisfied has changed.

 In Collative Semantics, word senses are the

semantic primitives, and each sense of a word is

defined by a frame structure. Each frame has arc

information, which relates the frame to other

frames, creating a hierarchical hyponymy structure,

and node information, in which there are features

and values, preferences for arguments, and

assertions.

 Each frame includes an arc which specifies the

name of the next higher frame in the hierarchy. By

following links, one can find all of the

superordinates of a frame in the hierarchy.

Preferences can be expressed by giving the name of a

frame in the hierarchy. If this frame is among the

superordinates of a potential argument, that

argument satisfies the preference. If only some

senses of an ambiguous word being used as an

argument do not satisfy the argument preference,

those senses are eliminated.

58

58

 Preferences can also be expressed by listing a

set of preferred features and values. In this case,

the word sense whose frame best matches the

preferred list is the one chosen. The best match is

determined by a scoring algorithm; the score of a

frame is the number of feature-value pairs that

match minus the number of feature-value pairs that

fail to match. Since the values of features in

Collative Semantics are word senses (i.e. the names

of other frames in the hierarchy), a feature-value

pair in an argument (or head) matches if the frame

of its value includes among its superordinates the

value which is specified as the preferred value in

the predicator (or modifier). In order to pick one

sense above another by this method, it has to be

clearly better than the other senses.

 If no preferences of the predicator (or

modifier) are satisfied, the preferences of the next

higher frame in the hierarchy are checked. In this

way, an analogy is sought, so that the sense of the

argument (or head) is chosen which would best

support a metaphorical reading.

 Finally, senses with assertions (modifiers

assert about their heads) are given scores depending

59

59

on whether the assertion adds inconsistent,

redundant, or new information. Those which add new

information are more highly valued than those which

add redundant or inconsistent information.

 Although the algorithms for lexical ambiguity

resolution in Collative Semantics are potentially

very useful, the complexity of coding word sense

frames makes implementation of a full system a

tremendous amount of work. The prototype system

Fass developed has a vocabulary of about 400 frames,

and each of the 50 test sentences worked correctly.

It is difficult to assess the degree of accuracy

that might be achievable in a full implementation.

(Fass 1988)

 Yet another group using the idea of preferences

is the Distributed Language Processing group (DLT)

in the Netherlands. The major disambiguation method

is based on a hierarchy of word senses, and a set of

wordsense:relator:wordsense triplets. These

triplets represent commonly expected relationships.

The relators are an abstracted form of prepositions

or thematic roles. The syntax builds dependency

trees, and each pair of words and the connection

between them is mapped to a set of possible

60

60

triplets. The possible triplets are given scores,

according to the distance in the hierarchy between

the tree word senses and the triplet word senses.

For each word, the scores of the triplets in which

it is involved are summed, and the word sense with

the highest score is chosen. A book describing this

effort (Papegaaij 1986) includes a section for test

results, but at publication of the book, the

software was not yet completed, so only the test

procedure was described. As of the summer of 1988,

the first results were available. The first results

indicated that disambiguation would have been

considerably more successful if the most frequent

sense of each word had been chosen (Alan Melby --

personal communication).

2.6 Marker Passing

 Charniak developed a system of marker passing

based on frame structures for knowledge

representation. When a word in a sentence is

encountered each of its sense frames is marked, even

if it is not the sense eventually selected. Then,

all frames referenced in these marked frames are

61

61

also marked, and so forth. Usually, some kind of

strength is associated with each mark, and the

strength of the mark diminishes each time until it

falls below some pre-established bound, after which

marking is discontinued. If some frame in the

system gets marks from two different origins, the

two sense frames of the two words which originated

the marker passing are chosen as the correct senses

for those two words. There can also be differing

strengths associated with markers passed across

certain arc-types in the frames, and so forth, to

improve the performance of the system (Charniak

1983).

 One major problem with this kind of system is

the difficulty of coding the knowledge frames for

word senses of any reasonable sized vocabulary. The

difficulty has been such that a full-scale

implementation has not been possible so far, and no

data is available on how successful such a system

might be in resolving lexical ambiguity in a full

system.

 Hirst attempted to combine the ideas of

preference semantics and marker passing. His system

uses information in frame structures to enforce

62

62

selectional restrictions and also uses marker

passing among these frames. When a word in the

sentence is encountered, it registers selectional

restrictions on its arguments, and also begins a

chain of marker passing. Senses of other words in

the sentences can be eliminated by the selectional

restrictions or chosen via marker passing.

Apparently, selectional restrictions are not just

preferences in his system; any senses of the

argument that do not satisfy the requirements are

eliminated (Hirst 1987, p. 108). It appears that

markers passed from words earlier in a sentence

could cause senses to be chosen that would fail to

satisfy selectional restrictions registered later,

or a sense eliminated by selectional restrictions

could be the one that would have later been chosen

by marker passing, so the selection of word sense

could depend totally on the order of processing

within the system. Naturally, selection by marker

passing is completely dependent on the nature of the

frame network, and slightly different philosophies

of the nature of the features to be used could

considerably alter the results of lexical ambiguity

resolution. No full system has been implemented, so

63

63

no statistics are available as to the viability of

this approach.

2.7 Connectionist Approaches

 The spreading activation idea naturally appeals

to those who are interested in modelling the neural

structure of the brain. Neural networks normally

consist of a number of nodes and directional

connections among the nodes. Associated with each

node is an activation level, an output level, and

sometimes a bias. Associated with each connection

is a weight. At a specified point in time, each

node applies an input function to the inputs it is

receiving (the input on each connection is the

output of the node it is connected to, times the

weight of the connection) and determines its next

activation level. It applies another function to

determine its output from its activation (often this

is a threshold function). Different networks are

characterized by different numbers of nodes and

different topologies of connections, as well as

different activation and output functions. By

receiving outside input, and cycling through

64

64

activation and output updates, these networks can

calculate a variety of functions; if programmed

carefully, the networks often settle into stable

patterns that no longer change significantly with

more cycles. By tuning weights in the network based

on expected activations of certain nodes given

inputs at other nodes, the networks can actually

learn to compute certain functions. Automatic

learning algorithms have been developed for some

kinds of networks so that a sequence of input and

expected output patterns can be presented to the

learning routine, and it will automatically tune

weights in the network so that the network will

calculate the function implicit in the data. Some

networks can generalize and develop internal

representations for prototypical patterns; others

can fill in missing portions of familiar patterns

when only presented with a part of the pattern.

Naturally these kinds of automatic learning and

generalization capabilities are of great interest to

the problem of ambiguity resolution, since it seems

that humans learn words and semantic relationships

by a process of examining large quantities of data

and extracting generalizations.

65

65

 Unfortunately, research into the abilities of

neural networks for natural language processing is

still in its infancy. Very few have been used in

other than a toy demonstration mode, since serial

computers make the highly parallel nature of large

neural networks impractical to use. Nevertheless,

some toy demonstration work has been done with

neural networks in the area of resolution of lexical

ambiguity.

 Cottrell has discussed a localist approach, in

which each concept is represented by a separate node

(Cottrell 1988). In a three level network, the

nodes of the first level correspond to words. Each

word node is connected to nodes of the second level,

which represent its word senses, which are connected

to each other with inhibitory connections (with

negative weights). These are in turn connected to

nodes of a third level, which include nodes

representing some syntactic concepts as well as

internal semantic nodes that connect all of the word

senses together. Although he does not specify the

internal structure of this third level of nodes, the

idea is that when a word is encountered, it excites

the activation of nodes of its word senses. The

66

66

most frequent sense of the word is probably

connected to the word with the most positive weight,

so its activation increases fastest initially,

unless nodes from the third level inhibit it based

on previous context. Nodes of the third level

either excite or inhibit the various word sense

nodes, and since the word sense nodes are connected

to each other with inhibitory connections, they

compete for more input from the third level, until

one wins the competition and is declared the

appropriate sense of the word in the given context.

Naturally all of this competition alters the third

level so that it represents the previous context and

the inclusion of the current word into context for

the next word to be presented to the network.

However, the exact connections needed in the network

for all of this to function properly are not at all

obvious. The approach awaits further description.

 Kawamoto presents a more specific model, but

prefers to use a distributed representation of

concepts. This means that a concept is represented

not by a single node in a neural network, but by a

certain pattern of activation over the nodes of the

network. In one of his networks, twelve ambiguous

67

67

words are represented by 24 patterns of activation

(two for each word) over a network of 216 nodes.

Each pattern consists of 48 nodes to represent the

written form of the word (each of the twelve words

is four letters long), 48 nodes to represent the

phonetic form of the word (some words have different

pronunciations in their two senses, such as /lid/

and /l_d/ for 'lead'), 24 nodes to represent

grammatical category, and 96 nodes to represent

semantic features. The semantic representations

assigned to each pattern are actually quite

arbitrary, but were simply used to make a point.

Portions of the 24 patterns were repeatedly

presented to the network, and an auto-associative

learning algorithm was used to modify weights in

response to errors in generation of the remainder of

each pattern. After sufficient training, it was

possible to present partial patterns, and the

network would fill in the rest of the appropriate

pattern, as long as the part of the pattern

presented was not ambiguous (it could not belong to

more than one of the known patterns). Using a

procedure called habituation, after a pattern had

settled into a stable state, connection weights were

68

68

temporarily modified so that the network would decay

out of the stable state. When an ambiguous new

partial pattern was presented to the network in this

habituated state, the network would settle on the

pattern consistent with the input pattern which was

most similar to the previous stable pattern. In

this way, the network simulated resolution of a

lexical ambiguity in terms of the context of the

previous word (Kawamoto 1988).

 Although the use of a one word preceding

context to resolve lexical ambiguity in a neural

network is impressive, it is difficult to know how

to apply the research to the real world of

ambiguity. The semantic features used in the toy

simulation were assigned in a quite arbitrary way.

Kaplan's study showed that at least two to four

words of context would be necessary, and at least

one or two of them should be after the ambiguous

word. It is also difficult to know if the neural

network scheme could ever scale up to the demands of

a full vocabulary.

69

69

2.8 Summary

 In the forty years since Warren Weaver's memo,

a variety of approaches have been taken to solving

the lexical ambiguity problem. None of the

approaches taken so far has presented a reliable

solution for an implemented real-time machine

translation system.

 Wilks said that

 An ambiguity resolution system would be of

some interest within computational linguistics

even if it worked on a purely ad hoc basis,

since word ambiguity is probably the problem

holding up the achievement of reliable

mechanical translation.

 (Wilks 1968, p. 59)

 Strangely enough, the systems just using cover

words or the most common translations, or the most

common translations within a certain kind of text,

have actually been the most utilized and the most

successful. Weaver's first suggestion, that

ambiguity could be partially overcome by limiting

70

70

the domain of the input texts, is still the solution

that is most widely used.

 Weaver's next suggestion about using the 2N

word context has been too difficult to implement,

because of time and space considerations. The

optimism that was generated by Kaplan's paper was

based on an assumption that local context would be

easy to deal with, but it has not proved to be the

case. Methods that depended on division of science

into some number of technical areas, and

classification of portions of text into those areas,

had a reasonable degree of success, but not enough

that people were satisfied. Approaches based on

shared domain codes showed promise, but lacked the

underlying data base to even sufficiently test.

Methods based on somewhat random single

cooccurrences simply failed to be accurate enough.

 Approaches using complex individual procedures

for each word in the lexicon have been difficult to

manage, and have not led to any general solution to

the problem.

 The thesaurus approach was a noble effort, but

was probably based on a mistaken assumption, that

synonymy was the most important semantic

71

71

relationship that an ambiguous word could have with

other words in its context. Analysis of Roget's

Thesaurus into chains of entries and type-10

partitions failed to produce a reliable method of

semantic grouping. We still await a viable approach

to using thesaurus information for resolving lexical

ambiguity.

 Preference Semantics was an important

contribution to the field. Similarly, Collative

Semantics has given a new vitality to the old idea

of preferences. These approaches are difficult to

implement because of the care with which dictionary

entries must be prepared. The disappointing results

of the DLT project seem to indicate that a system

based only on selectional preferences will not be

sufficient to handle a wide enough variety of cases

of lexical ambiguity in real text.

 The viability of the marker passing algorithm

is difficult to assess, since it is so dependent on

details of the frame lexicon. Hirst's system

combines the use of selectional restrictions (but

not preferences) with marker passing, but the

uncertain ordering of elimination of senses by

selectional restrictions, and the selection of

72

72

senses based on marker passing, leads to doubt about

the validity of the algorithm. The care with which

dictionary entries must be prepared in systems that

use marker passing makes these approaches difficult

to implement and therefore difficult to judge.

 The neural network approaches previously

developed have been extremely limited in scope.

While they have offered some hope for the future, as

Kaplan's paper did, they have not offered clear

direction about how to expand them for use in a real

full-scale system.

 Part of the problem may have been a lack of

clear perspective about what kinds of lexical

ambiguity problems occur in actual text. The

frequency approaches and neural network approaches

have ignored selectional restrictions, while

Preference Semantics and Collative Semantics have

ignored almost everything else. The next chapter

will discuss examples of various kinds of ambiguity

in real raw text.

73

73

 Chapter 3

AMBIGUITIES IN REAL TEXT

3.1 Introduction

 It seems to have been common practice to take a

single approach to lexical ambiguity, and carry it

out for a limited set of examples to show some

feasibility for the approach. The last chapter gave

a brief overview of some of the methods that have

been tried. Because of the difficulty of creating

large lexicons, however, statistics on the

successfulness of various approaches in actual full-

scale implementations are very rare. Although some

methods look good for some well-chosen examples, it

is very hard to know how useful the various

proposals would actually be in a real system.

 This chapter presents the results of an

analysis of the types of lexical ambiguities that

occur in actual text. The ambiguities found were

manually classified according to which of several

general approaches might successfully resolve them.

This study was particularly concerned with lexical

74

74

ambiguities within the grammatical categories of

adjective, verb, and noun. After a word was

successfully categorized as belonging to one of

these categories, several senses within that

category often remained as possible meanings that

would require different translations.

 The study was based on four small texts. The

first was a newspaper article about some whales

which were trapped in Arctic ice (Provo Herald

1988); the second was made up of selections from an

article on AI (Dreyfus 1985); the third was from a

religious text (Smith 1978); and the fourth was from

a LISP manual (Gold Hill Computers 1983). These

texts are found in Appendix A. Together, the texts

included 3848 words. Of these, 1537 were adjectives,

verbs or nouns (about 40%). An English-to-Japanese

translation dictionary was used to make a list of

all the words which appeared in the texts. Each

word was listed with its possible grammatical

categories and possible translations within each

category. Each word in the source texts was then

annotated by its grammatical category in that

context, along with the possible translations for

that word within that category. It was found that

75

75

883 of the 1537 adjectives, verbs and nouns had

intra-category ambiguities (about 57%).

 Each word was then annotated with the subset of

possible approaches which could hope to successfully

resolve the ambiguity in its particular context.

Some ambiguities could be resolved simply by

syntactic considerations, or by assuming the phrase

containing the ambiguity would be entered in the

translation dictionary as an idiom. Others could be

resolved if it was assumed that the number of

translations in the dictionary was reduced so that a

single cover term could be used to cover all of

them. Others could be resolved by simply choosing

the sense of the word that would be expected to be

the most likely or frequently used sense in general

text. Some words could be considered to have a

technical meaning appropriate to the subject area of

the text. Many ambiguities could be correctly

resolved simply by using the same sense of the word

that had been chosen for the previous instance of

the same word in the text. Some ambiguities could

be resolved by appealing to selectional

restrictions. Others could be resolved by appealing

to some notion of general relatedness to words in

76

76

the immediate context. Ambiguities in some words

could be resolved by several of the approaches by

themselves; others could be resolved only by a

combination of approaches. Finally, some of the

ambiguities could not be correctly resolved by any

combination of these methods, and it was assumed

that some higher form of logical reasoning would be

required. The texts are presented in Appendix A

with the annotations which classified each ambiguous

word.

 Sections 3.2 to 3.10 will present each of the

approaches along with an example of its

applicability to an ambiguity from the texts.

Section 3.11 presents the results of the study.

Section 3.12 comments on the possible meaning of the

results.

3.2 Syntax

 Some intra-category ambiguities were resolvable

using syntactic restrictions. Some of the

restrictions considered were complement types and

agreement for verbs, countability for nouns, and

sentence position for adjectives.

77

77

For example, in the phrase

 As Husserl saw ...

the verb could either be 'saw' as the past tense of

'see', or 'saw' as in 'sawing wood'. 'Saw' cannot

have the 'sawing wood' sense in this case because it

would not agree with the third person subject.

3.3 Idioms

 The correct sense of some words could be

achieved by treating them as belonging to fixed

idioms. For example, it would be more sensible to

enter the whole phrase

 In the first place ...

in the lexicon than to try to predict the

translation of 'place' by some other method.

78

78

3.4 Frequency

 Often, the easiest way to pick the correct

sense of a word is simply to choose the sense that

is most frequent in general text. For example, in

the phrase

 When the waitress came to the table ...

one of the ways to resolve the ambiguity is to

simply take the most frequent meaning, that of

furniture 'table' over 'table' of figures.

3.5 Technical Glossaries

 Naturally, the relative frequency of word

senses depends on the type of text being used as the

standard. In a phrase in an article talking about

knowledge representation, such as

... the script accounts for the possibilities

in the restaurant game ...

79

79

the word 'script' is likely to have the technical

meaning. The most likely meaning in a computer

science text might be 'font', and in a text about

the theatre, 'the written form of a play'. This

method amounts to using a technical glossary for

translating texts within a given domain.

3.6 Discourse Memory

 Often, the context surrounding the first use of

a word is more specific than the context surrounding

its later uses. Once the intended sense of the word

is established by the context surrounding the first

usage, the same sense is assumed in further

instances of the word. For example, if the context

 ... thick Arctic ocean ice ...

establishes the meaning of 'ice' to be 'frozen

water' rather than 'sherbet', the more difficult

phrase later in the text,

 ... they quickly cleared the ice ...

80

80

can be resolved by simply using the same sense of

'ice' that was used earlier in the text.

 Words were marked as resolvable by this method

if the correct sense of the word was the same as the

correct sense of the previous instance of the word

in the text.

3.7 Cover words

 Although a source word may be translated by

several different target words, one of the possible

translations may be more general in meaning than the

others, and actually include or "cover" those more

specific meanings. For example, the verb 'decide'

in English can be translated into Japanese by

'kettei suru', meaning 'decide definitely on'; or by

'kesshin suru', meaning 'decide in one`s heart'; or

by 'kimeru', meaning 'decide upon'. Although the

former two meanings are more specific, the latter

meaning is general enough to cover them, and the

context is usually sufficient for the Japanese

reader to understand. In practice, this method

would be utilized by entering only the cover meaning

in the machine translation lexicon.

81

81

3.8 Preferences

 A verb or preposition often prefers certain

classes of arguments and an adjective often prefers

certain classes of heads to modify. These

preferences can sometimes be used to resolve

ambiguities. For example, in the fragment

The ... whales became trapped in the ice two

weeks ago while migrating south.

the two listed Japanese translations for 'migrate'

were 'idoo suru', meaning to 'move or locomote', and

'ijuu suru', meaning to 'immigrate or emigrate'.

The second one prefers a human subject, so the first

translation is more likely in this context.

82

82

3.9 Spreading Activation

 Often nearby words give a clue to the proper

sense of a word. For example, in the fragment

... California gray whales, whose species is

endangered, became trapped in the ice ...

'species' can be translated by 'shu', meaning 'type

of living thing'; or by 'shurui', meaning 'type or

kind'. In this case, the proximity of the word

'whales' makes it clear that the first is the best

translation. The word 'ice' can be translated by

'koori', meaning 'frozen water'; or by 'shaabetto',

meaning sherbet. Whales are clearly related to

water, and therefore to 'frozen water', but there is

no such immediate connection between whales and

sherbet.

3.10 Logical Reasoning

 Some kinds of ambiguities could not be resolved

by any of the above methods or any combinations of

them.

83

83

In the fragment

But Minsky seems oblivious to the hand-waving

optimism of his proposal that programmers rush

in where philosophers such as Heidegger fear to

tread . . .

'oblivious' can be translated as 'kizukanai',

meaning 'unaware'; or as 'wasureppoi', meaning 'apt

to forget'. In this case, it seems more likely that

Minsky was unaware of his "hand-waving optimism"

than that he had once been aware of it, but had

forgotten about it. This kind of reasoning is not

something that could easily be captured by any of

the previous methods for resolving ambiguities.

3.11 Results of the Study

 The following table reports the statistics

collected. Lines 1 through 5 give general

statistics on the number of words, number of words

in the categories surveyed, and the number of

polysemous words (with intra-category ambiguities);

also the number resolvable by syntactic

84

84

considerations alone, or by assuming the words

occurred in idioms that had been entered in the

dictionary.

 The second part is based on the number of

ambiguities left after the syntactic and idiom

methods had been used. The statistics in lines 7

through 12 are given as percentages of the number of

remaining ambiguities (shown in line 6) that can be

resolved by the given method alone. In line 13, the

percentages represent the number of ambiguities left

unresolved by all of methods used in lines 7 through

12 (and combinations of those methods).

 Text1 Text2 Text3 Text4

Total

1. Total words 421 1776 1212 439

3848

2. Adjs, verbs, nouns 194 731 411 201

1537

3. Polysemous words 84 424 248 127

883

4. Resolvable by syntax 20 93 61 20

194

85

85

5. Part of an idiom 12 36 11 10

69

6. Unresolved by above 52 297 176 97

622

7. Frequency 46% 39% 26% 39%

36%

8. Technical glossaries 0% 15% 3% 23%

11%

9. Discourse memory 21% 40% 37% 79%

44%

10. Cover words 27% 18% 27% 19%

21%

11. Preferencess 27% 11% 15% 3%

12%

12. Spreading activation 25% 9% 13% 3%

10%

13. Logical reasoning 2% 2% 5% 1%

3%

 The percentages do not add up to 100% because

some ambiguities are resolvable by more than one of

the methods. Of the ambiguities not resolved by

syntax and idioms, only 2% required some combination

of the methods in lines 7 through 12. Each of the

86

86

methods in lines 7 through 12 resolved between 3%

and 9% that could not be resolved by any of the

others.

3.12 Comments on the Results of the Study

 The purpose of the study was to get a general

idea of the potential usefulness of the general

approaches that have been taken to resolving lexical

ambiguity during machine translation. Of course,

since the purpose was to get such a general idea

before actually going to the trouble of trying to

make a full-scale implementation of any of the

methods, the data had to be analyzed manually, and

the results were unavoidably somewhat subjective.

The differences in the percentages in different

columns show that the statistics vary for different

kinds of text. The range of the percentages on each

line may give some general idea of the range of

usefulness of the various methods.

 The results could be considered surprising in a

number of respects. It might have been expected

that taking the most frequently correct sense of a

word would have succeeded at least 50% of the time,

87

87

but in the texts examined, it was not uncommon to

find words with three or more possible senses. If a

word had three senses, the first occurred 40% of the

time in general text, and the others occurred 30%

each, one would expect to achieve only about 40%

accuracy by choosing only the most frequent sense.

 It was most common for a word to be used in

only one sense within a single text. Despite this

fact, the discourse memory method was usable in less

than 50% of the cases because many words occurred

only once in the text, and the method was not usable

for the first occurrence of even words that occurred

more than once. The usefulness of this method is

somewhat exaggerated by the statistics, because it

was assumed that the previous occurrence of the word

in the text had been correctly classified, and at

least the first occurrence had to have been

classified by some other method.

 Although a word was commonly used in only one

sense within a text, it was not at all clear for

many of the words that they would be used

consistently in that sense alone in every text of

the same subject area. Words having a special

meaning in the particular subject area were marked

88

88

as resolvable by the technical dictionary method.

The statistics might have been higher if actual

statistics had been available about the frequencies

of usage in the various types of text. The first

text was considered a general text, since it had

come from a newspaper. Perhaps more of the words

could have been considered technical if it had been

labelled as a text about oceanography or zoology.

Still, the number of words that could be correctly

disambiguated using the technical domain approach

was surprisingly small, since that is one of the

major methods being used in actual systems.

 Another surprise was the low score for

preferences. The need for using selectional

restrictions is somewhat obscured by these

statistics, since disambiguation of prepositions

depends heavily on them. Still, the statistics are

surprising, because they imply that the best efforts

of Preference Semantics might hope to resolve only

about 30% of the major category class words in the

best case, and only about 12% in general. Perhaps

the statistics could be improved by using some

extremely ad hoc features, but the prospects of

using Preference Semantics alone seem rather bleak.

89

89

 Since each method resolved 3% to 9% of the

ambiguities that could not be resolved by other

methods, and 3% would require some form of logical

reasoning, it seems clear that to reach 95% accuracy

in resolving lexical ambiguity (without using

logical reasoning), one would have to use some

combination of all of the methods. No single method

will do.

90

90

Chapter 4

SPREADING ACTIVATION AND TRIGGER WORDS

4.1 Introduction

 Other than cases of ambiguity that require

logical reasoning, the fuzziest division between the

methods discussed in the last chapter seems to be

between the frequency method and the spreading

activation method. The cases in which the other

methods apply are fairly clear cut. Cases where

syntactic restrictions apply are easy to identify.

Idioms are also easy to identify. Texts can be

marked for their technical area before translation,

so that word senses particularly applicable to the

given area can be given precedence. When words are

first encountered in a text, the word and its chosen

sense can easily be stored, so that when the word is

found again, the same sense can be used (as long as

it has the same syntactic characteristics). The

dictionary can be coded in the first place with the

concept of cover words in mind, so that unnecessary

ambiguities do not even become possible choices.

Preferences

91

91

require considerably more work, but methods for

applying them have been studied for over 20 years by

those working in Preference Semantics (a simplified

version of Collative Semantics may offer the best

working algorithm); again, the cases in which

modifier and argument preferences can resolve

ambiguity are easy to delineate, once the lexicon

has been correctly coded.

 The frequency and spreading activation methods

are not so easy to separate, however. The idea is

that if a word appears in the context of certain

other words, they may trigger a sense other than the

most frequently used sense. The trick is to define

in some manner the trigger words allowed for each

less frequent sense and how they may interact; if

none of these are found in the context, the most

frequent sense should be used as a default.

 Capturing and representing trigger information

is no easy matter, however. Chapter 2 discussed the

idea of Weaver's contextual windows; to use a window

of size n on each side of a word, a matrix of

M(2n+1), where M is the size of the vocabulary,

would be required. A simpler method might be an M2

sized matrix, where rows are ambiguous words,

92

92

columns are potential trigger words, and the value

in a cell of the matrix would be the correct sense

of the ambiguous word (row) in the presence of the

trigger word (column). Alternatively, since many of

the cells on the row of an ambiguous word would

contain the sense number of its most frequent sense,

it would be enough to specify the most frequent

sense and list each of the other senses with the

trigger words that trigger them (the program in

Appendix B is actually an implementation of this

approach). However, how does one obtain the list of

trigger words and the senses they trigger? Even if

this information can be obtained, what should be

done if trigger words that trigger different senses

are found in the context? Does distance from the

word matter? Should trigger words have different

strengths?

 The thesaurus methods of Chapter 2 were an

attempt to quantify trigger words. A word was a

trigger if it appeared under the same heading as the

ambiguous word (in one of its senses) in the

thesaurus. The notion of semantic distance could

also be used to give different words a different

trigger strength. However, the complexity of

93

93

building the thesaurus makes this method very

difficult to use, and no statistics are available

about how successful even one implementation might

be. The fact that the thesaurus is based solely on

synonymy also makes it doubtful that this method

could be very useful.

 The marker passing methods also attempt to

address the trigger word problem. By spreading

activation among nodes in a knowledge base, trigger

words are allowed to choose the triggered sense of

an ambiguous word. Trigger words can also be given

different strengths. There may even be a way to

handle cases where words that trigger different

senses occur in the same context. But since

knowledge bases are so difficult to build, no

statistics are available on the possible success of

these methods in a full implementation, and there is

no guarantee that success in one such system would

imply success in another one with a different

knowledge base.

 The connectionist approaches are appealing

because they can be trained by real data, and they

have the ability to generalize. It seems plausible

that the process of deciding on a word sense among

94

94

several alternatives is more like a weighing process

than a logical discrete process. However, previous

work has been limited to vague discussion and toy

examples that give no clear direction for

implementation in a full system.

 An optimal approach would be one that could

automatically determine most frequent sense from

actual textual data, and at the same time gather

information about potential triggering of less

frequent senses. If this information could then be

used in some manner to train a connectionist

network, complex and arbitrary coding of thesauri or

knowledge bases could be avoided, and triggering and

frequency information could be combined in a

probabilistic algorithm for resolving ambiguity.

The approach described in this chapter is a

beginning attempt at just such a system.

4.2 Neural Cooccurrence

 One of the goals of using a connectionist

approach would be to find an architecture for a

neural network that could generalize classes of

cooccurring words. An experiment will be described

95

95

in this section, in which a small list of ambiguous

words were correctly categorized into cooccurrence

classes by a neural network.

 The input words and general categories of

intended senses were as follows:

bank money water

bail container money

bat animal sports

bridge cards water

calf animal bodypart

chest bodypart container

fence container sports

file office tool

palm bodypart plant

pen container office

pitcher container sports

poker cards tool

pool sports water

spade cards tool

squash plant sports

 The network was a feed-forward neural network.

Such a network is a connected directed acyclic

96

96

graph; it is composed of nodes and one-way

connections between pairs of those nodes. Each node

in the network has an associated real number called

its activation level, and another real number called

its bias. Each connection is also associated with a

real number called its weight. The activation of

each node changes once each cycle, and is calculated

based on the following equation:

 ai = _ (bi + _ aj * wji)
 j

 where ai is the activation of node i

 aj the activation of node j

 bi the bias of node i

 wji the weight of the

connection

 from node j to node i

 and

 1

 _ (x) = -------

 1 + e-x

97

97

 This particular network was composed of three

sets of nodes, namely input nodes, hidden nodes, and

output nodes. Each input node had a directed

connection to each hidden node, and each hidden node

had a directed connection to each output node. The

network had 16 words as input units, 8 hidden units,

and 32 output units. Each input unit corresponded

to one of the 16 words. There was one output unit

for each sense of each word. The network was set up

using the bp (back propagation) program in the

Explorations in Parallel Distributed Processing

(PDP) software of McClelland and Rumelhart. The

biases and weights in the network were trained

according to the back propagation formulas. In

these formulas, each non-input unit has an error

term calculated. The error terms for output units

are simply

 Ei = ti - ai

namely, the target activation minus the actual

activation.

98

98

The error term for each hidden unit depends on

activations and error terms of all of the output

units the hidden unit is connected to, as follows:

 Ei = _ wij * Dj
 j

 where Dj = Ej * aj * (1-aj)

Weights and biases are changed based on these values

and constants which control the gradual descension

of the network into a stable state which has learned

the patterns presented. The change in each bias and

weight is stored for use the next time they are

calculated; these are

 _wij = _ij * Di * aj + µ * _wij

 _bi = ßi * Di + µ * _bi

The constants are µ (for momentum) and _ij for

weight learning rate and ßi for bias learning rate.

Each weight is then modified by adding the _wij

term, and each bias is modified by adding the _bi

term. Each weight and bias in the network can be

99

99

modified once each time a training pattern is

presented, or once after the whole set of training

patterns has been presented. For this test, weights

were modified after each training pattern was

presented, and the parameters were µ=.9, _=.5 for

connections from hidden units to output units, _=.08

for connections from input to hidden units, ß=.5 for

output units, and ß=.08 for hidden units (see

McLelland 1988).

 The following pairs sharing a sense in the same

category were presented as input to the network:

pool bank (water) pool pitcher (sports)

pool bridge (water) pool fence (sports)

bank bridge (water) pool squash (sports)

bank bail (money) pool bat (sports)

bank stock (money) pitcher squash (sports)

bail stock (money) pitcher bat (sports)

stock calf (animal) fence squash (sports)

stock bat (animal) fence bat (sports)

calf bat (animal) squash bat (sports)

chest calf (bodypart) bail chest (container)

chest palm (bodypart) bail pitcher (container)

palm calf (bodypart) bail fence (container)

100

100

squash palm (plant) bail pen (container)

file pen (office) chest pitcher (container)

file spade (tool) chest fence (container)

file poker (tool) chest pen (container)

bridge spade (cards) pitcher fence (container)

bridge poker (cards) pitcher pen (container)

For each training pattern, the activations of the

input units corresponding to the two input words

were set to 1, and the target activations of the

correct output senses were set to 1, but the target

activations of the incorrect senses were set to 0.

The error terms of all output units which were not

senses of the input words were set to 0. The total

sum of squares is a measure of how well the network

has learned the input patterns; it is simply the sum

of the squares of the error terms of the output

units. The network in this test was trained until

the total sum of squares fell below 0.4. All of

these parameters, as well as the architecture of the

network, were specified in PDP network and pattern

files.

 After the network was trained, the values of

the hidden units were examined for each of the

101

101

training patterns. The activations for the hidden

units of each pattern (rounded to 0 if less than .5,

and to 1 otherwise) were as follows:

11010000 pool bank (water)

11010000 pool bridge (water)

11010000 bank bridge (water)

10000010 bank bail (money)

10110110 bank stock (money)

10100010 bail stock (money)

00110000 stock calf (animal)

00110110 stock bat (animal)

00111100 calf bat (animal)

10101000 chest calf (bodypart)

10101000 chest palm (bodypart)

00101000 palm calf (bodypart)

102

102

01000000 squash palm (plant)

01011101 pool pitcher (sports)

01011101 pool fence (sports)

01010100 pool squash (sports)

01010100 pool bat (sports)

01010110 pitcher squash (sports)

00010101 pitcher bat (sports)

01010110 fence squash (sports)

00010101 fence bat (sports)

01010100 squash bat (sports)

10101011 bail chest (container)

10101111 bail pitcher (container)

10001111 bail fence (container)

10101111 bail pen (container)

10101111 chest pitcher (container)

10001111 chest fence (container)

10101111 chest pen (container)

10101111 pitcher fence (container)

10001111 pitcher pen (container)

00000111 file pen (office)

00010011 file spade (tool)

103

103

00010011 file poker (tool)

10110000 bridge spade (cards)

10110000 bridge poker (cards)

 From this data, it appears that the network

generalized to representing not specifically the

pair of inputs, but rather the common class that

both of their senses belong to when they appear

together. The classes could be summarized as

follows:

 office 00000111

 tool 00010011

 animal 0011???0

 sports 0?01?1??

 plant 01000000

 bodypart ?0101000

 container 10?01?11

 money 10??0?10

 cards 10110000

 water 11010000

104

104

In other words, the network set up what could be

considered a binary feature representation of the

underlying cooccurrence classes.

4.3 Training with Raw Text

 Given a neural network structure that can

potentially generalize cooccurrence classes, the

next step is to train such a network with data from

real text.

 For this experiment, the Longman Dictionary of

Contemporary English was searched for occurrences of

the word 'bank' within the texts of definitions

(parenthetical material was not considered). The

following are words that cooccur three or more times

with 'bank' in its financial meaning within those

definitions:

account book business can central certain cheque

close door give interest money order paper

particular pay people person print public put record

room state sum supply system take various

105

105

The following words cooccur at least three times

with the geographical meaning of 'bank':

built earth ground high lake overflow river rock

sand sea stone stream underwater water wide

 A program and parameters similar to the one

above was used (see Appendices C and D), with eight

hidden units; one input unit for each context word

and one for 'bank'; and one output unit for each

word except 'bank', which had one for financial

'bank' and one for geographical 'bank'. Each

training pattern consisted of a pair of input words,

namely 'bank' and one of the above context words; in

the target patterns, the context word and the

correct sense of 'bank' had target activations of 1,

the incorrect sense of 'bank' had target activation

of 0, and the error terms of other output units were

set to 0.

 Each definition containing the word 'bank' was

then presented to the network as input. For each

definition, an input unit was given an activation of

1 if the unit corresponded to a word which occurred

in the definition (possibly more than once);

106

106

otherwise it was given an activation of 0. The

activation levels of the output units for the senses

of 'bank' were then compared, and the one with the

highest activation was chosen to be the proper

meaning in that context.

 Of 97 definitions including the word 'bank', 32

referred to a geographical bank. Of these 97

definitions, the network got the wrong meaning of

'bank' in only one case, namely the definition

 a deep bank or mass of snow formed by the wind

which includes none of the context words above.

 The experiment was tried again, using only the

first 76 definitions as input for training pairs.

Only words which cooccurred three or more times with

'bank' in these 76 definitions were used as

companions for 'bank' in training pairs. The words

'door', 'particular', and 'room' were no longer

paired with financial bank, and the words 'ground',

'high', and 'underwater' were no longer paired with

geographical bank. The remaining 21 definitions

were then presented as input, and the network failed

107

107

in 2 cases, one being the one above, and the other

being

a bridge consisting of a high tower on each

bank connected by lengths of steel rail from

which a flat carriage level with the ground

hangs

The words 'high' and 'ground' triggered correct

resolution in the first case, but were not known as

trigger words in the second. The network therefore

succeeded in over 90% of the cases of previously

unseen definitions.

4.4 Summary

 One of the most difficult problems in resolving

ambiguity is deciding when sufficient words are

present in the given context to trigger a sense that

is not the most frequent sense. One would prefer a

method that could automatically extract frequency

and trigger information from real text, and use it

in an automatic algorithm that would not have to

depend on arbitrary coding of thesauri or knowledge

bases.

108

108

 The experiment of section 4.2 showed that a

neural network can correctly generalize cooccurrence

classes if trained by presenting pairs of ambiguous

words and the correct senses they induce in each

other. The network set up what could be regarded as

a feature representation of the cooccurrence

classes, as shown by the activations of the hidden

units.

 The experiment of section 4.3 showed that

training pairs can be extracted from real text.

Using a network similar to the one in section 4.2,

and the automatically extracted training pairs, a

network was built that could choose the correct

sense of 'bank' in over 90% of the previously

unknown test cases.

 The next chapter will show how the same method

can be applied to a large text corpus with many

ambiguous words.

109

109

Chapter 5

SEMANTIC COOCCURRENCE NETWORKS BASED ON

 PARALLEL TEXT CORPORA

5.1 Introduction

 Unfortunately, many studies of lexical

ambiguity have either been vague treatises that are

difficult to formulate precisely, or detailed

descriptions of toy systems that may or may not

generalize for implementation in full systems. Some

approaches are based on hand-tailored thesauri or

knowledge bases that take so long to create that

full implementations have yet to be completed, so no

information is available about how successful the

approaches may actually be in the world of machine

translation.

 This chapter presents statistics from the

application of the method described in chapter 4 to

an English text of over a quarter million words,

which contained a vocabulary of over 9000 base

forms. A parallel French text was used to determine

different senses, and generate word pairs for

training a large neural network.

110

110

 Section 5.2 discusses the problem of the number

of word senses for a given word. Section 5.3

discusses the method for extracting training pairs

from parallel text corpora. Section 5.4 discusses

training of the neural network. Section 5.5 is an

evaluation of the results. Section 5.6 discusses

problems that remain. Section 5.7 summarizes the

conclusions of the study.

5.2 Word Senses

 One of the problems in dealing with lexical

ambiguity is deciding exactly how many different

senses a word really has. Yorick Wilks has

considered

 ... the suggestion that there never was

lexical ambiguity until dictionaries were

written in roughly the form we now have them,

and that lexical ambiguity is no more or less

than a product of scholarship ...

111

111

since

 ... different dictionaries may give 1, 2,

7, 34, or 87 senses for a single word and they

cannot all be right. Worse yet, different

segmentations of usage into discrete senses may

not even be inclusive. Sometimes different

dictionaries will segment usage into senses for

a given word in non-comparable ways: perhaps

play3 (the third of three) in dictionary A

could not be associated with any one of the

eight senses of 'play' in dictionary B.

 (Wilks 1987, p.

3)

He later rejects the idea that lexical ambiguity

exists only in the minds of lexicographers; his

argument that words really do have different sense

meanings essentially boils down to the fact that the

same word in different contexts cannot always be

translated by the same word in another language.

 The question remains, how many senses does any

particular word have? But, perhaps that is the

wrong question. It doesn't really matter how senses

112

112

are divided up until the purpose for the division is

known. In terms of machine translation, the real

question is, "How many words in the target language

are necessary to sufficiently cover the possible

meanings of a given source word?"

 When the algorithm for resolution of lexical

ambiguity is based on parallel text corpora, this

question becomes relatively easy to answer. The

number of target words needed to translate the given

word into the target language is no more than the

actual number of target words that were used to

translate that source word in the parallel texts.

If some of the target words were synonymous, or some

could cover the meanings of others, the actual

number of target words needed could be less than the

actual number used. In any case, the text corpora

give an upper bound to the number of ways the word

can be divided into senses.

 Furthermore, if the target translations are

used to partition the meanings of the source word

into senses, the frequency of usage of each of the

senses can be immediately calculated, and contexts

which may trigger each of the senses are also

available.

113

113

5.3 Extracting Training Pairs from Parallel Texts

 In order to test the reliability of the method

presented in chapter 4, an experiment was conducted

based on parallel texts of approximately a quarter

million words of English and French text, which

contained a variety of government and non-government

documents (this text was obtained from Alan Melby,

from some texts used to test the DLT algorithm

discussed in chapter 2). The text was divided into

over 6000 parallel sections, each of which contained

from one to seven sentences.

 Function words were removed from the texts, and

remaining words were reduced to base form. A

bilingual dictionary was created that showed nearly

all of the French translations for the 9103 English

base words that occurred in the corpus.

 The parallel texts were divided into a sample

corpus, namely the first 80% of the parallel texts,

and a test corpus. The sample corpus was searched

for pairs of English words that occurred together

five or more times within five words of each other;

if the pair of English words mapped to the same pair

of French translations in 85% of their

114

114

cooccurrences, the cooccurrence was deemed to be

significant. 54 words had such cooccurrence data

for more than one sense. The program in Appendix B

was used to determine that

67.3% of the instances of ambiguity of these words

in the test corpus could be resolved correctly

simply by picking the sense that had been most

frequent in the sample corpus. The trigger words

collected from the sample corpus were then used to

resolve ambiguity in the test corpus. Trigger words

within five words of the ambiguous word were

counted, and the translation with the most trigger

words was chosen. If there was a tie, the

translation among those that tied, which had been

used most frequently in the sample text, was the one

chosen. If there were no trigger words within five

words, the translation which had been most frequent

in the sample text was chosen. Using this method,

76.4% of the ambiguities were resolved correctly.

115

115

5.4 Training the Neural Network

 Normally, the practice is to keep neural

networks small. The interaction of cooccurrence

data, however, requires a critical mass of data in

order for broad contextual information to affect the

proper choice of sense. In the network, there is

one input node for each source word, and one output

node for each target word. Each input node is

connected to every hidden node, and each output node

is connected to every hidden node. This means each

source word has its own set of weights, which are

connections to the hidden units, and each target

word has its own weights, which are connections from

the hidden units. Source weights are only modified

during training when the given source word is one of

the two in the training pair; target weights are

only modified when the given target word is one of

the possible translations of the two source words,

either a correct or an incorrect translation.

Unless the training patterns overlap in either

source or target words, the network will behave like

many smaller networks, that just happen to use the

same hidden units. Much like the same park being

116

116

used one day for a church picnic and the next for a

hard rock concert, the one will not have much effect

on the other unless some of the participants meet

each other. When a source word maps to a particular

target word, this combination could be considered to

be a sense of the source word. The set of senses of

source words available in the training data

constitutes a kind of semantic cooccurrence concept

world, where each sense is treated as a concept.

Senses in this concept world are connected if they

cooccur. In other words, each training pair can be

considered to be two concepts in the concept world,

which are connected by a cooccurrence line.

Concepts can only have a contextual effect on other

concepts if they are transitively connected by

cooccurrences.

 Only 54 of the words in the corpus had

cooccurrence data for multiple senses, using 5

cooccurrences within 5 words. In order to establish

greater connectivity among the senses in the corpus,

pairs were extracted that occurred together 3 or

more times in the parallel texts, and the context

was allowed to be the whole segment in which the

word was found; again, each pair of English words

117

117

was required to map to the same pair of French

translations in 85% of their cooccurrences. Using

these parameters, there were 2855 English words with

cooccurrence data, involving 2462 French words, with

a total of 3835 unique source-target mappings in the

cooccurrence data. Considering each of these

mappings as a concept in conceptual space, and

connecting concepts that cooccurred, it was

determined that the conceptual space would be

partitioned into nine sets of concepts. Concepts in

each set were related by the fact that some sequence

of concepts could be found such that every pair of

adjacent concepts in the sequence cooccurred in the

training data. It turned out that eight of the nine

sets of concepts contained only two concepts each,

and the ninth set contained the remaining 3817. In

other words, the training data allowed 3817 of the

concepts to have a contextual influence on all of

the others.

 Now, armed with underlyingly connected training

data, a neural network was created with one input

unit for each English word and one output unit for

each French word in the training data. The network

used 54 hidden units, approximately the square root

118

118

of the number of input units. The learning

parameter _

for input-to-hidden weights and the bias parameter

ßfor hidden units was set to .5, and the learning

parameter _ for hidden-to-output weights and the

bias parameter ß for output units was set to .08.

The momentum parameter µ was set to .9, and the

epoch learning mode and permuted training were used.

 Since the network was so large, the PDP

software was unable to handle the task. Therefore,

the network training program in Appendix C was used.

It uses the same algorithms as the PDP software,

except that weights of connections emanating from a

single input unit are normalized so that they form a

vector of length 1.0. It also interfaces better

with large amounts of training data. In this case,

there were 20,738 training patterns. Each

cooccurring pair of English words was presented as

the input pattern, with the French words they mapped

to receiving positive feedback, and other French

words they could have mapped to receiving negative

feedback. Each pattern was presented to the network

176 times.

119

119

5.5 Evaluation of Network Performance

 The program in Appendix D was written to test

the performance of the network. Input to the

program included the ambiguous word, a list of

context words, the list of possible translations of

the ambiguous word in the original dictionary, and

the correct translation in the given context.

 The network was tested on the five English

words 'articles', 'committee', 'company', 'major',

and 'office.' 'Articles' was considered a base

form, since it occurs as a key word in the Longman

Dictionary of Contemporary English. A modified

version of the program in Appendix B was used to

extract contexts and correct translations from the

parallel texts for each of these five words.

 Each of the five words will be listed below

with its translations and common cooccurrences, the

total number of test sections for that word, the

percentage that could be achieved simply by choosing

the most frequent translation, and the percentage

achieved by the network.

120

120

articles articles aid, appropriate,

attendance, base,

committee, confidential,

council, debate, only,

other, parliament,

parliamentary, sign,

substance, treaty,

unofficial

 statuts accordance, activity,

board, company, directive,

dividend, entrust, form,

limit, ordinary,

possibility, proposal,

protection, provisions,

register, related, second,

shares, status, statutory

 32 instances, 56% translated 'statuts',

 network achieved 87%

committee commission apply, articles, brief,

cassette, confidential,

confidentiality,

delegation, enable,

experience, head, last,

121

121

open, option, parliament,

political, sign,

submission,substance,

superior, unofficial

 committee trust

 comité alternance, centre,

complementary, concrete,

consultative, decision-

making, desirable,

division, employment,

especially, foreigner,

generally, impact,

importance, instrument,

integration, language,

least, needs, position,

principle, problem,

qualifications,

recommendation, session,

situation, social,

standing, technology, town,

unemployment

 159 instances, 54% translated 'comité',

 network achieved 60%

122

122

company compagnie ---

 entreprise acceptable, common,

compensate, complexity,

conditions, crisis,

difficulty, discourage,

education, expose,

handicap, key, knowledge,

lighting, manpower,

objective, optical,

organize, permit,

population, possibly,

potential, principle,

productive, requirement,

responsibility, signal,

skill, sound, strengthen,

technological,

transmission, treat, type,

venture

 société articles, corresponding,

debtor, directive, entrust,

explicitly, governing,

indirectly, issue, legally,

list, meeting, network,

normal, bureau, orders,

123

123

payable, register,

regulation, statutory,

structural, third, three

 166 instances, 62% translated 'entreprise',

 network achieved 66%

major grand budgetary, machine, quality

 gros appliance, asset, domestic

 important lighting, steel

 majeur alternate, court

 principal ---

 114 instances, 43% translated 'grand',

 network achieved 47%

office bureau abroad, communication,

hour, manual, migrant,

transport

 office enterprise, federation,

finance

 37 instances, 54% translated 'bureau',

 network achieved 62%

 On these words, where sufficient cooccurrence

data was available, the network was successful. In

124

124

general, the network achieved 64.6% for the 909

words with cooccurrence data, whereas picking the

most frequent sense would have achieved 69.2%.

5.6 Problems with Neural Cooccurrence Networks

Based on Text Corpora

 Naturally, the quality of the text corpora

greatly affects the success of the network. Human

translators are not always consistent in their

selection of translations for the same word.

Approximate synonyms in the target language may be

used almost interchangeably for what could be

considered a single sense in the source language.

In these cases, although either might be acceptable

translations in a given context, the automatic

method of measuring accuracy used here insisted that

the network use the same translation that was found

in the text. This is more of a problem with the

measuring algorithm used than the network itself,

since either translation might be understandable to

a human reader.

 Subtle gradations of meaning in source words

are difficult even for human translators, and also

125

125

present a problem for the network. Because the

network is based on real number ranges of

activations and weights, however, this problem is

dealt with more realistically than in systems that

use only discrete mathematics. Most of the

ambiguous words encountered in this text involved

the subtle gradations of meaning, so their

resolution was not as clear cut as the 'bank'

example of chapter 4.

 The parallel corpora used for this example

included some odd cooccurrences. For example, some

of the texts reported vote tallies of countries in

the United Nations. Whenever countries voted

similarly 3 or more times, the country names

appeared together with the same translations enough

times that the system considered them to be training

pairs. There were other cases in which the same

wording was used in several different paragraphs, as

if it were being quoted from some standard. In

these cases, words whose cooccurrence was really

more accidental than meaningful became training

pairs. Parallel texts of any length will probably

contain a certain amount of idiosyncratic

cooccurrence. If enough text is used, these kinds

126

126

of idiosyncracies should tend to cancel each other

out.

 Unfortunately, some words occurred so

infrequently in the text that very little

cooccurrence data was generated for training

purposes. Infrequent words tend to be less

ambiguous, and therefore somewhat more useful to

humans for resolving ambiguity, but this is not

sufficiently captured by the current approach.

Although humans probably do not use words they have

heard only 3 times for much of anything including

lexical disambiguation, it is not currently feasible

to present the machine with the massive amounts of

input data that humans receive. The training data

using a minimum of 3 cooccurrences was not as

accurate as that using a minimum of 5 cooccurrences.

Using the program in Appendix B and default

translations from the sample text, the correct

translation could be achieved in 69.2% of the cases

of ambiguity for the 909 words in the corpus that

had cooccurrence data. Using the cooccurrence data

as input to the same program, and picking

translations based on tallying the number of trigger

words in the context, 69.1% of the cases could be

127

127

resolved correctly. Clearly, the training pairs

were less accurate using a minimum of only 3

cooccurrences. It is anticipated that a larger

training corpus would allow more accuracy in finding

training pairs, and the performance of the network

would be considerably better.

 Although the matched training that humans do

to learn word meanings is based on readily available

source words and target situations, parallel

translated texts may not be so easy to find.

Naturally, the texts should reflect the kind of

material to be translated, so that the contexts and

frequencies are not too skewed. It may not be easy

to find or create parallel texts similar enough to

the material to be translated and large enough to

sufficiently train the network. Fortunately, the

availability of machine-readable texts in general,

and parallel texts as well, should greatly increase

in the future.

 The approach as given here presents the entire

context to the network at one time by turning on the

input unit associated with each word that occurs in

the context. At first thought, this seems like an

odd way to find words that trigger a particular

128

128

meaning, since it is common for only one or two

words in a context to actually trigger the correct

meaning. An alternate method would be to present

the ambiguous word and a context word as a pair to

the network, once for each word in the context, and

tally up the scores of each of the senses. It turns

out, however, that the more the network is trained,

the more each context word has an opinion about what

the correct sense of the ambiguous word ought to be,

even if it is not really a trigger word for humans.

Even establishing a threshold of activation for

target senses in order to enter the tally does not

seem to work, perhaps because different training

pairs are learned by the network at different rates.

Apparently, presenting the whole context as input to

the network makes the words with uninformed opinions

cancel each other out, leaving the trigger words to

decide the correct sense. If insufficient context is

presented, cancelling may not be complete enough.

129

129

5.7 Conclusion

 This chapter has shown that the neural network

approach for resolving lexical ambiguity that was

introduced in the last chapter scales up for use in

a real system, based on data automatically extracted

from parallel texts. Although the results are not

as clear cut as the 'bank' example in chapter 4, the

results of this chapter show that the network

performs reasonably well even with words which have

a subtle gradation in sense meanings.

130

130

Chapter 6

RESOLUTION OF LEXICAL AMBIGUITY IN MACHINE

TRANSLATION

6.1 Introduction

 Chapter 2 discussed previous approaches to the

resolution of lexical ambiguity in Machine

Translation. Warren Weaver's first suggestion was

to limit the text to technical areas in which the

technical meanings appropriate to that area would be

given preference. His second suggestion was to use

windows of context, but direct implementation of his

idea was found to be impractical. Methods based on

word experts, routines particular to each ambiguous

word, were found to be ad hoc and difficult to

maintain. Methods based on semantic groups found in

a thesaurus were found to be inadequate if based on

a published thesaurus, and custom-built thesauri

suffered from the mistaken assumption that the only

valid relationship for grouping was synonymy.

Preference Semantics was found to be useful, but

inadequate in scope. Marker passing schemes are

potentially useful, but extremely complex to

implement

131

131

in a full system, since they depend on a full

knowledge base, and no statistics are available

about their actual usefulness in a full system.

Previous connectionist schemes were either too vague

or else just toy systems that would be difficult to

scale up to a full implementation.

 Chapter 3 discussed a manual analysis of four

texts to determine the kinds of ambiguities that

might actually occur, and methods that might be used

to disambiguate them. Some ambiguities were

resolvable purely by syntactic restrictions. Some

could be resolved by entering idioms in the

translation dictionary. Some could have been

resolved by more careful coding of the dictionary,

so that specific target translations whose meanings

could be covered by more general target words would

not be included in the dictionary at all. Some were

resolvable by marking certain translations as

especially appropriate for certain technical areas,

and then marking texts to be translated with the

technical area of their subject matter. Some could

be resolved simply by choosing the same translation

that had been used for the word in its previous

occurrence in the same text. Some required some

132

132

kind of checking of argument or modifier

preferences. Others could only be resolved with the

assumption that certain trigger words in the context

would signal the appropriate meaning. Some could be

resolved correctly by simply choosing the most

frequent translation. Finally, some could be

resolved only by using some form of logical

reasoning, but only 3% of the cases were found to

fall into this category. The most surprising result

was that none of the methods alone would be

sufficient. In fact, to achieve 95% accuracy, a

combination of all of the methods (except logical

reasoning), would be required.

 Chapter 4 discussed the difficulty of

determining when trigger words could be used to

indicate a translation should be chosen other than

the most frequent translation. An experiment was

discussed that indicated that a neural network might

be able to extract cooccurrence classes from

cooccurrence pairs by developing an internal feature

representation in its weights that would appear in

the activations of hidden units. The application of

this kind of network to contexts of the word 'bank'

in dictionary definitions showed that appropriate

133

133

training of the network could lead to over 90%

correct selection of word sense in previously unseen

text.

 Chapter 5 presented results based on parallel

English and French texts that showed that

cooccurrence data can be successfully used to

isolate trigger information for the resolution of

lexical ambiguity. Neural networks were successfully

trained to mirror this semantic cooccurrence

information.

 The next section will introduce an algorithm

for combining the methods discussed in chapter 3,

utilizing the neural network algorithm introduced in

chapter 4. Section 6.3 will discuss lexical

information required by the algorithm. Section 6.4

will discuss the order and interaction of the steps

of the algorithm.

6.2 The Algorithm

 The steps of the following algorithm include

the methods discussed in chapter 3, and include the

neural network algorithm of chapter 4:

134

134

1) If the ambiguous word occurs in an idiom,

translate the entire phrase with its idiomatic

meaning; otherwise

2) Attempt to reduce the number of possible senses

by using syntactic constraints; if only one

sense is left, use the appropriate translation;

otherwise

3) Reduce the number of possible senses by taking

into account argument preferences of verbs and

prepositions, and modifier preferences of

adjectives and prepositions; if only one sense

is left, use the appropriate translation; if no

senses are left, ignore the preferences and

continue; otherwise

4) If the word has already occurred in the text,

use the same translation used in its previous

occurrence; otherwise

5) If any of the senses are marked with the same

technical area as the text being translated,

eliminate other senses; if only one is left,

use the appropriate translation; otherwise

6) Present context words as activations to input

units of a neural network trained on

cooccurrence pairs from parallel texts, as in

135

135

chapters 4 and 5; pick the target translation

with the highest activation.

6.3 The Order and Interaction of Steps in the

 Algorithm

 The purpose of the algorithm is to choose the

correct word sense in the greatest majority of

cases. The examples in this section are given to

show the rationale behind the ordering of the steps.

6.3.1 Idioms and Syntax

 Idioms may need to be marked with some

syntactic conditions.

136

136

For example,

 John kicked the buckets.

should not mean that John died. Similarly, in

 John saw horses.

the idiom 'saw horse' should not take precedence

over the normal SVO reading. Nevertheless, idioms

take precedence over normal syntactic conditions.

For example, in a sentence without idioms like

 John took care of the impressive grounds.

countability indicates that 'grounds' should be the

sense meaning 'land around a building', rather than

'earth'. But in

 John took care of the coffee grounds.

the same countability conditions apply, but the

idiom clearly takes precedence.

6.3.2 Idioms and Preference

137

137

 Fixed idiomatic phrases usually retain their

meanings even when they appear in positions where a

semantic attribute of the head word alone would

satisfy a preference. For example, in the sentence

 The snow man was asking for immediate

attention.

'snow man' is still the best reading, even though

'ask' would normally prefer a human subject.

6.3.3 Idioms and Discourse Memory

 A word may appear by itself in a text, and be

used later as part of an idiom.

The engine had needed a new gasket. As soon as

it was fixed, the fire engine was ready to go

again.

The idiomatic meaning takes precedence in such a

case.

138

138

6.3.4 Idioms and Technical Tags

 The following could be a story problem in a

mathematics text:

If a coffee table is 2½ feet wide and five feet

long, how many potted plants ten inches in

diameter can it hold?

Although 'table' would usually mean a chart of

figures in a mathematics text, the idiom 'coffee

table' clearly takes precedence.

6.3.5 Idioms and Trigger Words

 Idiomatic readings take precedence over

meanings implied by trigger words.

 The water tank was blown up by a bazooka.

Although bazookas have more to do with military

vehicles than storage containers, 'water tank' is

clearly the intended meaning.

139

139

6.3.6 Syntax and Preference

 Even if a preference is met more strongly by

one reading than another, syntactic constraints may

force the less preferred reading.

 The man saw a two-by-four.

Although a piece of wood would satisfy the material

preference of the verb 'to saw', this 'saw' has to

be the past tense of 'see', since the third person

present of 'to saw' would be 'saws'.

6.3.7 Syntax and Discourse Memory

 Syntactic issues can force a meaning different

than the one used previously in a text.

The gardener could scarcely get a shovel in the

ground during the frozen months. But the owner

insisted the grounds be immaculate year round.

Here, the 'grounds' clearly refers to something

other than the mass meaning of 'ground'.

140

140

6.3.8 Syntax and Technical Tags

 Sometimes syntax indicates a different sense

than the one which would be more likely in a

technical text. For example, 'time' might be

expected to be the physical dimension in a high

school physics text. But in the sentence

Comets pass near the earth several times each

decade.

the countability makes it clear that 'time' means

'occurrence'.

6.3.8 Syntax and Trigger Words

 Syntactic constraints override weaker

influences by trigger words.

141

141

 The carpenter saw where he had put his hammer.

Here, the 'see' meaning wins, even though

'carpenter' and 'hammer' are closely related to the

verb meaning 'to saw'.

6.3.9 Preference and Discourse Memory

 Preference information can override a word

sense used previously in a text.

The sergeant drafted a memo to his commander,

saying, "Today, we drafted ten more men."

Both occurrences of 'draft' are determined by

preferences, but the second gets a different reading

than the first one, which has become the sense

remembered in the discourse.

6.3.10 Preference and Technical Tags

 Preferences can take precedence over technical

senses. In a military document, one would expect

142

142

the verb 'draft' to be used in its military meaning

of 'recruit', but in

 The sergeant drafted a memo.

the correct sense means something like 'outline' or

'sketch'.

6.3.11 Preference and Trigger Words

 Preferences usually have a more binding

influence than trigger words.

 The astronomer married a star.

Although they spend much of their time studying

celestial objects, even astronomers normally prefer

marrying humans.

6.3.12 Discourse Memory and Technical Tags

 The interaction of these two steps is quite

rare, since the previous occurrence of a word in a

technical document is usually the technical sense,

143

143

if it has one. However, in a military text

containing

Two water tanks were punctured. Each tank lost

over 20 gallons.

the latter 'tank' would have the same meaning as the

non-technical sense in the first sentence.

6.3.13 Discourse Memory and Trigger Words

 Words are often introduced in a context which

makes their intended sense clear, but are later used

without clear context. In these cases, the neural

network will probably default to the most frequent

sense, which may not be the one originally

introduced.

Wise fisherman usually fish on the south bank,

because the underbrush gives more hiding places

for the fish. The less experienced often

prefer the other bank, because it is easier to

get to.

144

144

Although trigger words could conceivably indicate a

new sense correctly, data from the survey of Chapter

3 indicates that once a sense is introduced, the

word appears with the same meaning in almost all

cases. If the original sense is not the default

sense, the network would probably choose the wrong

meaning in many of the later occurrences.

6.3.14 Technical Tags and Trigger Words

 Technical tags can overcome spurious

triggering. In a sports column,

The rain had little effect on the pitcher.

'pitcher' is clearly a baseball player, even though

pitchers often contain water and rain is made of

water.

6.4 Lexical Information Required by the Algorithm

 One requirement in a practical Machine

Translation system is the ability for end users to

enter new words. According to Mark Liberman,

145

145

although 12,000 words cover about 95% of the words

in English text, it is nearly impossible to cover

the other 5% with any dictionary of reasonable size.

This estimate was based on 15 million words of

English text from the AP wire service, in which he

found a total of about 100,000 words (other than

capitalized words, which were assumed to be names).

He also reported that the data revealed no

asymptotic behavior; above the 15 million words,

each additional million words of text added about

the same number of new words (Liberman 1989). One

might conclude from his report that it is nearly

impossible to provide a dictionary that will contain

all of the words that an end user may ever need.

Particular end users also tend to have their own

jargon and often coin new words, so it is essential

for the end user to have the ability to add new

words to the translation dictionary.

 Naturally, the algorithm for resolving lexical

ambiguity depends on having correct information in

the dictionary. Users can usually enter idiom and

syntactic information if sufficient examples and

helps are given, and once technical areas have been

defined, it is easy to add technical tags.

146

146

 The preference information, however, may be

somewhat more difficult. Some have approached this

problem by creating knowledge bases in which each

word sense has its own knowledge frame (such as in

Collative Semantics), and the frames are organized

in a semantic hyponymy hierarchy (sometimes called

an ISA hierarchy). Preferences can either be

matched by requiring a sense frame to have certain

features, or by requiring the sense frame to be

subordinate to the sense frame of some preference

category in the hierarchy. Because of inheritance

mechanisms in the knowledge base, these may not

realize the same results. Typically, a sense frame

has certain features of its own, and inherits others

from parents in the ISA hierarchy; if any conflicts

arise, the features of the sense frame take

precedence. For example, the sense frame of

'mammal' might indicate something about the ability

to walk, but although a 'whale' ISA 'mammal',

'whale' would presumably have some feature

indicating it does not have the ability to walk, and

this would take precedence over conflicting

information inherited from 'mammal'. The sets of

features and values available to be included in

147

147

different knowledge bases vary widely, and it is

extremely difficult to get uniformity among

different data entry operators creating a knowledge

base. Requiring end users to have the expertise to

decide exactly what features and values are required

on a new entry may well be too much to ask, since

there would have to be such a large set to choose

from.

 A simpler approach may be sufficient for

lexical ambiguity resolution, however. Most of the

information that would appear in such a knowledge

base would never actually be used by the algorithm.

Although it is beyond the scope of this work to

determine exactly, it seems very unlikely that the

classes of preferences required by actual

predicators and modifiers of a language would even

nearly approach the number of words in a language,

let alone the number of word senses. If one could

set up an ISA hierarchy of just the preference

categories that are actually required in the

language, this should be considerably simpler than

an entire knowledge base.

It would be unlikely that new words would require

too much modification to this hierarchy, because

148

148

most new words would be nouns rather than

predicators. Once the hierarchy was determined,

sufficient training should enable end users to be

able to determine categories of new words to be

added to the dictionary.

 The creation of training data for the neural

network is also something that end users could do.

All that is required is a sufficient quantity of

parallel text, and the algorithms for creating the

network are completely automatic. Incremental

training on new data is also possible.

6.5 Inevitable Errors

 Human translators often balk at the idea that a

computer can ever even approach the task of

translation. Translation is an art, and language is

the ultimate mirror of human intelligence. Mapping

between the thought structures of different cultures

is often difficult even for human translators. How

can a machine ever hope to even attempt such a task?

149

149

 Claude Piron, a translator who had experience

at the United Nations, spoke at the New Directions

in Machine Translation Conference held before COLING

'88. He gave the following example:

He could not agree with the amendments to the

draft resolution proposed by the delegation of

India.

 (Piron 1988)

In this case, another translator had assumed that it

was the resolution that had been submitted by the

delegation of India. Mr. Piron checked, however,

and determined that it was only the amendments that

were proposed by the delegation of India. This

information was not in the document, and surely

could not be expected to be in a world knowledge

base. Although the document could have been written

more plainly, the translator had no control over the

quality of the documents he was asked to translate.

Some translations were required at night, and the

translators were not allowed to contact the authors.

Mr. Piron also reported a case in which he wrote a

letter to ask an author his original intent, but was

150

150

informed that the author was no longer living. In

such cases, the translator had to guess.

 Mr. Piron also stated that good translators can

translate about 150 words per minute, and often read

directly into a dictaphone in the target language

until they meet a big problem, which may take hours

or even days to research. It is unreasonable to

think that machines, even programmed with vast

amounts of world knowledge, will be able to overcome

these kinds of problems. The correct translation

may well depend on details of events, not

necessarily given in the text, that have occurred

more recently than the building of the knowledge

base, which is necessarily limited to the time frame

and perspectives of those who built it.

 The conclusion has to be that no machine will

ever translate perfectly, any more than a human can.

There will inevitably be mistakes. The only

question is what kind of mistakes, and how many.

 There will be cases in which the algorithm of

this chapter gives the wrong answer. The goal of

the algorithm, however, is to give the correct

answer in the highest possible percentage of cases.

It is possible that a system using a world knowledge

151

151

base could be more accurate in resolving lexical

ambiguity. But how much more accurate? The data of

chapter 3 indicate that only about 3% of the

ambiguities in real text require logical reasoning.

Surely even a system based on a world knowledge base

will make mistakes when faced with the kinds of

problems described above. Considering the major

investment in time and resources required to produce

a world knowledge base, and keep it current, such a

system may never be economically feasible, if it is

even possible. Moreover, the assumption that a

system based on a world knowledge base would be more

accurate is merely a conjecture until it can be

proven to be so.

 In the meantime, the algorithm given here is a

practical method that can be utilized by anyone

attempting to build a machine translation system.

The data in chapter 3 indicates that a system that

ignores any of the major categories of ambiguities

discussed will miss from 3% to 9% of the cases that

will be encountered in real text. The algorithm is

a practical approach to recognizing categories of

potential lexical ambiguities and integrating

methods for their resolution.

152

152

6.5 Summary

 One of the most difficult problems encountered

in machine translation is the resolution of lexical

ambiguities. Many schemes have been tried to meet

this problem, but most have lacked perspective about

the kinds of ambiguities that actually exist in real

text; this may have led to the claim that the

machine must understand the text to be even

moderately successful. The data of chapter 3

partitioned naturally occurring ambiguities into

classes. This showed that many of the ideas that

had been tried before (a sample of which were

discussed in chapter 2) were on the right track for

certain classes of ambiguities. It also showed that

none of the methods for resolving ambiguities was

sufficient by itself.

 The insight of this thesis has been to identify

the naturally occurring classes of lexical ambiguity

(of content words), and to select from known methods

of resolution for those classes, and then to combine

the methods into a single resolution algorithm that

incorporates the insights of many previous workers.

153

153

 Because one of the more difficult interactions

of methods was found to be between using trigger

words and simply using the most frequent

translation, a new method using semantic

cooccurrence networks was introduced in chapter 4.

Cooccurrence data gathered from parallel texts was

shown to be useful for detecting the interaction

between trigger words and frequency. Semantic

cooccurrence networks were successfully trained to

mirror the cooccurrence data.

 The result is an algorithm that can be utilized

in a practical machine translation system.

 Future research should include more rigorous

testing of the algorithm, with various language

pairs and more lengthy parallel texts. The types of

errors remaining could then be classified, and the

algorithm improved. The parameters of the neural

networks should also be tuned, perhaps by varying

the number of hidden units, or the strengths of

contextual input units based on distance from the

ambiguous word.

154

154

Appendix A

TEXTS WITH CLASSIFIED AMBIGUITIES

 The texts analyzed and described in Chapter 3

are presented here. Each word with an intra-

category ambiguity is annotated with its grammatical

category, the number of intra-category senses that

were listed in the English-Japanese translation

dictionary, and the methods of disambiguation that

might be successfully used.

 The notation for each word is as follows:

 /cnxyz

where

 C is a grammatical category

 V verb

 N noun

 A adjective

 n is the number of senses within that category

 x, y, and z are methods that could be

successfully used alone

 A spreading activation

 C cover term

155

155

 D discourse memory

 F frequency

 I idiom

 L logical reasoning required

 S selectional restrictions

 T technical term

 X syntax

Note that an ambiguity that can be resolved by a

combination of methods is marked (x+y).

A.1 Newspaper Text

 A huge icebreaking barge/N4F began its journey

to rescue three trapped whales as scientists/N2FC

worried/V3X that plunging temperatures/N2FC and

polar/A2I bears would threaten the mammals they have

named/V2X Bonnet, Crossbeak and Bone.

 At dawn/N2X, a National/N2I Guard/N3I

helicopter rigged/V2S to tow the 185-ton

"hover-barge" was to resume/V2FS the 230-mile

trip/N2AFS along the desolate/A2FS Arctic coast from

Prudhoe Bay. It moved/V3X about five miles

156

156

Wednesday through sand bars/N2I, mud and shallow

water/N2F.

 The 24- to 30-foot/N3X-long/A2S California gray

whales, whose species/N2AS is endangered, became

trapped in the ice/N2AS two weeks/N2C ago while

migrating/V2S south.

 Eskimo whalers/N2F using chain/N2I saws in

sub-zero temperatures/N2F have been cutting

holes/N2F in the thick/A4AFS Arctic Ocean/N2C

ice/N2ADF to help/V3CF the mammals breathe. They

got a boost/N3I Wednesday when two brothers-in-law

from Minnesota brought six $400 de-icers to the

$500,000 rescue effort/N2CF.

 Greg Ferrian and Rick Skluzacek, of Lakeland,

flew to Alaska at their own expense to

demonstrate/V2AS the devices, invented by

Skluzacek's father/N3F, when rescue coordinators/N3C

politely refused their offer/N2F to help/N3C.

 Early today/N2X, under the skeptical

supervision of the coordinators/N3CD, they quickly

cleared/V2X ice/N2ADF and slush/N3AF from the two

breathing holes/N2I, accomplishing in hours/N2X what

had been taking the rescue team, using chain/N2I

157

157

saws, pick-axes and steel bars/N3AS, a day/N2X to

do.

 The cylindrical de-icer, about 9 inches around

and 14 inches long/A2DS, floats in the water/A2X

suspended beneath a styrofoam slab. A small/A2FS,

double-blade propeller pulls warmer water/N2X up

from below and emits it with 34 pounds/N2X of

thrust/N2S.

 Within 24 hours/N2X, the breathing holes/N2I

should be about 30 feet by 70 feet -- three to four

times/N2X the original/N2(C+S) size/N2C, Skluzacek

said.

 The devices are used in marinas to keep

boats/N2C from becoming frozen/V4FS in the winter,

Ferrian said.

 The tired/A3F whales can survive for several

more weeks/N2X despite being battered/V2L and

bleeding from grating against jagged ice/N2DF, said

John Lien, professor/N2C of animal/N3(C+F) behaviour

at Memorial University in Canada.

 "They can bleed a barrel/N2C and still be

fine/A2S," said Lien, who has helped/V3C free whales

from ice/N2ADF for 20 years/N3F. "We're talking/V2X

158

158

about a big animal/N3(C+F)D here, between five to 20

tons/N2C."

 The whales also may have to contend with

polar/A2I bears. Reporters flying/V3S by helicopter

Wednesday spotted/V3FS five prowling the ice/N2DF a

few miles from the whales.

 "There are polar/A2I bears that are certainly

going to be attracted to this," said Ron Morris of

the National/A2X Marine Fisheries Service/N3I. "If

they're going to take/V4L the whales, we're not

going to stop them."

 (Daily Herald, 20 Oct 1988, page 1)

A.2 Extracts from an Article on Artificial

Intelligence

Just constructing a knowledge/N3I base/N3I

is a major intellectual research

problem/N2AF We still know far too

little/A2X about the contents/N2F and

structure/N2S of common-sense/N3I

knowledge/N2AF. A "minimal" common-sense

system/N3F must "know" something about

cause-effect, time/N3C, purpose/N3X,

159

159

locality/N3CF, process/N3(C+F), and

types/N2X of knowledge/N2FD We

need/V2C a serious/A4(A+S) epistemological

research effort/N2C in this area/N4A.

 Minsky's naivete/N3F and faith/N3CF are

astonishing. Philosophers/N2F from Plato to

Husserl, who uncovered all these problems/N2DF and

more, have carried on serious/A4CD epistemological

research in this area/N3AD for two thousand

years/N3X without notable/A2S success. Moreover,

the list Minsky includes in this passage/N3AF deals

only with natural/A2X objects/N3F, and their

positions/N3FS and interactions. As Husserl

saw/V2X, intelligent behavior also presupposes a

background/N3A of cultural practices/N3A and

institutions/N3A. Observations in the frame/N3T

paper/N4T such as: "Trading/V2F normally occurs in a

social context of law/N3C, trust/N3X, and

convention/N3F. Unless we also represent/V3T these

other facts/N2X, most trade/N3AF transactions/N3AF

will be almost meaningless" (p. 34/102) show/V5X

that Minsky has understood this too. But Minsky

seems oblivious/A3L to the hand-waving optimism of

160

160

his proposal/N2C that programmers/N2T rush in where

philosophers/N2DF such as Heidegger fear/V2F to

tread, and simply make/V4X explicit/A2S the

totality/N3F of human practices/N3D which pervade

our lives/N3C as water encompasses the life/N3D of a

fish.

 ...

 No doubt many of our social activities are

stereotyped, and there is nothing in principle/N3I

misguided in trying/V3X to work out primitives/N2T

and rules/N3T for a restaurant game/N3F, the way/N3X

the rules/N3S of Monopoly/N2X are meant to capture a

simplified version/N2F of the typical/4AF moves/N3AF

in the real estate/N3I business/N3F. But Schank

claims that he can use this approach/N2C to

understand/V3X stories/N3F about actual

restaurant-going -- that in effect/N3I he can

treat/V2C the sub-world of restaurant going/V3X as

if it were an isolated micro-world. To do this,

however, he must artificially limit the

possibilities/N2X: for, as one might suspect, no

matter/N3I how stereotyped, going/V3X to the

restaurant is not a self-contained game/N3DF but a

highly variable set/N2X of behaviors which open out

161

161

into the rest/N3I of human activity. What "normally"

happens when one goes/V3X to a restaurant can be

pre-selected and formalized by the programmer/N2T as

default/N3T assignments/N3FT, but the background/N3D

has been left out so that a program using such a

script/N3T cannot be said to understand/V3X

going/V3X to a restaurant at all. This can easily

be seen by imagining/V2X a situation/N3F that

deviates from the norm/N2C. What if when one

tries/V3X to order/V2X he finds/V4X that the

item/N2S in question/N3I is not available/A4C, or

before paying/V2X he finds/V4X that the bill/N3AF is

added/V3X up wrongly? Of course/N3I, Schank would

answer/V2X that he could build/V3X these normal

ways/N3F restaurant-going breaks/V3I down into his

script/N3DT. But there are always abnormal

ways/N3DF everyday activities can break/V3DI down:

the juke box/N2I might be too noisy, there might be

too many flies on the counter/N2F, or as in the file

Annie Hall, in a New York delicatessen/N3C one's

girl/N3I friend/N2I might order/V2X a pastrami

sandwich on white/A3(F+S) bread with mayonnaise.

When we understand/V3X going to a restaurant we

understand/V3X how to cope with even these abnormal

162

162

possibilities/N2X because going/V3X to a restaurant

is part/N3F of our everyday activities of going/V3X

into buildings/N2X, getting things/N2F we want/V6F,

interacting with people/N3F, etc.

 To deal with this sort of objection Schank has

added/V3X some general rules/N3DT for coping with

unexpected/A2X disruptions/N2X. The general

idea/N3F is that in a story/N3DF "it is usual/A2X

for non-standard/N3FS occurrences/N2X to be

explicitly mentioned" (Schank and Abelson, 1977; p.

51); so the program can spot/V3F the abnormal

events/N3C and understand/V3X the subsequent

events/NCD as ways/N3X of coping with them. But

here we can see/V3F that dealing with stories/N3DF

allows/V3X Schank to bypass the basic/A3C

problem/N2DF, since it is the author's

understanding/N3F of the situation/N3DF which

enables him to decide/V3C which events/N3CD are

disruptive enough to mention.

 This ad hoc way/N3X of dealing with the

abnormal can always be revealed/V2S by asking/V3I

further/A2S questions/N3I, for the program has not

understood a restaurant story/N3DF the way/N3DF

people/N3DF in our culture do, until it can answer

163

163

such simple/A3L questions/N2DFS as: When the

waitress came to the table/N2FS, did she wear/V2S

clothes? Did she walk forward or backward? Did the

customer eat his food with his mouth/N2X or his

ear/N2X? If the program answers, "I don't know," we

feel/V2X that all of its right/A6(C+S) answers were

tricks/N3C or lucky guesses/N2A and that it has not

understood anything of our everyday restaurant

behavior. The point/N3F here, and throughout, is

not that there are subtle things/N3S human/N1I

beings can do and recognize which are beyond the

low-level understanding/N3F of present/A4(F+S)

programs, but that in any area/N3D there are

simple/A3AD taken-for-granted responses/N3F

central/A2X to human understanding/N3DF, lacking

which a computer program cannot be said to have any

understanding/N3DF at all. Schank's claim/N3X, that

"the paths/N2F of a script/N3DT are the

possibilities/N2X that are extant in a

situation/N3DF" (1975b; p.132) is insidiously

misleading. Either it means/V2X that the

script/N3DT accounts for the possibilities/N2X in

the restaurant game/N3D defined by Schank, in which

case/N3C it is true/A3(F+S) but uninteresting; or he

164

164

is claiming that he can account for the

possibilities/N2X in an everyday restaurant

situation/N3DF which is impressive but, by Schank's

own admission/N3L, false.

 Real short/A4F stories/N3DF pose a further

problem/N2DF for Schank's approach/N2CD, in a

script/N3DT what the primitive actions/N3F and

facts/N2T are is determined/V2X beforehand, but in a

short/A4DF story/N3DF what counts/V2X as the

relevant facts/N2DT depends on the story/N3DF

itself. For example, a story/N3DF that

describes/V2F a bus trip/N2AF contains in its

script/N3DT that the passenger thanks the driver/N3F

(a Schank example). But the fact/N2DT that the

passenger thanked the driver/N3DF would not be

important/A3S in a story/N3DF in which the passenger

simply took the bus as a part/N3F of a longer/A2S

journey, while it might be crucially important/A3D

if the story/N3DF concerned a misanthrope who had

never thanked anyone before, or a very law-abiding

young man/N3F who had courageously broken the

prohibition/N3C against speaking/V2X to drivers/N3DF

in order to speak/V2X to the attractive/A2C woman

driving/V4S the bus. Overlooking this point/N3DF,

165

165

Schank claimed at a recent meeting/N3C that his

program, which can extract death/N3C statistics/N3X

from newspaper accident reports/N2AF, had answered

my challenge/N2L that a computer would count/V2X as

intelligent only if it could summarize a short/A4DF

story/N3DF. But Schank's newspaper program cannot

provide/V2F a clue concerning judgements/N3L of what

to include in a story/N3DF summary because it

works/V4L only where relevance/N2F and significance

have been predetermined, and thereby avoids dealing

with the world/N2F built up in a story/N3DF in

terms/N3I of which judgments/N3DFS of relevance/N2DF

and importance are made.

 Nothing could ever call/V4I into question/N2I

Schank's basic assumption that all human

practice/N3X and know-how is represented/V3DT in the

mind/N3A as a system/N2C of beliefs/N3C constructed

from context-free primitive actions/N3DF and

facts/N2DT, but there are signs/N3A of trouble/N3C.

Schank does admit that an individual's "belief/N3CD

system/N3DF" cannot be fully elicited from him;

although he never doubts that it exists and that it

could in principle/N3I be represented/V3DT in his

formalism. He is therefore led to the desperate/A2F

166

166

idea/N3DF of a program which could learn/V2S about

everything from restaurants to life/N3DF themes the

way/N3DF people/N3DF do. In one of his papers/N4DT

he concludes/V3X:

We hope/V3X to be able to build/V3X a program

that can learn/V2DS, as a child/N2F does, how

to do what we have described/V2DF in the

paper/N4DT instead of being spoon-fed the

tremendous information necessary.

In any case/N3I, Schank's appeal/N3FS to learning is

at best another evasion/N2X. Developmental/A2I

psychology/N2I has shown that children's learning

does not consist merely in acquiring more and more

information about specific/A2X routine/N3CF

situations/N3CD by adding new primitives/N2DT and

combining old/A3S ones as Schank's view/N3A would

lead one to expect/V2X. Rather, learning of

specific/A2X details/N2C takes place/N3I on a

background/N3AD of shared practices/N3D which seem

to be picked/V3I up in everyday interactions not as

facts/N2DT and beliefs/N3DF but as bodily skills for

coping with the world/N2D. Any learning presupposes

167

167

this background/N3D of implicit/A3F know-how which

gives/V4S significance to details/N2CD. Since

Schank admits that he cannot see/V3X how this

background/N3D can be made explicit/A2DS so as to be

given/V4S to a computer, and since the

background/N3D is presupposed for the kind/N3X of

script/N3DT learning Schank has in mind/N3I, it

seems that his project of using preanalyzed

primitives/N2DT to capture common sense/N3I

understanding/N3AD is doomed.

 ...

... AI researchers have consistently run/V4I up

against the problem/N2DF of representing/V3DT

everyday context. Work/N3X during the first five

years/N3X (1967-1972) demonstrated the futility/N2F

of trying/V3X to evade the importance of everyday

context by creating/V2F artificial/A2F gamelike/N3DF

contexts preanalyzed in terms/N3I of a list of

fixed-relevance features/N3T. More recent work/N3X

has thus been forced to deal directly with the

background/N3D of common-sense know-how which guides

our changing sense/N3S of what counts/V2X as the

relevant facts/N2DT. Faced with this necessity/N3C

researchers have implicitly tried/V3X to treat/V3X

168

168

the broadest context or background/N3AD as an

object/N3DF with its own set of preselected

descriptive/A2F features/N3DT. This assumption, that

the background/N3D can be treated/V3X as just

another object/N3DF to be represented/V3DT in the

same sort of structured description/N2T in which

everyday objects/N3DF are represented/V3DT, is

essential/A4C to our whole philosophical/A2F

tradition/N2C. Following Heidegger, who is the

first to have identified and criticized this

assumption, I will call/V4X it the metaphysical

assumption.

... Just as it seems plausible that I can learn/V2S

to swim by practicing/V2F until I develop/V3X the

necessary patterns of responses, without

representing/V3DT my body/N3AF and muscular

movements/N3A in some data structureN2T, so too what

I "know" about the cultural practices/N3DF which

enables me to recognize and act/V4F in specific/A2X

situations/N3DF has been gradually acquired through

training in which no one ever did or could, again on

pain/N2C of regress/N3C, make/V4X explicit/A2DS what

was being learned/V2X.

 ...

169

169

 The idea/N3DF that feelings/N3DF, memories/N3X,

and images/N3C must be the conscious/A3S tip/N3C of

an unconscious/A2C framelike/N2DT data

structure/N2DT runs/V4I up against both prima facie

evidence/N2C and the problem/N2DF of explicating the

ceteris paribus conditions/N3A. Moreover, the

formalist assumption is not supported by one shred

of scientific/A2CF evidence/N2CD from

neuro-physiology or psychology/N2A, or from the past

successes of AI, whose repeated failures/N2X

required/V4X appeal/N3DFS to the metaphysical

assumption in the first place/N3I.

 ... If one thinks/V2X of the importance of the

sensory-motor skills in the development/N2C of our

ability to recognize and cope with objects/N3CD, or

of the role of needs/N3C and desires in structuring

all social situations/N3A, or finally of the

whole/A3X cultural background/N3AD of human

self-interpretation involved in our simply knowing

how to pick/V3I out and use chairs/N3FS, the idea

that we can simply ignore this know-how while

formalizing our intellectual understanding/N3DF as a

complex system/N3DF of facts/N2DT and rules/N3DT is

highly implausible.

170

170

 (Dreyfus 1981)

A.3 A Religious Text

 Sometime in the second year/N3X after our

removal/N3C to Manchester, there was in the

place/N3F where we lived/V2F an unusual

excitement/N3C on the subject/N3C of religion. It

commenced/V2X with the Methodists, but soon became

general among all the sects in that region of

country/N3X. Indeed, the whole district/N3C of

country/N3X seemed affected/V2C by it, and

great/A4AS multitudes/N3C united themselves to the

different religious parties/N3C, which created/V2F

no small/A2S stir/N3C and division/N3C amongst the

people/N3F, some crying/V2X, "Lo, here!" and others,

"Lo, there!" Some were contending/V2X for the

Methodist faith/N3A, some for the Presbyterian, and

some for the Baptist.

 For, notwithstanding the great/A4S love/N3C

which the converts to these different faiths/N3DF

expressed at the time/N3I of their conversion/N3T,

and the great/A4DS zeal manifested by the respective

clergy, who were active in getting/V5I up and

promoting this extraordinary/A2L scene/N3C of

171

171

religious feeling/N3AF, in order/N4I to have

everybody converted, as they were pleased to

call/V4X it, let them join/V2ST what sect they

pleased; yet when the converts began to file/V2X

off, some to one party/N3CD and some to another, it

was seen that the seemingly good feelings/N3DF of

both the priests/N2C and the converts were more

pretended than real; for a scene/N3CD of great/A4DS

confusion/N3A and bad feeling/N3X ensued

--priest/N2CD contending/V2X against priest/N2CD,

and convert against convert; so that all their good

feelings/N3DF one for another, if they ever had any,

were entirely lost/A4(F+S) in a strife of words/N3X

and a contest about opinions.

 I was at this time/N3C in my fifteenth

year/N3X. My father's family/N2C was proselyted to

the Presbyterian faith/N3AD, and four of them

joined/V2X that church, namely, my mother/N3CF,

Lucy; my brothers Hyrum and Samuel Harrison; and my

sister/N2C Sophronia.

 During this time/N2CD of great/A4DFS

excitement/N2CD my mind/N3A was called/V3I up to

serious/A4S reflection and great/A4DS

uneasiness/N2F; but though my feelings/N3ADF were

172

172

deep/A2F and often poignant, still I kept myself

aloof from all these parties/N3CD, though I

attended/V2S their several meetings/N3S as often as

occasion/N2C would permit. In process/N2C of

time/N3CD my mind/N3D became somewhat partial/A2L to

the Methodist sect, and I felt/V2A some desire to be

united with them; but so great/A4DS were the

confusion/N3CD and strife among the different

denominations/N2C, that it was impossible/A3L for a

person/N3X young as I was, and so unacquainted/A3C

with men and things/N2F, to come/V3I to any

certain/A5C conclusion/N3I who was right/A6AF and

who was wrong/A2AS.

 My mind/N3AD at times/N3I was greatly

excited/V2X, the cry/N3F and tumult were so

great/A4DS and incessant. The Presbyterians were

most decidedly/V3X against the Baptists and

Methodists, and used all the powers/N3FS of both

reason/N3X and sophistry/N2C to prove/V3S their

errors/N3L, or, at least, to make/V3X the people/N3F

think/V2X they were in error/N3D. On the other

hand/N3I, the Baptists and Methodists in their

turn/N3X were equally zealous/A2S in endeavoring to

173

173

establish/V2S their own tenets and disprove all

others.

 In the midst of this war/N2A of words/N3X and

tumult of opinions, I often said to myself: What is

to be done? Who of all these parties/N3CD are

right/A6AD; or, are they all wrong/A2ADF together?

If any one of them be right/A6AD, which is it, and

how shall I know it?

 While I was laboring/V2C under the extreme

difficulties caused/V2X by the contests of these

parties/N3CD of religionists, I was one day/N2X

reading the Epistle of James, first chapter and

fifth verse/N3X, which reads/V3CD: If any of you

lack wisdom/N2F, let him ask/V3X of God, that

giveth/V4X to all men/N3DF liberally, and upbraideth

not; and it shall be given/V4X him.

 Never did any passage/N4A of scripture come

with more power/N3A to the heart/N3L of man/N3X than

this did at this time/N3CD to mine. It seemed to

enter with great/A4DS force/N2C into every

feeling/N3ADF of my heart/N3AD. I reflected/V4(C+S)

on it again and again, knowing that if any

person/N3DF needed wisdom/N2DF from God, I did; for

how to act/V4F I did not know, and unless I could

174

174

get/V5X more wisdom/N2DF than I then had, I would

never know; for the teachers of religion of the

different sects understood the same passages/N4AD of

scripture so differently as to destroy all

confidence/N3C in settling/V4S the question/N3F by

an appeal to the Bible/N3C.

 At length I came to the conclusion/N3C that I

must either remain in darkness and confusion/N3C, or

else I must do as James directs/V3F, that is,

ask/V3X of God. I at length came to the

determination/V3C to "ask/V3X of God,"

concluding/V3X that if he gave wisdom/N2DF to them

that lacked wisdom/N2DF, and would give/V4DF

liberally, and not upbraid, I might venture/V2F.

 So, in accordance with this, my

determination/N3CD to ask/V3X of God, I retired/V2X

to the woods to make/V4X the attempt. It was on the

morning/N2C of a beautiful, clear/A7S day/N2X, early

in the spring/N3X of eighteen hundred and twenty.

It was the first time/N3X in my life/N3C that I had

made such an attempt, for amidst all my anxieties I

had never as yet made the attempt to pray vocally.

 After I had retired/V2X to the place/N3DF where

I had previously designed/V3X to go/V3X, having

175

175

looked around me, and finding myself alone/A2X, I

kneeled down and began to offer up the desires of my

heart/N3ADF to God. I had scarcely done so, when

immediately I was seized/V2S upon by some

power/N3ADF which entirely overcame me, and had such

an astonishing influence/N2I over me as to bind/V2FS

my tongue/N2S so that I could not speak/V2X.

Thick/A4FS darkness gathered around me, and it

seemed to me for a time/N3CD as if I were doomed to

sudden destruction.

 But, exerting all my powers/N3ADF to call/V3I

upon God to deliver me out of the power/N3DF of this

enemy/N2C which had seized/V2X upon me, and at the

very moment/N2C when I was ready/A4L to sink/V2F

into despair and abandon myself to destruction --

not to an imaginary ruin/N3L, but to the power/N3DF

of some actual being from the unseen world/N2F, who

had such marvelous power/N3DF as I had never before

felt/V2D in any being -- just at this moment/N2DF of

great/A4DS alarm/N2X, I saw/V2L a pillar/N2X of

light/N3X exactly over my head/N3X, above the

brightness/N3A of the sun, which descended/V2L

gradually until it fell upon me.

176

176

 It no sooner appeared/V2X than I found myself

delivered from the enemy/N2CD which held me

bound/A4F. When the light/N3D rested upon me I

saw/V2X two Personages/N3AF, whose brightness/N3A

and glory/N3AT defy all description/N2F, standing

above me in the air/N3F. One of them spake unto me,

calling/V4X me by name/N3I and said, pointing/V2X to

the other -- This is My Beloved/A3L Son. Hear Him!

 My object/N3X in going/V3X to inquire of the

Lord/N3X was to know which of all the sects was

right/A6DF, that I might know which to join/V3DT.

No sooner, therefore, did I get/V5X possession/N2X

of myself, so as to be able to speak/V2X, than I

asked/V3X the Personages/N3D who stood above me in

the light/N3D, which of all the sects was

right/A6DF.

 I was answered that I must join/V2DT none of

them, for they were all wrong/A2ADF; and the

Personage/N3D who addressed me said that all their

creeds/N2C were an abomination/N2X in his sight/N3F;

that those professors/N2F were all corrupt; that:

"They draw/V2I near to me with their lips/N2X, but

their hearts/N3D are far from me; they teach/V2X for

doctrines the commandments/N2C of men/N3DF, having a

177

177

form/N3(C+S) of godliness, but they deny the

power/N3DF thereof."

 (Smith 1978, v. 5-19)

A.4 A Text from a Computer Manual

Scope and Extent/N3T

 Naming/V2S something and then referring to that

thing/N2F by its name/N3F at some other place/N3F or

time/N3C is a fundamental/A2C part/N2F of every

language/N2C; be it a natural/A2I language/N2I like

English/N2X, or an artificial/A2C language/N2CD like

COMMON LISP/N2I. Although English/N2X and COMMON

LISP/N2I are very different languages/N2CD, their

basic/A3F concepts of naming/V2ADF and referring (or

referencing) are quite similar/A2X.

 In COMMON LISP/N2I, every entity/N2X can have a

name/N3DF. When one wants to refer to an

entity/N2X, one uses its name/N3DF. As in

English/N2X, a name/N3DF may refer to different

entities/N2X at different places/N3DF and

times/N3CD. The word/N3X President/N3X exemplifies

the context-sensitive nature of names/N3DF in

English/N2X. President/N3D refers to a different

178

178

person/N3F in different places/N3DF (e.g., Gold/N3I

Hill Headquarters, Washington, D.C., Paris). Within

the same place/N3DF, President/N3D may also refer to

different people/N3F over the course/N4C of

time/N3CD. For example/N2I, within a single

business/N3F meeting/N3F (held in 1984),

President/N3D may refer to Stan Curtis, Ronald

Reagan, and Francois Mitterand over the course/N4CD

of the meeting/N3DF.

 In COMMON LISP/N2I, the region in which a

name/N3DF refers to a particular/A3S entity/N2X is

called the scope of the name/N3DF. The

interval/N2AF of time/N3CD during which a name/N3DF

refers to a particular/A3DS entity is called/V4X the

extent/N3DT of the name/N3DF. Scope concerns the

spatial, textual, or lexical representation/N3T of a

LISP/N2T form/N3T (e.g., its appearance/N2AF on a

piece/N3I of paper/N4X). Extent/N3DT concerns the

time/N3CD during which the form/N3DT is being

evaluated.

 Before a name/N3DF can refer to an entity/N2X,

however, a correspondence/N3T between the name/N3DF

and that entity/N2X must be established/N2L. Only

functions/N3T and certain/A5L special/A2F forms/N3DT

179

179

(e.g., let) are able to establish/V2D names/N3DF.

The scope and extent/N3DT of a name/N3DF are

relative/A3X to the form/N3DT which established/V2D

it. The scope of the name/N3DF can be limited to or

independent/A2C of the textual region which the

establishing/V2D form/N3DT encloses. Likewise, the

interval/N2ADF of the time/N3CD during which the

establishing/V2D form/N3DT is being evaluated.

 These various kinds/N2DF of scope and

extent/N3DT are defined in COMMON LISP/N2I as

follows/V2I:

Lexical Scope

A name/N3DF which has lexical scope can

only be used within the lexical (i.e.,

textual) region of the establishing/V2D

form/N3DT.

Indefinite/A2F Scope

 A name/N3DF which has indefinite/A2DF

scope can be used anywhere, regardless of

the lexical region of the establishing/V2D

form/N3DT.

180

180

Dynamic Extent/N2DT

 A name/N3DF which has dynamic extent/N3DT

can only be used during the interval/N2ADF

of time/N3CD between the start/N3C and

finish/N2C of the evaluation of the

establishing/V2D form/N3DT.

Indefinite/A2DF Extent/N2DT

 A name/N3DF which has indefinite/A2DF

extent/N3DT can be used at any time/N3CD

after being established/V2D, regardless of

whether the establishing/V2D form/N3DT is

still in the process/N3C of being

evaluated.

 (GCLISP 1983, pp. 20-21)

181

181

Appendix B

A PROGRAM FOR WEISS RULES AND TRIGGER COUNTING

 The C program presented here implements two

related algorithms. The first is the algorithm of

Stephen Weiss as given in section 2.2.7. The second

resolves lexical ambiguity by counting the number of

trigger words for various senses of an ambiguous

word in a given window of context; it picks the one

with the highest count, or, if there is a tie, picks

the highest frequency sense among those that tied.

 Both algorithms are based on having parallel

source and target texts available. It is assumed

that inflected words have been replaced by base

forms, and function words have been removed, so that

only base forms of context words remain. Each

source base form has an assigned index, and each

target base form has an assigned index; each set of

indexes starts at 1. There are source and target

index files, which map indexes to the assigned base

form strings. There are also line files, that

mirror the source and target texts, but are composed

of numerical indexes instead of strings; lines end

with a NULL. There are source

182

182

and target line index files; given a line number,

they map to the file position in the line file where

the given line starts. There is also a usage table.

Every occurrence of every source word in the text is

given, sorted by the source word. A table index

file points to the position in the table file where

the lines are recorded in which the given source

word occurs; if it occurs n times in the line, the

line number is given n times in the table file.

These files allow quicker access to the data in the

correlated source and target texts.

 In this program, each ambiguous source word

(one that can map to more than one target word) in

the text is examined. For each instance, the

corresponding target segment is searched for

possible translations, according to the source-

target dictionary. Only single words are handled;

there is no idiom processing. When the proper

target word is found, the instance is recorded in

the Instants array, with the file position of the

source segment, the sentence position of the

instance, and the index of the correct target

translation. The ambiguous word is required to

occur the same number of times as its target

183

183

translation in the corresponding segment; otherwise,

the segment is ignored for that word. If several

target words qualify, the one with the highest

frequency in the full target text is chosen.

 Once an array of instances and their correct

translations has been determined for an ambiguous

word, the input file of contextual rules is read in.

The Weistabl array is indexed by the index of source

words, and the value in each position of the array

is the correct translation of the ambiguous word in

the presence of the source word corresponding to the

index. If the value is 0, the source word has no

contextual effect. If the value is -1, it is on the

exclusion list during training, meaning it has no

contextual effect, and no further rule can be made

with it. The Weistabl array is cleared and then

filled in from the input file. The input file may

also specify the default translation for the

ambiguous word (stored in variable Devault).

 The tryit routine does the training and

testing. If the Weiss method was chosen, and there

is no input file, Weiss training is done (see the

<dbg> parameter and the discussion in section

2.2.7). In any case, each instance of the ambiguous

184

184

word is analyzed using either the Weiss method or

the trigger counting method, as specified by the

user.

 The total number of trials and total number of

errors for each ambiguous word are recorded and

written to a file. The cumulative totals are also

written at the end. At higher debug levels, the

trigger words that caused certain senses to be

chosen are also written in the statistics output

file. Another file is written which records the

rules

which were used.

The parallel texts are represented in an inverted

file format, using the following input files:

<stt> This file amounts to a source-target

dictionary. Each source and target word

are assigned an index. Each source word

has 8 (POLYSEEM) possible target

translations. For each one, their is an 8-

byte structure, the first 4 bytes of which

are the index of target word.

185

185

<slin> This is a representation of the source

document in which each source word has

been replaced by its 4-byte index. Each

segment ends with a NULL.

<slx> This is an index into the <slin> file. It

is simply an array of pointers into the

<slin> file. The nth 4-byte word in the

file points to the nth segment of the

source text in <slin>.

<tlin> This is a representation of the target

text similar to <slin>.

<tlx> This is an index into <tlin>, similar to

<slx>.

<stbl> This lists, for each source word, the

lines in which each of its instances

occurs; each line is a 4-byte number. If

a source word occurs more than once in the

same line, the line number occurs the same

number of times in this file. The list

for each source word is NULL terminated.

<sdex> This is an index into <stbl>. It is an

array, the nth position of which points to

the postion in <stbl> where the list for

the source word with index n begins.

186

186

<swd> This is a list of source words, each one

terminated by a 0 byte.

<swx> This is an index into <swd>. It is an

array of museum structures, the nth

position of which points to the position

in <swd> where the word starts (the freq

field is not used).

<twd> This is a list of target words, like

<swd>.

<twx> This is an index into <twd>, like <swx>.

Output files are:

<orul> This is a set of contextual rules, in the

form

 A <TAB> B <TAB> C

 where A is the ambiguous word, B is the

context word, and C is the correct target

translation of A. If B is

 <CNTRL-A><CNTRL-A>, C is the default

translation of A.

<ostat> This lists each ambiguous word in the

source text, how many times it was

correctly resolved divided by its total

187

187

number of instances, and the percentage

correct. A cumulative total is given at

the end of the file.

Other parameters are:

<wndw> This is the context window. If it is 5,

five words on either side of the ambiguous

word are processed. If it is 0, all words

in the segment are used as context.

<in> This optional file is a file in the same

format as <orul>, which is used as the

contextual rules for processing.

<dbg> This is a debug level, with three digits

of significance XYZ. If Y=1, the Weiss

algorithm is used; if there is no input

file, the text is used to train;

otherwise, the text is tested. If there

is an input file, the first X0% of the

segments of source and target data are

ignored, and the rest is used to test on.

If there is no input file, the first X0%

is used. Z determines how many debugs are

shown.

188

188

#include <stdio.h>
#include <dos.h>
#include <string.h>

#define YUP 1
#define NOPE 0

#define POLYSEEM 8

#define MAXLINLN 4000
 /* maximum line length for context segments */
#define MAXNSTNC 1000
 /* maximum number of word instances in text */
#define NELFUB 200
 /* buffer length */

#if defined(OS2)
#define INCL_BASE
#include <OS2.H>
#endif

typedef struct wax {
 long freq;
 long wdoff;
} museum;
 /* structure for index files */

typedef struct {
 long philpos;
 /* file position of a source line */
 long answer;
 /* index of correct target sense */
 int sentpos;
 /* position in the source sentence */
} NINSTANC;

char *Insent,*calloc(),huge *halloc();

FILE *Ofp,*Nfp,*Ifp,*Sstfp,*Slxfp,*Slinfp;
FILE *Tlxfp,*Tlinfp,*Sdexfp,*Stblfp;
FILE *Swxfp,*Swdfp,*Twxfp,*Twdfp;

int Showit;
 /* debug level */
int Window;
 /* number of words on each side to use as

189

189

 context; if 0, use whole segments */
int Frumafil;
 /* true if there is an input file */
int Efil;
 /* true if end of input file was reached */
int Weisteki;
 /* true if operation in Weiss rule mode */

long Ssttot,Slxtot,Slintot,Tlxtot,Tlintot;
long Sdextot,Stbltot,Swxtot,Swdtot,Twxtot,Twdtot;
 /* sizes of input files */
long Instop;
 /* number of instances of the ambiguous word */
long Tride;
 /* number of trials */
long Blode;
 /* number of errors */
long *Zazzoo;
 /* for recording local context */
long Inkey,Incon,Intar;
 /* input source, context, and target words */
long Devault;
 /* default translation target word index */
long Lowlin,Hilin;
 /* low and high line in input text to consider
*/
long Zonk[POLYSEEM];
 /* records target translations with most
 frequent first */

NINSTANC *Instants;
 /* array recording instances of the current
 ambiguous word in the source text */

long huge *Ssttab,huge *Slxtab,huge *Slintab;
long huge *Tlxtab,huge *Tlintab;
long huge *Sdextab,huge *Stbltab,huge *Weistabl;
museum huge *Swxtab,huge *Twxtab;
char huge *Swdtab,huge *Twdtab;
 /* input file arrays */
main(argc,argv)
int argc;
char *argv[];
{
 short func,prcent;
#if defined(OS2)
 VioSetAnsi(1,0);
#endif

190

190

 if (argc<9)
 {
 printf("\nweissrul
<dbg><orul><ostat><stt><slx>");
 printf("<slin><tlx><tlin>");
 printf("\n <sdex><stbl><swx><swd><twx>");
 printf("<twd><wndw>(<in>)");
 printf("\n <dbg> = 1, no <in> ");
 printf("show stats using most frequent only");
 printf("\n <dbg> = 11, no <in> ");
 printf("learn Weiss rules");
 printf("\n <dbg> = Xyz, no <in> ");
 printf("do above to first X0%c of data
lines",37);
 printf("\n <dbg> = Xyz, with <in> ");
 printf("do below to all but first X0%c of data");
 printf(" lines",37);
 printf("\n <dbg> = 11, with <in> ");
 printf("apply Weiss rules");
 printf("\n <dbg> = 1, with <in> ");
 printf("apply rules using tally");
 printf("\n <wndw> = n use window of ");
 printf("n words on each side");
 printf("\n <wndw> = 0 ");
 printf("use whole line as context");
 exit(1);
 }
 cls();
 pos(1,1);
 Showit = 0;
 if (sscanf(argv[1],"%d",&Showit)==0)
 {
 printf("\n\nNo debug level in command line: ");
 printf("try again");
 exit(1);
 }
 prcent = Showit/100;
 /* percentage of file to learn on */
 Showit %= 100;
 Weisteki = Showit/10;
 /* Weiss method or counting method */
 Showit %= 10;
 if (Showit<0 || Showit>5)
 Showit = 0;
 if ((Ofp=fopen(argv[2],"w"))==NULL)
 {
 printf("Error opening output file %s",argv[2]);

191

191

 queeut(1);
 }
 if ((Nfp=fopen(argv[3],"w"))==NULL)
 {
 printf("Error opening input file %s",argv[3]);
 queeut(1);
 }
 indat(argc,argv);
 /* read in input files */
 makary();
 /* allocate and initialize arrays */
 Lowlin = 1L;
 Hilin = Slxtot;
 if (prcent!=0)
 {
 if (Frumafil)
 Lowlin = ((long)prcent*Slxtot/10L)+1L;
 else
 Hilin = (long)prcent*Slxtot/10L;
 }
 /* determines which section of the text to use
*/
 lesdoit();
 fcloseall();
}

/***
This routine reads in the input files for the
parallel texts.
**
/

indat(filnum,filnams)
int filnum;
char *filnams[];
{
 FILE *ripopen();
 long aboutnow;
 Sstfp = ripopen(filnams[4],&aboutnow,
 &(long huge *)Ssttab,YUP);
 Ssttot = aboutnow/(sizeof(long));
 Slxfp = ripopen(filnams[5],&aboutnow,
 &(long huge *)Slxtab,YUP);
 Slxtot = aboutnow/(sizeof(long));
 Slinfp = ripopen(filnams[6],&aboutnow,
 &(long huge *)Slintab,NOPE);
 Slintot = aboutnow/(sizeof(long));
 Tlxfp = ripopen(filnams[7],&aboutnow,

192

192

 &(long huge *)Tlxtab,YUP);
 Tlxtot = aboutnow/(sizeof(long));
 Tlinfp = ripopen(filnams[8],&aboutnow,
 &(long huge *)Tlintab,NOPE);
 Tlintot = aboutnow/(sizeof(long));
 Sdexfp = ripopen(filnams[9],&aboutnow,
 &(long huge *)Sdextab,YUP);
 Sdextot = aboutnow/(sizeof(long));
 Stblfp = ripopen(filnams[10],&aboutnow,
 &(long huge *)Stbltab,NOPE);
 Stbltot = aboutnow/(sizeof(long));
 Swxfp = ripopen(filnams[11],&aboutnow,
 &(long huge *)Swxtab,YUP);
 Swxtot = aboutnow/(sizeof(museum));
 Swdfp =
ripopen(filnams[12],&aboutnow,&Swdtab,YUP);
 Swdtot = aboutnow/(sizeof(char));
 Twxfp = ripopen(filnams[13],&aboutnow,
 &(long huge *)Twxtab,YUP);
 Twxtot = aboutnow/(sizeof(museum));
 Twdfp =
ripopen(filnams[14],&aboutnow,&Twdtab,YUP);
 Twdtot = aboutnow/(sizeof(char));
 if (sscanf(filnams[15],"%d",&Window)==0)
 Window = 5;
 if (Window<0 || Window>=MAXLINLN)
 Window = 5;
 if (filnum>16)
 {
 if ((Ifp=fopen(filnams[16],"r"))==NULL)
 {
 printf("Error opening input file %s",
 filnams[16]);
 queeut(1);
 }
 Inkey = 0L;
 Incon = 0L;
 Intar = 0L;
 Efil = NOPE;

193

193

 Frumafil = YUP;
 /* set up to read input file for rules */
 }
 else
 Frumafil = NOPE;
 if (Tlxtot!=Slxtot)
 {
 printf("\n\nFatal: Source and Target have the
");
 printf("different number of lines");
 queeut(1);
 }
}

/***
This routine reads one input files into memory.
**
/

FILE *ripopen(filnam,siz,ptr,readit)
char *filnam;
char huge **ptr;
long *siz;
int readit;
{
 FILE *fp;
 long curptr=0L,ftell();
 if ((fp=fopen(filnam,"rb"))==NULL)
 {
 printf("Error opening input file %s",filnam);
 queeut(1);
 }
 if (fseek(fp,0L,SEEK_END)!=0)
 {
 printf("Error sizing input file %s",filnam);
 queeut(1);
 }
 if ((*siz=ftell(fp))==-1L)
 {
 printf("Error measuring input file %s",filnam);
 queeut(1);
 }
 if (fseek(fp,0L,SEEK_SET)!=0)
 {
 printf("Error positioning input file
%s",filnam);
 queeut(1);
 }

194

194

 if (readit)
 {
 if ((*ptr=(char huge *)
 (long huge *)halloc(*siz+2L,1))==NULL)
 {
 printf("\nError allocating memory for file ");
 printf(" '%s'",filnam);
 queeut(1);
 }
 clearerr(fp);
 for(;!feof(fp) && !ferror(fp);curptr+=512L)
 fread((char *)&(*ptr)[curptr],512,1,fp);
 if (ferror(fp)!=0)
 {
 printf("Error reading input file %s",filnam);
 queeut(1);
 }
 }
 return(fp);
}

/***
This routine allocates and initializes arrays.
**
/

makary()
{
 if ((Insent=calloc(NELFUB,sizeof(char)))==NULL)
 {
 printf("\nNot enough room for Input Buffer");
 queeut(1);
 }
 if ((Zazzoo=
 (long *)calloc(MAXLINLN,sizeof(long)))==NULL)
 {
 printf("\nNot enough room for Zazzoo array");
 queeut(1);
 }
 if ((Weistabl=
 (long huge *
)halloc(Swxtot,sizeof(long)))==NULL)
 {
 printf("\nNot enough room for trigger array");
 queeut(1);
 }

195

195

 if ((Instants=(NINSTANC huge *)
 halloc((long
)MAXNSTNC,sizeof(NINSTANC)))==NULL)
 {
 printf("\nNot enough room for Weiss Link
array");
 queeut(1);
 }
}

/***
This routine starts reading a file at a given
position.
**
/

long tabloid(eon,fp)
long eon;
FILE *fp;
{
 long chime=0L,tabridges();
 if (fseek(fp,eon,SEEK_SET)==0)
 chime = tabridges(fp);
 clearerr(fp);
 return(chime);
}

/***
This routine continues reading a file at a given
position.
**
/

long tabridges(fp)
FILE *fp;
{
 long john;
 fread(&john,4,1,fp);
 if (ferror(fp) || feof(fp))
 {
 clearerr(fp);
 john = 0L;
 }
 return(john);
}

196

196

/***
This is the standard error exit routine.
**
/

queeut(oot)
int oot;
{
 fcloseall();
 exit(oot);
}

/***
This routine pauses display for user input.
**
/

contin()
{
 char dum;
 pos(23,77);
 printf("~");
 pos(23,77);
 printf(" ");
 dum = toupper((getch()&0xFF));
 if (dum=='x' || dum=='X') queeut(0);
}

/***
This routine clears a line on the screen.
**
/

clreol(row,col)
int row,col;
{
 int i;
 if (row<0 || row>25 || col<1 || col>80)
 return;
 pos(row,col);
 i = 81 - col;
 while(i--)
 printf(" ");
 pos(row,col);
}

197

197

/***
This routine is the heart of the processing. For
each ambiguous word, instances in the text are
located and correct target translations determined.
Tryit is called to train or test each occurrence.
Success rates are then written to the statistics
file, and contextual rules are written to the rule
file.
**
/

lesdoit()
{
 short poof,linlen,sentpos,showiz;
 short showaint,foople,mountain,majesty;
 long timenow,timewas,zoot1,woid1,woid2;
 long kook1,kook2,oozzaz,tzaz,answer,mistooks;
 long zcnt[POLYSEEM],zlincnt[POLYSEEM];
 cls();
 pos(7,33);
 printf("Weissrul Program");
 Tride = 0L;
 Blode = 0L;
 for(woid1=1L;woid1<Swxtot;woid1++)
 /* for each word in the dictionary */
 {
 for(woid2=1L;woid2<Swxtot;woid2++)
 Weistabl[woid2] = 0L;
 /* clear the rule table */
 zoot1 = 2*POLYSEEM*(woid1-1);
 for(poof=0;poof<POLYSEEM;poof++)
 if ((Zonk[poof]=
 Ssttab[zoot1+(long)(2*poof)])==0L)
 break;
 /* put the possible translations in Zonk
*/
 foople = poof;
 /* number of senses */
 if (foople<=1)
 continue;
 if (Showit)
 {
 clreol(12,48);
 pos(12,29);
 printf("Source word %6ld = %s",
 woid1,&Swdtab[Swxtab[woid1].wdoff]);
 }

198

198

 else
 {
 pos(12,38);
 printf("%6ld",woid1);
 }
 for(poof=0;poof<foople;poof++)
 zcnt[poof] = 0L;
 for(timenow=tabloid(Sdextab[woid1-1L],Stblfp);
 timenow!=0L;timenow=timewas)
 /* look at each line containing the
 ambiguous word */
 {
 kook1 = 1L;

for(timewas=tabridges(Stblfp);timenow==timewas;)
 {
 timenow = timewas;
 timewas = tabridges(Stblfp);
 kook1++;
 }
 if (timenow<Lowlin || timenow>Hilin)
 continue;
 /* only consider lines in the specified
 range */
 for(poof=0;poof<foople;poof++)
 zlincnt[poof] = 0L;
 for(oozzaz=tabloid(Tlxtab[timenow-1L],Tlinfp);
 oozzaz!=0L;
 oozzaz=tabridges(Tlinfp))
 {
 for(poof=0;poof<foople;poof++)
 if (Zonk[poof]==oozzaz)
 zlincnt[poof]++;
 }
 /* count translations in the corresponding
 target line */
 for(poof=0;poof<foople;poof++)
 if (zlincnt[poof]==kook1)
 zcnt[poof] += kook1;
 /* accumulated target sense frequencies */
 }
 for(mountain=0;mountain<foople;mountain++)
 /* sort Zonk by frequency */
 {

for(majesty=mountain+1;majesty<foople;majesty++)
 {

199

199

 if (zcnt[majesty]>zcnt[mountain])
 {
 oozzaz = Zonk[majesty];
 Zonk[majesty] = Zonk[mountain];
 Zonk[mountain] = oozzaz;
 kook1 = zcnt[majesty];
 zcnt[majesty] = zcnt[mountain];
 zcnt[mountain] = kook1;
 }
 }
 }
 Instop = 0L;
 showiz = NOPE;
 for(timenow=tabloid(Sdextab[woid1-1L],Stblfp);
 timenow!=0L;timenow=timewas)
 /* go back through source text and
determine
 instances of the ambiguous word and the
 correct target translation of each */
 {
 if (showiz)
 break;
 kook1 = 1L;

for(timewas=tabridges(Stblfp);timenow==timewas;)
 {
 timenow = timewas;
 timewas = tabridges(Stblfp);
 kook1++;
 }
 if (timenow<Lowlin || timenow>Hilin)
 continue;
 for(poof=0;poof<foople;poof++)
 zlincnt[poof] = 0L;
 for(oozzaz=tabloid(Tlxtab[timenow-1L],Tlinfp);
 oozzaz!=0L;
 oozzaz=tabridges(Tlinfp))
 {
 for(poof=0;poof<foople;poof++)
 {
 if (Zonk[poof]==oozzaz)
 zlincnt[poof]++;
 }
 }
 mountain = -1;
 for(poof=0;poof<foople;poof++)
 {

200

200

 if (zlincnt[poof]==kook1)
 {
 mountain = poof;
 tzaz = Zonk[poof];
 break;
 }
 }
 /* find a translation that occurred the
same
 number of times as the ambigous word */
 if (mountain==-1)
 continue;
 /* if there is none, skip the source line
*/
 for(poof=mountain+1;poof<foople;poof++)
 {
 if (zlincnt[poof]==kook1)
 zcnt[poof] -= kook1;
 }
 /* alter total frequencies by eliminating
 incorrect translations */
 for(linlen=0,Zazzoo[0]=
 tabloid(Slxtab[timenow-1L],Slinfp);
 Zazzoo[linlen]!=0L && linlen<MAXLINLN;)
 {
 linlen++;
 Zazzoo[linlen] = tabridges(Slinfp);
 }
 /* put the whole source line in memory */
 for(sentpos=0;sentpos<linlen;sentpos++)
 {
 if (Zazzoo[sentpos]==woid1)
 {
 if (Instop<(long)MAXNSTNC)
 {
 Instants[Instop].philpos =
 Slxtab[timenow-1L];
 Instants[Instop].sentpos = sentpos;
 Instants[Instop++].answer = tzaz;
 /* record instances of the ambiguous
 word, the file position of the
 source line, and the correct
 target translation */
 }
 else
 {
 pos(21,2);

201

201

 printf("Skipping instances of '%s'",
 &Swdtab[Swxtab[woid1-1L].wdoff]);
 showiz = YUP;
 break;
 }
 }
 }
 }
 Devault = 0L;
 if (Frumafil)
 weedit(woid1); /* read initial rules */
 if (!Devault)
 Devault = Zonk[0];
 /* if input file has not set a
default
 translation, choose the sense that
 is most frequent in the text */
 tryit(foople,(Weisteki && !Frumafil),woid1);
 /* train and test */
 fprintf(Ofp,"\n%s __ %s",
 &Swdtab[Swxtab[woid1].wdoff],
 &Twdtab[Twxtab[Zonk[0]].wdoff]);
 for(kook1=1L;kook1<Swxtot;kook1++)
 /* write it out */
 {
 if ((tzaz=Weistabl[kook1])>0)
 fprintf(Ofp,"\n%s %s %s",
 &Swdtab[Swxtab[woid1].wdoff],
 &Swdtab[Swxtab[kook1].wdoff],
 &Twdtab[Twxtab[tzaz].wdoff]);
 }
 pos(14,33);
 printf("Errors %7ld",Blode);
 pos(15,33);
 printf("Trials %7ld",Tride);
 if (Tride)
 {
 pos(16,33);
 printf("Correct %6f%c",
 (float)(Tride-Blode)*100.0/(float
)Tride,37);
 }
 }
 if (Tride)
 fprintf(Nfp,"\n\nCorrect %6f%c",
 (float)(Tride-Blode)*100.0/(float)Tride,37);
 pos(24,1);
}

202

202

/***
This routine trains and tests the rules. See
section 2.2.7 for the Weiss training method. The
immediate context of each ambiguous word is
examined. If in Weiss mode, the trigger word
nearest the ambiguous word determines the
hypothesized sense. Otherwise, all trigger words in
the context are counted, and the sense with the
highest score wins; if there is a tie, the sense
with the highest frequency among those that tied is
chosen.
**
/

tryit(foople,learn,woid)
long woid;
int foople,learn;
{
 int showiz,mistooks,poof,offit,drect;
 int linlen,topsy,toivy,sentpos,woidpos;
 long timenow,answ,answer;
 long oozzaz,zcnt[POLYSEEM],bescnt;
 showiz = YUP;
 /* keep training until no new rules can be
 added */
 while(showiz)
 {
 showiz = NOPE;
 mistooks = 0L;
 for(timenow=0L;timenow<Instop;timenow++)
 {
 if (!Weisteki)
 for(poof=0;poof<foople;poof++)
 zcnt[poof] = 0L;
 /* initialize trigger count to 0 */
 for(linlen=0,Zazzoo[0]=

tabloid(Instants[timenow].philpos,Slinfp);
 Zazzoo[linlen]!=0L && linlen<MAXLINLN;)
 {
 linlen++;
 Zazzoo[linlen] = tabridges(Slinfp);
 }
 /* read source line into memory */
 sentpos = Instants[timenow].sentpos;

203

203

 toivy = (Window)
 ? ((sentpos-Window>=0)
 ? (sentpos-Window)
 :0
)
 : 0;
 topsy = (Window)
 ? ((sentpos+Window<linlen)
 ? (sentpos+Window)
 :linlen-1
)
 : linlen - 1;
 /* determine limits of context */
 answer = Instants[timenow].answer;
 /* correct target sense */
 for(offit=1;offit<MAXLINLN;offit++)
 {
 if (sentpos-offit<toivy &&
 sentpos+offit>topsy)
 break;
 /* ignore words outside specified context
*/
 for(drect=-1;drect<2;drect+=2)
 /* look at context words in the order
 ... 9 7 5 3 1 A 2 4 6 8 10 ...
 where A is the ambiguous word,
beginning
 with context word 1 */
 {
 woidpos = sentpos+drect*offit;
 if (woidpos<toivy || woidpos>topsy)
 continue;
 if (oozzaz=Zazzoo[woidpos])
 {
 if ((answ=Weistabl[oozzaz])>0L)
 /* used in a rule */
 {
 if (!Weisteki)
 {
 for(poof=0;poof<foople;poof++)
 if (Zonk[poof]==answ)
 zcnt[poof]++;
 /* if not in Weiss mode, simply
 count trigger words */
 }

204

204

 else if (answ==answer)
 /* right answer */
 {
 drect = 0;
 /* double break */
 offit = MAXLINLN;
 }
 else if (learn)
 /* delete the wrong rule, and
 add the context word to the
 exclusion list in training
*/
 {
 Weistabl[oozzaz] = -1L;
 showiz = YUP;
 /* a change means continue */
 }
 else
 /* test mode, got wrong answer
*/
 {
 drect = 2;
 /* double break */
 offit = MAXLINLN;
 }
 }
 else if (learn && answ==0 &&
 answer!=Devault)
 {
 Weistabl[oozzaz] = answer;
 /* not used in a rule yet
 and not default, so record
the
 right answer */
 showiz = YUP;
 drect = 0;
 /* double break */
 offit = MAXLINLN;
 }
 }
 }
 }
 if (!Weisteki)
 {
 answ = Devault;
 bescnt = 0L;
 for(poof=0;poof<foople;poof++)
 {

205

205

 if (zcnt[poof]>bescnt)
 {
 bescnt = zcnt[poof];
 answ = Zonk[poof];
 }
 }
 /* find the sense with the most triggers
*/
 if (answ!=answer)
 mistooks++;
 /* record if an error */
 }
 else
 {
 if (drect==3)
 answ = Devault;
 /* if no triggers were found, use default
*/
 if (drect!=2 && answ!=answer)
 mistooks++;
 /* record an error in Weiss mode */
 }
 }
 }
 Tride += Instop;
 Blode += mistooks;
 if (Instop)
 fprintf(Nfp,"\n%s %ld/%ld %c%f",
 &Swdtab[Swxtab[woid].wdoff],
 Instop-mistooks,Instop,37,
 (float)(Instop-mistooks)*100.0/(float
)Instop);
}

/***
This routine reads in the context rule file.
The format is
 A <TAB> B <TAB> C <TAB>
where A is the ambiguous source word,
 B is context source word,
 and C is the target translation that is
 correct for A when near B.
**
/

weedit(woid)
long woid;
{

206

206

 char *frog;
 long gtndx();
 if (Inkey==woid)
 {
 Weistabl[Incon] = Intar;
 if (Incon==0L)
 Devault = Intar;
 }
 if (!Efil)
 {
 while(fgets(Insent,NELFUB-1,Ifp)!=NULL)
 {
 if (Insent[strlen(Insent)-1]=='\n')
 Insent[strlen(Insent)-1] = '\0';
 if (strlen(Insent)<=0)
 continue;
 frog = strtok(Insent," ");
 if ((Inkey=gtndx(frog,Swxtot,Swxtab,Swdtab))
 ==Swxtot)
 {
 fprintf(Nfp,"\n Unknown key %s",frog);
 Inkey = -1L;
 }
 frog = strtok(NULL," ");
 if ((Incon=gtndx(frog,Swxtot,Swxtab,Swdtab))
 ==Swxtot)
 {
 fprintf(Nfp,
 "\n Unknown context word %s",frog);
 Incon = -1L;
 }
 frog = strtok(NULL," ");
 if ((Intar=gtndx(frog,Twxtot,Twxtab,Twdtab))
 ==Twxtot)
 {
 fprintf(Nfp,
 "\n Unknown translation %s",frog);
 Intar = -1L;
 }
 if (Inkey==woid)
 {
 if (Incon>=0L && Intar>=0L)
 {
 Weistabl[Incon] = Intar;
 if (Incon==0L)
 Devault = Intar;
 }
 }

207

207

 else if (Inkey>woid)
 break;
 }
 if (feof(Ifp))
 Efil = YUP;
 else if (ferror(Ifp))
 {
 fprintf(Nfp,"\n\nRead error on input file");
 pos(8,11);
 printf("Read error on input file");
 queeut(1);
 }
 }
}

/***
Given a string, this routine determines its index in
a given sorted index list.
**
/

long gtndx(symbol,ndxtot,ndxtab,wdtab)
char *symbol,huge *wdtab;
long ndxtot;
museum huge *ndxtab;
{
 int cond;
 long low=0L,high=(ndxtot-1L),mid=0L;
 while (low<=high)
 {
 mid = low + (high-low)/2L;
 if ((cond=

strcmp(symbol,&wdtab[ndxtab[mid].wdoff]))<0)
 high = mid - 1L;
 else if (cond>0)
 low = mid + 1L;
 else
 return(mid);
 }
 return(ndxtot);
}

208

208

Appendix C

A PROGRAM FOR CREATING A SEMANTIC COOCCURRENCE

NETWORK

 This program trains a neural network based on

cooccurrence data. The number of input, hidden, and

output units is specified on the command line.

Training is based on two files, a pattern file, and

a pattern index file.

 The pattern file consists of a list of

patterns. Each one is composed of two lists. The

first list is a list of indexes of source words.

The second list is a list of indexes of target

words; correct target senses are positive, and

incorrect ones are negative. Each list ends with a

0. The pattern index file points to the beginning

of a pattern given its pattern number.

 The network is trained by setting input units

corresponding to the indexes of the source words to

have an activation of 1. Errors are generated when

the activations of output units corresponding to

correct target senses are not equal to 1, and those

corresponding to incorrect target senses are not

equal

209

209

to 0. The algorithm is based on the back

propogation program in the PDP software (McClelland

1988).

 The network is trained once for each pattern

during each epoch. The patterns are permuted before

each epoch, so that the training is in random order

during each epoch.

#include <stdio.h>
#include <dos.h>
#include <string.h>
#include <math.h>

#define YUP 1
#define NOPE 0

#if defined(OS2)
#define INCL_BASE
#include <OS2.H>
#endif

#define rnd() ((float)rand()*3.0518507e-5)

#define WRANGE 0.8
#define MOMENTUM 0.9
#define IHRATE 0.5
#define HORATE .08

char *Winnam,*Wtccnam,*Woutnam;
char *strdup(),*calloc(),huge *halloc();

FILE *Owfp,*Otssfp,*Pxfp,*Patfp,*Lfp,*Iwfp,*fopen();

int Showit,filinit,shobad;

long Epoch,Nepochs,Pxtot,Pattot;
long john,silver,flipper,Imps,Hided,Oups;

float huge *Ihwts,huge *Howts,huge *Obias,huge
*Odbias,huge *Ihdw,huge *Hodw;

210

210

float *Hacts,*Hbias,*Hdbias,*Hdelta,*Herr,*Hnetin;
float
Ihlrate,Holrate,Obrate,Hbrate,Momentum,Tss,Pss;

long huge *Used;
long huge *Pxtab;
short huge *Pattab;

void srand();
int rand();
long time();

main(argc,argv)
int argc;
char *argv[];
{
#if defined(OS2)
 VioSetAnsi(1,0);
#endif

 if (argc<14)
 {
 printf("\nwhinney <dbg><x><owt>");
 printf("<px><pat><#in><#hid><#out><#ep>");
 printf("<ih><ho><hb><ob>(<iwt>)");
 exit(1);
 }
 /* <dbg> debug level
 <x> no longer used
 <owt> output file of connection weights and
 biases
 <px> pattern index file
 <pat> pattern file
 <#in> number of input units
 <#hid> number of hidden units
 <#out> number of output units
 <#ep> modulo of epochs on which to write
the
 output weights file
 <ih> learning rate for input to hidden
units
 <ho> learning rate for hidden to output
 units
 <hb> learning rate for hidden biases
 <ob> learning rate for output biases
 <iwt> file name for initial connection
 weights and biases
 */

211

211

 cls();
 pos(1,1);
 Showit = 0;
 if (sscanf(argv[1],"%d",&Showit)==0)
 {
 printf("\n\nNo debug level in command line: ");
 printf("try again");
 exit(1);
 }
 if (Showit<0 || Showit>5)
 Showit = 0;
 Wtccnam = strdup(argv[2]);
 Woutnam = strdup(argv[3]);
 indat(argc,argv);
 /* read in the pattern files */
 makary();
 /* allocate and initialize arrays */
 initwits();
 /* initialize weights of connections */
 loooop();
 /* train the network */
 fcloseall();
}

/***
This routine reads in the pattern and pattern index
files, and the command line parameters.
**
/

indat(numfil,filnams)
int numfil;
char *filnams[];
{
 FILE *ripopen();
 long aboutnow;
 Pxfp = ripopen(filnams[4],&aboutnow,
 &(long huge *)Pxtab);
 Pxtot = aboutnow/(sizeof(long));
 Patfp = ripopen(filnams[5],&aboutnow,
 &(short huge *)Pattab);
 Pattot = aboutnow/(sizeof(short));
 Momentum = MOMENTUM;
 if (!sscanf(filnams[6],"%ld",&Imps) || Imps<1L)
 {
 printf("\nNumber of input units is illegal");
 queeut(1);

212

212

 }
 /* number of input units */
 if (!sscanf(filnams[7],"%ld",&Hided) || Hided<1L)
 {
 printf("\nHided unit number is illegal");
 queeut(1);
 }
 /* number of hidden units */
 if (!sscanf(filnams[8],"%ld",&Oups) || Oups<1L)
 {
 printf("\nNumber of output units is illegal");
 queeut(1);
 }
 /* number of output units */
 if (!sscanf(filnams[9],"%ld",&Nepochs) ||
 Nepochs<1L)
 {
 printf("\nNepochs is illegal");
 queeut(1);
 }
 /* modulo of epochs on which to output weights
*/
 if (!sscanf(filnams[10],"%f",&Ihlrate) ||
 Ihlrate<0.0)
 {
 printf("\nIhlrate is illegal");
 queeut(1);
 }
 /* learning rate for input to hidden units */
 if (!sscanf(filnams[11],"%f",&Holrate) ||
 Holrate<0.0)
 {
 printf("\nHolrate is illegal");
 queeut(1);
 }
 /* learning rate for hidden to output units */
 if (!sscanf(filnams[12],"%f",&Hbrate) ||
 Hbrate<0.0)
 {
 printf("\nHbrate is illegal");
 queeut(1);
 }
 /* learning rate for hidden biases */
 if (!sscanf(filnams[13],"%f",&Obrate) ||
Obrate<0.0) {
 printf("\nObrate is illegal");
 queeut(1);
 }

213

213

 /* learning rate for output biases */
 if (numfil>14)
 {
 Winnam = strdup(filnams[14]);
 /* file name for input weights and biases */
 filinit = YUP;
 }
 else
 filinit = NOPE;
 flipper = 100L;
}

/***
This routine allocates and initializes arrays.
**
/

makary()
{
 if (filinit)
 bringiin(Winnam);
 silver = Imps*Hided;
 if ((Ihwts=(float huge *)(long huge *)
 halloc(silver,sizeof(float)))==NULL)
 {
 printf("\n\nOut of memory allocating ");
 printf("IH weights");
 queeut(1);
 }
 /* input to hidden weights */
 if ((Ihdw=(float huge *)(long huge *)
 halloc(silver,sizeof(float)))==NULL)
 {
 printf("\n\nOut of memory allocating ");
 printf("IH delta weights");
 queeut(1);
 }
 /* input to hidden delta terms */
 silver = Oups*Hided;

214

214

 if ((Howts=(float huge *)(long huge *)
 halloc(silver,sizeof(float)))==NULL)
 {
 printf("\n\nOut of memory allocating ");
 printf("HO weights");
 queeut(1);
 }
 /* hidden to output weights */
 if ((Hodw=(float huge *)(long huge *)
 halloc(silver,sizeof(float)))==NULL)
 {
 printf("\n\nOut of memory allocating ");
 printf("HO delta weights");
 queeut(1);
 }
 /* hidden to output delta terms */
 if ((Obias=(float huge *)(long huge *)
 halloc(Oups,sizeof(float)))==NULL)
 {
 printf("\n\nOut of memory allocating ");
 output biases");
 queeut(1);
 }
 /* output biases */
 if ((Odbias=(float huge *)(long huge *)
 halloc(Oups,sizeof(float)))==NULL)
 {
 printf("\n\nOut of memory allocating ");
 printf("output biases");
 queeut(1);
 }
 /* output bias delta terms */
 if ((Hacts=(float *)(long *)

calloc((int)Hided,sizeof(float)))==NULL)
 {
 printf("\n\nOut of memory allocating ");
 printf("hidden activations");
 queeut(1);
 }
 /* hidden unit activations */

215

215

 if ((Hbias=(float *)(long *)

calloc((int)Hided,sizeof(float)))==NULL)
 {
 printf("\n\nOut of memory allocating ");
 hidden biases");
 queeut(1);
 }
 /* hidden unit biases */
 if ((Hdbias=(float *)(long *)
 calloc((int)Hided,sizeof(float)))==NULL)
 {
 printf("\n\nOut of memory allocating ");
 printf("hidden biases");
 queeut(1);
 }
 /* hidden bias delta terms */
 if ((Hdelta=(float *)(long *)
 calloc((int)Hided,sizeof(float)))==NULL)
 {
 printf("\n\nOut of memory allocating ");
 printf("hidden biases");
 queeut(1);
 }
 /* hidden activation delta terms */
 if ((Herr=(float *)(long *)
 calloc((int)Hided,sizeof(float)))==NULL)
 {
 printf("\n\nOut of memory allocating ");
 printf("hidden deltas");
 queeut(1);
 }
 /* error terms for hidden units */
 if ((Hnetin=(float *)(long *)
 calloc((int)Hided,sizeof(float)))==NULL)
 {
 printf("\n\nOut of memory allocating ");
 printf("hidden net Imps");
 queeut(1);
 }
 /* net input for hidden units */

216

216

 if ((Used=(long huge *)
 halloc(Pxtot,sizeof(long)))==NULL)
 {
 printf("\n\nOut of memory allocating ");
 printf("permutation table");
 queeut(1);
 }
 /* permute array for pattern numbers */
}

/***
This routine reads a pattern or pattern index file
into memory.
**
/

FILE *ripopen(filnam,siz,ptr)
char *filnam;
char huge **ptr;
long *siz;
{
 FILE *fp;
 long curptr=0L,ftell();
 if ((fp=fopen(filnam,"rb"))==NULL)
 {
 printf("Error opening input file %s",filnam);
 queeut(1);
 }
 if (fseek(fp,0L,SEEK_END)!=0)
 {
 printf("Error sizing input file %s",filnam);
 queeut(1);
 }
 if ((*siz=ftell(fp))==-1L)
 {
 printf("Error measuring input file %s",filnam);
 queeut(1);
 }
 if (fseek(fp,0L,SEEK_SET)!=0)
 {
 printf("Error positioning input file %s",
 filnam);
 queeut(1);
 }

217

217

 if ((*ptr=(char huge *)(long huge *)
 halloc(*siz+2L,1))==NULL)
 {
 printf("\nError allocating memory ");
 printf("for file '%s'",filnam);
 queeut(1);
 }
 clearerr(fp);
 for(;!feof(fp) && !ferror(fp);curptr+=512L)
 fread((char *)&(*ptr)[curptr],512,1,fp);
 if (ferror(fp)!=0)
 {
 printf("Error reading input file %s",filnam);
 queeut(1);
 }
 return(fp);
}

/***
This is a standard error exit routine.
**
/
queeut(oot)
int oot;
{
 fcloseall();
 exit(oot);
}

/***
This routine pauses for user input.
**
/

contin()
{
 char dum;
 pos(23,77);
 printf("~");
 pos(23,77);
 printf(" ");
 dum = toupper((getch()&0xFF));
 if (dum=='x' || dum=='X') queeut(0);
}

218

218

/***
This routine clears a line on the screen.
**
/

clreol(row,col)
int row,col;
{
 int i;
 if (row<0 || row>25 || col<1 || col>80)
 return;
 pos(row,col);
 i = 81 - col;
 while(i--)
 printf(" ");
 pos(row,col);
}

/***
This routine initializes weights and biases and
delta terms. Delta terms are initialized to 0.
Either weights and biases are read in from the
weights input file, or biases are set to 0, and
weights are set to random numbers between -0.5 and
0.5.
**
/

initwits()
{
 int oogle;
 long nose;
 float alone;
 unsigned seed;
 printf("\nThis program is partly based on ");
 printf("software with the following note");
 printf("\n Copyright 1987 by James L. ");
 printf("McClelland and David E. Rumelhart.");
 cls();
 pos(9,31);
 printf("Initializing Weights");
 if (filinit)
 bringdat(Winnam);
 else
 Epoch = 1;
 srand((unsigned)time(NULL));
 seed = (unsigned)rand();
 srand(seed);

219

219

 seed = (unsigned)rand();
 srand(seed);
 silver = Hided*Imps;
 for(john=0L;john<silver;john++)
 {
 Ihdw[john] = 0.0;
 if (john/1000L*1000L==john)
 {
 pos(11,37);
 printf("%6ld",john);
 }
 }
 silver = Hided*Oups;
 for(john=0L;john<silver;john++)
 {
 Hodw[john] = 0.0;
 if (john/1000L*1000L==john)
 {
 pos(11,37);
 printf("%6ld",john);
 }
 }
 if (!filinit)
 {
 silver = Hided*Imps;
 alone = 0.0;
 nose = Hided;
 for(john=0L;john<silver;john++)
 {
 Ihwts[john] = ((float)(WRANGE)) * (rnd()-.5);
 alone += Ihwts[john];
 if (!--nose)
 {
 if (alone>1.0)
 {
 alone = (float)sqrt((double)alone);
 for(nose=john-Hided+1;nose<john;nose++)
 Ihwts[nose] /= alone;
 }
 nose = Hided;
 alone = 0.0;
 }
 if (john/1000L*1000L==john)
 {
 pos(11,37);
 printf("%6ld",john);
 }
 }

220

220

 silver = Hided*Oups;
 for(john=0L;john<silver;john++)
 {
 Howts[john] = (float)(WRANGE) * (rnd()-.5);
 if (john/1000L*1000L==john)
 {
 pos(11,37);
 printf("%6ld",john);
 }
 }
 }
 silver = Oups;
 for(john=0L;john<silver;john++)
 {
 Odbias[john] = 0.0;
 if (john/100L*100L==john)
 {
 pos(13,37);
 printf("%6ld",john);
 }
 }
 if (!filinit)
 {
 for(john=0L;john<silver;john++)
 {
 Obias[john] = 0.0;
 if (john/1000L*1000L==john)
 {
 pos(13,37);
 printf("%6ld",john);
 }
 }
 }
 for(oogle=0;oogle<(int)Hided;oogle++)
 {
 Hdbias[oogle] = 0.0;
 pos(15,37);
 printf("%6ld",john);
 }
 if (!filinit)
 {
 for(oogle=0;oogle<(int)Hided;oogle++)
 {
 Hbias[oogle] = 0.0;
 pos(15,37);
 printf("%6ld",john);
 }
 }

221

221

}

/***
This routine randomly permutes the order in which
patterns will be used in the next epoch to train the
network.
**
/

permute()
{
 long feller,yeller,beller;
 for(feller=0L;feller<Pxtot;feller++)
 Used[feller] = feller;
 for(feller=0L;feller<Pxtot;feller++)
 {
 yeller = (long)(rnd() * (Pxtot-feller) +
feller);
 beller = Used[feller];
 Used[feller] = Used[yeller];
 Used[yeller] = beller;
 }
}

/***
This routine computes the activation of a unit,
based on the net input to that unit.
**
/

float logistic (x)
 /* copied from PDP bp.c */
float x;
{
 double exp ();
 if (x > 11.5129)
 return(.99999);
 else
 if (x < -11.5129)
 return(.00001);
 else
 return(1.0 / (1.0 +
 (float) exp((double) ((-1.0) * x))));
}

/***

222

222

This is the main training routine. During each
epoch, use each pattern to update weights and
biases.
**
/

loooop()
{
 float impetus,acticus,logistic();
 float oerr,delta,dwight,scalar,gutter;
 long curin,curout,curpat,cur,row,goseek;
 long absout,windex,gindex;
 cls();
 pos(6,31);
 printf("Quiet! I'm thinking!");
 shobad = NOPE;
 row = Hided;
 Tss = 0.0;
 if (Showit>2 && (Lfp=fopen("hors.lst","w"))
 ==NULL)
 {
 printf("Error opening output file hors.lst");
 queeut(1);
 }
 for(;;Epoch++)
 {
 pos(12,37);
 printf("%6ld",Epoch);
 Tss = 0.0;
 permute();
 /* randomly order patterns */
 for(john=0L;john<Pxtot;john++)
 {
 /* for each pattern */
 Pss = 0.0;
 memset(Hacts,0,((int)Hided)*sizeof(float));
 memset(Herr,0,((int)Hided)*sizeof(float));
 memset(Hdelta,0,((int)Hided)*sizeof(float));
 /* initialize hidden activations, errors,
 and delta terms */

memcpy(Hnetin,Hbias,((int)Hided)*sizeof(float));
 the hidden biases */
 cur = curpat = Pxtab[Used[john]]/2;
 /* current pattern number */

223

223

 for(curin=(long)Pattab[cur++];
 curin!=0L;curin=(long)Pattab[cur++])
 {
 if (curin>Imps || curin<=0L)
 continue;
 gindex = (curin-1L)*row;
 for(goseek=0L;goseek<row;goseek++)
 Hnetin[goseek] += Ihwts[gindex++];
 }
 /* calculate inputs to hidden units
*/
 for(goseek=0L;goseek<row;goseek++)
 Hacts[goseek] = logistic(Hnetin[goseek]);
 /* calculate hidden activations */
 for(curout=(long)Pattab[cur++];
 curout!=0L;curout=(long)Pattab[cur++])
 {
 absout = (curout>0L) ? curout : -curout;
 absout -= 1L;
 if (absout>=Oups)
 continue;
 impetus = Obias[absout];
 /* initialize output unit net input
to
 current value of output bias */
 gindex = windex = absout*row;
 for(goseek=0;goseek<row;goseek++)
 impetus += Howts[gindex++] *
Hacts[goseek]; /* accumulate input to
output unit */
 acticus = logistic(impetus);
 /* output unit activation */
 oerr = ((curout>0L) ? 1.0 : 0.0) - acticus;
 /* output unit error */
 if (Showit>2 && (oerr>0.5 || oerr<-0.5))
 fprintf(Lfp,"%4ld %ld %9.8g\n",
 Used[john],curout,oerr);
 Pss += oerr*oerr;
 /* add squared error to partial sum
of
 squares */
 delta = oerr*acticus*(1.0-acticus);
 /* output delta */
 dwight = Odbias[absout] =
 Obrate*delta+Momentum*Odbias[absout];
 /* delta weight */
 Obias[absout] += dwight;
 /* change output bias */

224

224

 gindex = windex;

225

225

 for(goseek=0L;goseek<row;goseek++)
 {
 Herr[goseek] += delta*Howts[gindex];
 dwight = Hodw[gindex] =
 Holrate*delta*Hacts[goseek]+
 Momentum*Hodw[gindex];
 Howts[gindex++] += dwight;
 /* change hidden to output weights */
 }
 }
 for(goseek=0L;goseek<row;goseek++)
 {
 Hdelta[goseek] = Herr[goseek]*Hacts[goseek]*
 (1.0-Hacts[goseek]);
 dwight =Hdbias[goseek] =
 Hbrate*Hdelta[goseek]+
 Momentum*Hdbias[goseek];
 Hbias[goseek] += dwight;
 }
 /* change hidden biases */
 cur = curpat;
 for(curin=(long)Pattab[cur++];
 curin!=0L;curin=(long)Pattab[cur++])
 {
 if (curin>Imps || curin<=0L)
 continue;
 gindex = (curin-1L)*row;
 gutter = 0.0;
 for(goseek=0L;goseek<row;goseek++)
 {
 dwight = Ihdw[gindex] =
 Ihlrate*Hdelta[goseek]+
 Momentum*Ihdw[gindex];
 Ihwts[gindex] += dwight;
 gutter += Ihwts[gindex]*Ihwts[gindex];
 gindex++;
 }
 /* change input to hidden weights */

226

226

 if (gutter>1.0)
 {
 gutter = (float)sqrt((double)gutter);
 gindex = (curin-1L)*row;
 for(goseek=0L;goseek<row;goseek++)
 Ihwts[goseek] /= gutter;
 }
 /* normalize connecting weights from input
 to hidden units so that the weights
 leading out of each input unit form a
 vector of length 1.0: note that this is
 different from the PDP software */
 }
 Tss += Pss;
 /* update total sum of squares */
 if (john/flipper*flipper==john)
 {
 pos(15,36);
 printf("%4ld %4ld",john+1L,Used[john]+1L);
 pos(18,36);
 printf("%9.8g ",Tss);
 if (Showit==2)
 contin();
 }
 }
 if (shobad)
 {
 pos(17,31);
 printf(" ");
 }
 pos(19,36);
 printf("%9.8g ",Tss);
 if (!shobad && Tss<(float)Pxtot)
 shobad = YUP;
 if ((Epoch-((Epoch/Nepochs)*Nepochs))==0L)
 poodiout();
 if (Showit>2)
 break;
 }
}

227

227

/***
This routine writes weights and biases to an output
file so that training can continue at a later time
using this file as input.
**
/

poodiout()
{
 if ((Owfp=fopen(Woutnam,"wb"))==NULL)
 {
 printf("Error opening output file %s",Woutnam);
 queeut(1);
 }
 fwrite(&Epoch,sizeof(long),1,Owfp);
 fwrite(&Tss,sizeof(float),1,Owfp);
 fwrite(&Imps,sizeof(long),1,Owfp);
 fwrite(&Hided,sizeof(long),1,Owfp);
 fwrite(&Oups,sizeof(long),1,Owfp);
 silver = Hided*Imps;
 for(john=0L;john<silver;john++)
 fwrite(&Ihwts[john],sizeof(float),1,Owfp);
 silver = Hided*Oups;
 for(john=0L;john<silver;john++)
 fwrite(&Howts[john],sizeof(float),1,Owfp);
 silver = Hided;
 for(john=0L;john<silver;john++)
 fwrite(&Hbias[john],sizeof(float),1,Owfp);
 silver = Oups;
 for(john=0L;john<silver;john++)
 fwrite(&Obias[john],sizeof(float),1,Owfp);
 fclose(Owfp);
 pos(22,37);
 printf("(%6ld)",Epoch);
}

/***
This routine reads network configuration and epoch
data from a weights input file.
**
/

bringiin(phil)
char *phil;
{
 if ((Iwfp=fopen(phil,"rb"))==NULL)
 {
 printf("Error opening input file %s",phil);

228

228

 queeut(1);
 }
 fread(&Epoch,sizeof(long),1,Iwfp);
 if (ferror(Iwfp)!=0)
 {
 printf("Error reading input file %s",phil);
 queeut(1);
 }
 fread(&Tss,sizeof(float),1,Iwfp);
 if (ferror(Iwfp)!=0)
 {
 printf("Error reading input file %s",phil);
 queeut(1);
 }
 pos(19,28);
 printf("Epoch %ld Tss %9.8g",Epoch,Tss);
 Epoch++;
 fread(&Imps,sizeof(long),1,Iwfp);
 if (ferror(Iwfp)!=0 || Imps<=0L)
 {
 printf("Error reading number of input ");
 printf("units from input file %s",phil);
 queeut(1);
 }
 fread(&Hided,sizeof(long),1,Iwfp);
 if (ferror(Iwfp)!=0 || Hided<=0L)
 {
 printf("Error reading number of hidden ");
 printf("units from input file %s",phil);
 queeut(1);
 }
 fread(&Oups,sizeof(long),1,Iwfp);
 if (ferror(Iwfp)!=0 || Oups<=0L)
 {
 printf("Error reading number of output units ");
 printf("from input file %s",phil);
 queeut(1);
 }
}

229

229

/***
This routine reads weights and biases from an input
file.
**
/

bringdat(phil)
char *phil;
{
 silver = Hided*Imps;
 for(john=0L;john<silver;john++)
 {
 fread(&Ihwts[john],sizeof(float),1,Iwfp);
 if (john/1000L*1000L==john)
 {
 pos(11,37);
 printf("%6ld",john);
 }
 if (ferror(Iwfp)!=0)
 {
 printf("Error reading input file %s",phil);
 queeut(1);
 }
 }
 silver = Hided*Oups;
 for(john=0L;john<silver;john++)
 {
 fread(&Howts[john],sizeof(float),1,Iwfp);
 if (john/1000L*1000L==john)
 {
 pos(11,37);
 printf("%6ld",john);
 }
 if (ferror(Iwfp)!=0)
 {
 printf("Error reading input file %s",phil);
 queeut(1);
 }
 }
 silver = Hided;
 for(john=0L;john<silver;john++)
 {
 fread(&Hbias[john],sizeof(float),1,Iwfp);
 pos(15,37);
 printf("%6ld",john);
 if (ferror(Iwfp)!=0)
 {
 printf("Error reading input file %s",phil);

230

230

 queeut(1);
 }
 }
 silver = Oups;
 for(john=0L;john<silver;john++)
 {
 fread(&Obias[john],sizeof(float),1,Iwfp);
 if (john/100L*100L==john)
 {
 pos(13,37);
 printf("%6ld",john);
 }
 if (ferror(Iwfp)!=0)
 {
 printf("Error reading input file %s",phil);
 queeut(1);
 }
 }
 fclose(Iwfp);
 Iwfp = NULL;
}

231

231

Appendix D

A PROGRAM FOR EVALUATING SEMANTIC COOCCURRENCE

NETWORKS

 This program evaluates the ambiguity resolution

power of a trained neural network. It takes as

input an ASCII file in groups of three or four

lines. Each group is as follows:

 S

 C1 C2 C3 C4 C5 C6 ...

 T1 T2 ...

 TC

where S is the ambiguous source word, Ci are the

source context words, Ti are the possible target

translations, and TC is the correct target

translation. Normally, the ambiguous word should

not be one of the words listed as context words. In

test mode, the TC line is required, but if the

program is run in resolution mode, the TC line is

not allowed and the network simply resolves the

ambiguity without checking against any predetermined

standard.

232

232

 Inputs to the program are the file just

discussed, the weights file created by the program

in Appendix C, and the word index files described in

Appendix B.

 The program can be run with two algorithms.

The first, called default mode, presents the entire

context to the network as inputs at once. The

second, called pair mode, presents the ambiguous

word and one context word to the network, and counts

the context word as a trigger word if the activation

of the most activated target word output unit

exceeds a certain threshold (a command line

parameter); each context word is presented in this

manner, the target word counts are then tallied, and

the most triggered sense is chosen. If none of the

context words are known, the algorithm picks T1 as

the correct default translation.

#include <stdio.h>
#include <dos.h>
#include <string.h>

#define YUP 1
#define NOPE 0

#define TIMIL 500
 /* number of context words allowed */
#define TNETXE 20

233

233

 /* number of target translations allowed */
#define NELFUB 2000
 /* input buffer length */
#define NELMANF 80
 /* screen input buffer length */

#if defined(OS2)
#define INCL_BASE
#include <OS2.H>
#endif

char *Wonnam,*Winnam,*Woutnam,*Waitnam;
char *strdup(),*calloc(),huge *halloc();

FILE
*Foup,*Iwfp,*Swxfp,*Swdfp,*Twxfp,*Twdfp,*fopen();

float Tss,Accrate,huge *Ihwts,huge *Howts,huge
*Obias;

int Showit;
 /* screen debug level */
int Filit;
 /* file information level */
int Checkit;
 /* true if checking against known value */
int Defaulit;
 /* true if presenting whole context at once */
int Quickit;
 /* true if doing only one command line file */

long Swxtot,Twxtot,Swdtot,Twdtot;

long Epoch,Nepochs,john,silver,Imps,Hided,Oups;

float huge *Ihwts,huge *Howts,huge *Obias;
float *Hacts,*Hbias,*Hnetin;

typedef struct wax {
 long freq;
 long wdoff;
} museum;

museum huge *Swxtab,huge *Twxtab;
char huge *Swdtab,huge *Twdtab;

main(argc,argv)
int argc;

234

234

char *argv[];
{
#if defined(OS2)
 VioSetAnsi(1,0);
#endif

 if (argc<7)
 {
 printf("\nwindext <dbug><wts><swx><swd>");
 printf("<twx><twd><rate>(<infil>)");
 exit(1);
 }
 cls();
 pos(1,1);
 Showit = 0;
 if (sscanf(argv[1],"%d",&Showit)==0)
 {
 printf("\n\nNo debug level in command line: ");
 printf("try again");
 exit(1);
 }
 /* Debug level WXYZ means
 W 1 if all context words are to be
 presented to the network at
once
 0 if context words should be
 presented one-by-one with the
 ambiguous word and tallied
 X 1 if input files contain the TC
 line to check results against
 0 if no checking is to be done
 Y file level information
 0 writes word, context, sense
 chosen and statistics if
Checkit
 1 0-level info plus trigger
words
 2 1-level info plus activations
 3 2-level info plus tallies
 4 3-level info plus hidden units
 9 0-level without contexts
 Z screen debug level
 */
 Defaulit = Showit/1000;
 if (Defaulit!=1)
 Defaulit = 0;
 Showit %= 1000;
 Checkit = Showit/100;

235

235

 if (Checkit!=1)
 Checkit = 0;
 Showit %= 100;
 Filit = Showit/10;
 Quickit = (Filit==9) ? YUP : NOPE;
 if (Filit<0 || Filit>5)
 Filit = 0;
 Showit %= 10;
 if (Showit<0 || Showit>5)
 Showit = 0;
 Winnam = NULL;
 indat(argc,argv);
 /* read in indexes */
 bringiin(Waitnam);
 /* read in weight file info */
 makary();
 /* allocate arrays */
 initwits();
 /* read in weights */
 ovrnover();
 /* evaluate the neural network */
 fcloseall();
}

/***
This routine reads in the index files and command
line parameters.
**
/

indat(numfil,filnams)
int numfil;
char *filnams[];
{
 FILE *ripopen();
 long aboutnow;
 Waitnam = strdup(filnams[2]);
 Swxfp = ripopen(filnams[3],&aboutnow,
 &(char huge *)Swxtab);
 Swxtot = aboutnow/(sizeof(museum));
 Swdfp = ripopen(filnams[4],&aboutnow,&Swdtab);
 Swdtot = aboutnow/(sizeof(char));
 Twxfp = ripopen(filnams[5],&aboutnow,
 &(char huge *)Twxtab);
 Twxtot = aboutnow/(sizeof(museum));
 Twdfp = ripopen(filnams[6],&aboutnow,&Twdtab);
 Twdtot = aboutnow/(sizeof(char));
 if (numfil>7)

236

236

 {
 if (sscanf(filnams[7],"%f",&Accrate)==0)
 {
 printf("\n\nNo debug level in command line:
");
 printf("try again");
 exit(1);
 }
 }
 else
 Accrate = 0.8;
 /* trigger threshold in pair mode */
 if (numfil>8)
 Wonnam = filnams[8];
 else
 Wonnam = NULL;
 /* ASCII input data for resolution */
}

/***
This routine allocates the arrays.
**
/

makary()
{
 silver = Imps*Hided;
 if ((Ihwts=(float huge *)(long huge *)
 halloc(silver,sizeof(float)))==NULL)
 {
 printf("\n\nOut of memory allocating IH
weights");
 queeut(1);
 }
 silver = Oups*Hided;
 if ((Howts=(float huge *)(long huge *)
 halloc(silver,sizeof(float)))==NULL)
 {
 printf("\n\nOut of memory allocating HO
weights");
 queeut(1);
 }

237

237

 if ((Obias=(float huge *)(long huge *)
 halloc(Oups,sizeof(float)))==NULL)
 {
 printf("\n\nOut of memory allocating ");
 printf("output biases");
 queeut(1);
 }
 if ((Hacts=(float *)(long *)

calloc((int)Hided,sizeof(float)))==NULL)
 {
 printf("\n\nOut of memory allocating ");
 printf("hidden activations");
 queeut(1);
 }
 if ((Hbias=(float *)(long *)

calloc((int)Hided,sizeof(float)))==NULL)
 {
 printf("\n\nOut of memory allocating ");
 printf("hidden biases");
 queeut(1);
 }
 if ((Hnetin=(float *)(long *)

calloc((int)Hided,sizeof(float)))==NULL)
 {
 printf("\n\nOut of memory allocating hidden ");
 printf("net inputs");
 queeut(1);
 }
}

/***
This routine reads an input file into memory.
**
/

FILE *ripopen(filnam,siz,ptr)
char *filnam;
char huge **ptr;
long *siz;
{
 FILE *fp;
 long curptr=0L,ftell();
 if ((fp=fopen(filnam,"rb"))==NULL)
 {
 printf("Error opening input file %s",filnam);

238

238

 queeut(1);
 }
 if (fseek(fp,0L,SEEK_END)!=0)
 {
 printf("Error sizing input file %s",filnam);
 queeut(1);
 }
 if ((*siz=ftell(fp))==-1L)
 {
 printf("Error measuring input file %s",filnam);
 queeut(1);
 }
 if (fseek(fp,0L,SEEK_SET)!=0)
 {
 printf("Error positioning input file
%s",filnam);
 queeut(1);
 }
 if ((*ptr=(char huge *)(long huge *)
 halloc(*siz+2L,1))==NULL)
 {
 printf("\nError allocating memory for file
'%s'",
 filnam);
 queeut(1);
 }
 clearerr(fp);
 for(;!feof(fp) && !ferror(fp);curptr+=512L)
 fread((char *)&(*ptr)[curptr],512,1,fp);
 if (ferror(fp)!=0)
 {
 printf("Error reading input file %s",filnam);
 queeut(1);
 }
 return(fp);
}

/***
This is the standard error exit routine.
**
/

queeut(oot)
int oot;
{
 fcloseall();
 exit(oot);
}

239

239

240

240

/***
This routine pauses for user input.
**
/

contin()
{
 char dum;
 pos(23,77);
 printf("~");
 pos(23,77);
 printf(" ");
 dum = toupper((getch()&0xFF));
 if (dum=='x' || dum=='X') queeut(0);
}

/***
This routine clears a line on the screen.
**
/

clreol(row,col)
int row,col;
{
 int i;
 if (row<0 || row>25 || col<1 || col>80)
 return;
 pos(row,col);
 i = 81 - col;
 while(i--)
 printf(" ");
 pos(row,col);
}

/***
This routine initializes weights and biases in the
neural network based on the weights file.
**
/

initwits()
{
 int oogle;
 unsigned seed;
 printf("\nThis program is partly based on ");
 printf("software with the following note");
 printf("\n Copyright 1987 by James L. ");
 printf("McClelland and David E. Rumelhart.");

241

241

 cls();
 pos(9,31);
 printf("Initializing Weights");
 bringdat(Waitnam);
}

/***
This routine calculates activations based on net
inputs.
**
/

float logistic (x)
 /* copied from PDP bp.c */
float x;
{
 double exp ();
 if (x > 11.5129)
 return(.99999);
 else
 if (x < -11.5129)
 return(.00001);
 else
 return(1.0 / (1.0 + (float) exp((double)
((-1.0) * x))));
}

/***
This is the main routine for evaluation. In a loop,
it asks for a filename; it expects the ASCII input
data to be in filename.won in Checkit mode, and
filename.win otherwise; output is to filename.wot.
It reads each group, finds the indices of the
ambiguous word, source context words, target
translations, and correct translation. It calls
figrdout to choose a sense, and reports the results.
**
/

ovrnover()
{
 FILE *finp;
 char philenam[NELMANF],philein[NELMANF];
 char phileout[NELMANF],**trw;
 char ambwoid[NELMANF],chkwoid[NELMANF];
 char curwrd[NELMANF],*insent,*frog;
 long errnum,totnum,*srccon,*targposs,gtndx();
 short *targscr,fndout;

242

242

 unsigned short srcnum,trgnum,bestran,figrdout();
 if ((srccon=
 (long *)calloc(TIMIL,sizeof(long)))==NULL)
 {
 printf("\n\nOut of memory on allocation ");
 printf("of source array!");
 queeut(1);
 }
 /* source context array */
 if ((targposs=(long *)
 calloc(TNETXE,sizeof(long)))==NULL)
 {
 printf("\n\nOut of memory on allocation ");
 printf("of target array!");
 queeut(1);
 }
 /* target possible translations array */
 if ((trw=(char **)
 calloc(TNETXE,sizeof(char *)))==NULL)
 {
 printf("\n\nTRW is too big!");
 queeut(1);
 }
 /* array pointing to target strings */
 if ((targscr=(short *)
 calloc(TNETXE,sizeof(short)))==NULL)
 {
 printf("\n\nOut of memory on allocation ");
 printf("of target score array!");
 queeut(1);
 }
 /* array for tallies */
 if ((insent=calloc(NELFUB,sizeof(char)))==NULL)
 {
 printf("\n\nPassed out making insents!");
 queeut(1);
 }
 /* input buffer from ASCII file */
 Winnam = &philein[0];
 Woutnam = &phileout[0];
 while(1)
 {
 if (!Wonnam)
 {
 cls();
 pos(1,31);
 printf("THE CONTEXT MACHINE");
 pos(3,27);

243

243

 printf("File of contexts: ");
 philenam[0] = 0;
 if (scanf("%s",philenam)<=0 ||
 philenam[0]=='x' ||
 philenam[0]=='X')
 break;
 strcpy(Winnam,philenam);
 strcpy(Woutnam,philenam);
 }
 else
 {
 strcpy(Winnam,Wonnam);
 strcpy(Woutnam,Wonnam);
 }
 if (Checkit)
 strcat(Winnam,".won");
 else
 strcat(Winnam,".win");
 strcat(Woutnam,".wot");
 if ((Foup=fopen(Woutnam,"w"))==NULL)
 {
 pos(8,11);
 printf("\n\nError opening output file %s",
 Woutnam);
 contin();
 continue;
 }
 if ((finp=fopen(Winnam,"r"))==NULL)
 {
 pos(8,11);
 printf("Error opening output file %s",Winnam);
 contin();
 fclose(Foup);
 continue;
 }
 fprintf(Foup,"Processing contextual patterns ");
 fprintf(Foup,"using file %s, Epoch %ld, rate
%f.",
 Waitnam,Epoch-1L,Accrate);
 if (Defaulit)
 fprintf(Foup,"\nDefault processing");
 fprintf(Foup,"\n\n==================");
 fprintf(Foup,
 "================================\n");
 fprintf(Foup,"\nContext analysis of patterns ");
 fprintf(Foup,"from file %s.",Winnam);
 errnum = 0L;
 totnum = 0L;

244

244

 while(1)
 {
 fprintf(Foup,"\n\n----------------");
 fprintf(Foup,
 "----------------------------------");
 if (Showit>1)
 {
 cls();
 pos(1,31);
 printf("THE CONTEXT MACHINE");
 pos(3,40-strlen(philein)/2);
 printf("%s",philein);
 }
 if (fgets(ambwoid,NELMANF-1,finp)==NULL)
 /* read ambiguous word */
 {
 if (feof(finp))
 break;
 if (ferror(finp))
 {
 fprintf(Foup,"\n\nRead error on input ");
 fprintf(Foup,"file %s",Winnam);
 if (Showit)
 {
 pos(8,11);
 printf("Read error on input ");
 printf("file %s",Winnam);
 if (Showit>1)
 {
 contin();
 clreol(8,11);
 }
 }
 break;
 }
 }
 if (ambwoid[strlen(ambwoid)-1]=='\n')
 ambwoid[strlen(ambwoid)-1] = '\0';
 srcnum = 0;
 if ((srccon[srcnum++]=
 gtndx(ambwoid,Swxtot,Swxtab,Swdtab))
 ==Swxtot)
 {
 fprintf(Foup,"\n\n UNKNOWN keyword ");
 fprintf(Foup,'%s'",ambwoid);
 if (Showit)
 {
 pos(5,31-strlen(ambwoid)/2);

245

245

 printf("UNKNOWN keyword
'%s'",&ambwoid[0]);
 if (Showit>3)
 contin();
 clreol(7,1);
 }
 if (fgets(insent,NELFUB-1,finp)==NULL)
 {
 if (feof(finp))
 break;
 if (ferror(finp))
 {
 fprintf(Foup,"\n\nRead error on input
");
 fprintf(Foup,"file %s",Winnam);
 if (Showit)
 {
 pos(8,11);
 printf("Read error on input ");
 printf("file %s",Winnam);
 if (Showit>1)
 {
 contin();
 clreol(8,11);
 }
 }
 break;
 }
 }
 if (fgets(insent,NELFUB-1,finp)==NULL)
 {
 if (feof(finp))
 break;
 if (ferror(finp))
 {
 fprintf(Foup,"\n\nRead error on input
");
 fprintf(Foup,"file %s",Winnam);
 if (Showit)
 {
 pos(8,11);
 printf("Read error on input ");
 printf("file %s",Winnam);

246

246

 if (Showit>1)
 {
 contin();
 clreol(8,11);
 }
 }
 break;
 }
 }
 continue;
 }
 else
 {
 fprintf(Foup,"\n\nKeyword '%s'",ambwoid);
 if (Showit)
 {
 pos(5,35-strlen(ambwoid)/2);
 printf("Keyword '%s'",ambwoid);
 }
 }
 if (fgets(insent,NELFUB-1,finp)==NULL)
 /* read context line */
 {
 if (feof(finp))
 {
 fprintf(Foup,"\n\nUnexpected end of ");
 fprintf(Foup,"input file %s",Winnam);
 if (Showit)
 {
 pos(8,11);
 printf("Unexpected end of input ");
 printf("file %s",Winnam);
 if (Showit>1)
 {
 contin();
 clreol(8,11);
 }
 }
 break;
 }
 if (ferror(finp))
 {
 fprintf(Foup,"\n\nRead error on input ");
 fprintf(Foup,"file %s",Winnam);

247

247

 if (Showit)
 {
 pos(8,11);
 printf("Read error on input ");
 printf("file %s",Winnam);
 if (Showit>1)
 {
 contin();
 clreol(8,1);
 }
 }
 break;
 }
 }
 if (insent[strlen(insent)-1]=='\n')
 insent[strlen(insent)-1] = '\0';
 if (!Quickit)
 fprintf(Foup,"\nContext: '%s'",insent);
 if (Showit>1)
 {
 pos(9,1);
 printf("Context: '%s'",insent);
 }
 frog = strtok(insent," ");
 fndout = NOPE;
 while(frog!=NULL)
 {
 if ((srccon[srcnum]=
 gtndx(frog,Swxtot,Swxtab,Swdtab))
 ==Swxtot)
 {
 if (!fndout)
 {
 if (!Quickit)
 {
 fprintf(Foup,"\n UNKNOWN words: ");
 fprintf("%s",frog);
 }
 fndout = YUP;
 }
 else if (!Quickit)
 fprintf(Foup," %s",frog);
 if (Showit)
 {
 pos(8,30-strlen(frog)/2);
 printf("UNKNOWN source word %s",frog);
 if (Showit>3)
 contin();

248

248

 clreol(8,1);
 }
 frog = strtok(NULL," ");
 continue;
 }
 if (++srcnum>=TIMIL)
 {
 fprintf(Foup,"Out of space in context ");
 fprintf(Foup," array; ignoring remainder
");
 fprintf(Foup,"of context");
 if (Showit)
 {
 pos(8,11);
 printf("Out of space in context
array;");
 printf(" ignoring remainder of
context");
 if (Showit>1)
 {
 contin();
 clreol(8,1);
 }
 }
 break;
 }
 frog = strtok(NULL," ");
 }
 if (fgets(insent,NELFUB-1,finp)==NULL)
 /* read target translation line */
 {
 if (feof(finp))
 {
 fprintf(Foup,"\nUnexpected end of input
");
 fprintf(Foup,"file %s",Winnam);
 if (Showit)
 {
 pos(8,11);
 printf("Unexpected end of input ");
 printf("file %s",Winnam);
 if (Showit>1)
 contin();
 }
 break;
 }

249

249

 if (ferror(finp))
 {
 fprintf(Foup,"\nRead error on input file
");
 fprintf(Foup," %s",Winnam);
 if (Showit)
 {
 printf("\n\nRead error on input ");
 printf("file %s",Winnam);
 if (Showit>1)
 contin();
 }
 break;
 }
 }
 if (insent[strlen(insent)-1]=='\n')
 insent[strlen(insent)-1] = '\0';
 trgnum = 0;
 fprintf(Foup,"\nSenses: '%s'",insent);
 if (Showit>1)
 {
 pos(12,1);
 printf("Senses: '%s'",insent);
 }
 fndout = NOPE;
 frog = strtok(insent," ");
 while(frog!=NULL)
 {
 if ((targposs[trgnum]=
 gtndx(frog,Twxtot,Twxtab,Twdtab))
 ==Twxtot)
 {
 if (!fndout)
 {
 fprintf(Foup,"\n UNKNOWN words: ");
 fprintf(Foup," %s",frog);
 fndout = YUP;
 }
 else
 fprintf(Foup," %s",frog);
 if (Showit)
 {
 pos(8,30-strlen(frog)/2);
 printf("UNKNOWN target word %s",frog);
 if (Showit>3)
 contin();

250

250

 clreol(8,1);
 }
 frog = strtok(NULL," ");
 continue;
 }
 trw[trgnum] = frog;
 if (++trgnum>=TNETXE)
 {
 fprintf(Foup,"Out of space in sense ");
 fprintf(Foup,"array; ignoring remainder
");
 fprintf(Foup,"of context");
 if (Showit)
 {
 pos(8,11);
 printf("Out of space in sense ");
 printf("array; ignoring remainder ");
 printf("of context");
 if (Showit>1)
 {
 contin();
 clreol(8,1);
 }
 }
 break;
 }
 frog = strtok(NULL," ");
 }
 if (trgnum<=0)
 {
 fprintf(Foup,"\nNo targets were specified");
 if (Showit>1)
 {
 pos(7,28);
 printf("No targets were specified");
 contin();
 }
 continue;
 }
 if (Checkit)
 {
 if (fgets(chkwoid,NELMANF-1,finp)==NULL)
 /* read correct translation line */
 {
 if (feof(finp))
 {
 fprintf(Foup,"\n\nUnexpected end of ");

251

251

 fprintf(Foup,"file on input
file",Winnam);
 if (Showit)
 {
 pos(8,11);
 printf("Unexpected end of file ");
 printf("on input file %s",Winnam);
 if (Showit>1)
 {
 contin();
 clreol(8,11);
 }
 }
 break;
 }
 if (ferror(finp))
 {
 fprintf(Foup,"\n\nRead error on input
");
 fprintf(Foup,"file %s",Winnam);
 if (Showit)
 {
 pos(8,11);
 printf("Read error on input ");
 printf("file %s",Winnam);
 if (Showit>1)
 {
 contin();
 clreol(8,11);
 }
 }
 break;
 }
 }
 if (chkwoid[strlen(chkwoid)-1]=='\n')
 chkwoid[strlen(chkwoid)-1] = '\0';
 }
 bestran = figrdout(srccon,srcnum,

targposs,trgnum,trw,targscr);
 /* figure out best translation */
 if (bestran==trgnum)
 bestran = 0;
 /* if none chosen, use first translation
 on the translation line */
 frog = trw[bestran];
 fprintf(Foup,
 "\n\nBest translation is '%s'",frog);

252

252

 if (Checkit)
 {
 totnum++;
 if (chkwoid && strlen(chkwoid)>0 &&
 strcmp(trw[bestran],chkwoid)==0)
 fprintf(Foup," (correct)");
 else
 {
 fprintf(Foup," { # '%s'}",chkwoid);
 errnum++;
 }
 }
 if (Showit>1)
 {
 pos(7,30-strlen(frog)/2);
 printf("Best translation is '%s'",frog);
 contin();
 }
 }
 fclose(finp);
 fprintf(Foup,"\n");
 if (Checkit && totnum)
 {
 fprintf(Foup,"\n%ld/%ld = %f%c correct\n\n",
 totnum-errnum,totnum,
 ((float)(((float)(totnum-errnum))/
 ((float)totnum)))*100.0,37);
 }
 fclose(Foup);
 if (Wonnam)
 break;
 }
}

253

253

/***
This is the routine that uses the neural network to
determine the correct translation. In default mode,
it simply calls wipadout. In pair mode, the
ambiguous word and one context word are presented as
input to the network. If the activation of the most
activated target translation exceeds the threshold,
the context word is counted as a trigger word and is
tallied.
**
/

unsigned short figrdout(srcary,srcnum,trgary,
 trgnum,wort,tally)
unsigned short srcnum,trgnum;
long *srcary,*trgary;
char **wort;
short *tally;
{
 short nap,very,relaxing,too;
 float axe;
 unsigned short grin,wipadout();
 long twoary[2];
 if (!Defaulit)
 {
 if (srcnum>1)
 {
 too = 2;
 for(nap=0;nap<trgnum;nap++)
 tally[nap] = 0;
 /* initialize tallies */
 twoary[0] = srcary[0];
 if (Showit==1)
 pos(12,1);
 for(nap=1;nap<srcnum;nap++)
 {
 /* use each context word in turn */
 twoary[1] = srcary[nap];
 if (Filit>3)
 fprintf(Foup,"\n\n>> %s %s",
 &Swdtab[Swxtab[twoary[0]].wdoff],
 &Swdtab[Swxtab[twoary[1]].wdoff]);

254

254

 if (Showit>1)
 {
 pos(11,1);
 printf("< %s %s > ",
 &Swdtab[Swxtab[twoary[0]].wdoff],
 &Swdtab[Swxtab[twoary[1]].wdoff]);
 }
 grin = wipadout(twoary,too,
 trgary,trgnum,wort,&axe);
 /* determine most activated translation */
 if (grin!=trgnum && axe>=Accrate)
 /* if it exceeds threshold, tally it */
 {
 tally[grin]++;
 if (Showit==1)
 printf("\n '%s' triggers '%s' (%f)",
 &Swdtab[Swxtab[twoary[1]].wdoff],
 wort[grin],axe);
 if (Filit)
 {
 fprintf(Foup,"\n '%s' triggers '%s'",

&Swdtab[Swxtab[twoary[1]].wdoff],
 wort[grin]);
 if (Filit>1)
 fprintf(Foup," (%f)",axe);
 }
 }
 }
 very = NOPE;
 relaxing = 0;
 if (Filit>2)
 fprintf(Foup,"\n\nTallies:");
 for(nap=0;nap<trgnum;nap++)
 {
 if (Filit>2)
 fprintf(Foup,"\n %s = %hd",
 wort[nap],tally[nap]);
 if (tally[nap]>tally[relaxing])
 {
 relaxing = nap;
 very = NOPE;
 }
 else if (nap!=0 &&
 tally[nap]==tally[relaxing])
 very = YUP;
 }
 if (!very && tally[relaxing]!=0)

255

255

 return(relaxing);
 }
 fprintf(Foup,"\n\nDefault Used");
 }
 return(wipadout(srcary,srcnum,
 trgary,trgnum,wort,&axe));
}

/***
This routine uses the neural network to determine
the most activated translation.
**
/

unsigned short wipadout(srcary,srcnum,
 trgary,trgnum,wort,indyact)
unsigned short srcnum,trgnum;
long *srcary,*trgary;
char **wort;
float *indyact;
{
 float impetus,acticus,logistic(),numma1;
 short rowum,colum;
 unsigned short beswoid,cur;
 long curin,curout,row,goseek,absout,gindex;
 row = Hided;
 memset(Hacts,0,((int)Hided)*sizeof(float));
 memcpy(Hnetin,Hbias,((int)Hided)*sizeof(float));
 for(cur=0;cur<srcnum;cur++)
 {
 curin = srcary[cur];
 if (curin>Imps || curin<=0L)
 continue;
 gindex = (curin-1)*row;
 for(goseek=0L;goseek<row;goseek++)
 Hnetin[goseek] += Ihwts[gindex++];
 /* calculate inputs to hidden units */
 }
 if (Filit>3)
 fprintf(Foup,"\n");
 if (Showit>1)
 pos(24,40-Hided/2);
 for(goseek=0L;goseek<row;goseek++)
 {
 Hacts[goseek] = logistic(Hnetin[goseek]);
 /* and hidden activations */
 if (Filit>3)
 fprintf(Foup,"%c",

256

256

 (Hacts[goseek]>0.5) ? '1' : '0');
 if (Showit>1)
 printf("%c",(Hacts[goseek]>0.5) ? '1' : '0');
 }
 beswoid = trgnum;
 numma1 = -1.0;
 for(cur=0;cur<trgnum;cur++)
 {
 absout = trgary[cur]-1L;
 if (absout>=Oups || absout<0L)
 continue;
 impetus = Obias[absout];
 gindex = absout*row;
 for(goseek=0;goseek<row;goseek++)
 impetus += Howts[gindex++] * Hacts[goseek];
 /* inputs to output unit */
 acticus = logistic(impetus);
 /* output unit activation */
 if (acticus>numma1)
 {
 beswoid = cur;
 numma1 = acticus;
 }
 /* find the most activated translation */
 if (Filit>3)
 fprintf(Foup,"\n%9.8g
 %s",acticus,wort[cur]);
 if (Showit>1)
 {
 rowum = 13+cur-(cur/7)*7;
 colum = 1+(cur/7)*26;
 pos(rowum,colum);
 printf("%9.8g",acticus);
 pos(rowum,colum+12);
 printf("%s",wort[cur]);
 }
 }
 *indyact = numma1;
 return(beswoid);
}

257

257

/***
This routine reads network information.
**
/

bringiin(phil)
char *phil;
{
 if ((Iwfp=fopen(phil,"rb"))==NULL)
 {
 printf("Error opening input file %s",phil);
 queeut(1);
 }
 fread(&Epoch,sizeof(long),1,Iwfp);
 if (ferror(Iwfp)!=0)
 {
 printf("Error reading input file %s",phil);
 queeut(1);
 }
 fread(&Tss,sizeof(float),1,Iwfp);
 if (ferror(Iwfp)!=0)
 {
 printf("Error reading input file %s",phil);
 queeut(1);
 }
 pos(19,28);
 printf("Epoch %ld Tss %9.8g",Epoch,Tss);
 Epoch++;
 fread(&Imps,sizeof(long),1,Iwfp);
 if (ferror(Iwfp)!=0 || Imps<=0L)
 {
 printf("Error reading number of input units ");
 printf("from input file %s",phil);
 queeut(1);
 }
 fread(&Hided,sizeof(long),1,Iwfp);
 if (ferror(Iwfp)!=0 || Hided<=0L)
 {
 printf("Error reading number of hidden units ");
 printf("from input file %s",phil);
 queeut(1);
 }
 fread(&Oups,sizeof(long),1,Iwfp);
 if (ferror(Iwfp)!=0 || Oups<=0L)
 {
 printf("Error reading number of output units ");
 printf("from input file %s",phil);
 queeut(1);

258

258

 }
}

/***
This routine reads weights and biases.
**
/

bringdat(phil)
char *phil;
{
 silver = Hided*Imps;
 for(john=0L;john<silver;john++)
 {
 fread(&Ihwts[john],sizeof(float),1,Iwfp);
 if (john/1000L*1000L==john)
 {
 pos(11,37);
 printf("%6ld",john);
 }
 if (ferror(Iwfp)!=0)
 {
 printf("Error reading input file %s",phil);
 queeut(1);
 }
 }
 silver = Hided*Oups;
 for(john=0L;john<silver;john++)
 {
 fread(&Howts[john],sizeof(float),1,Iwfp);
 if (john/1000L*1000L==john)
 {
 pos(11,37);
 printf("%6ld",john);
 }
 if (ferror(Iwfp)!=0)
 {
 printf("Error reading input file %s",phil);
 queeut(1);
 }
 }
 silver = Hided;
 for(john=0L;john<silver;john++)
 {
 fread(&Hbias[john],sizeof(float),1,Iwfp);
 pos(15,37);
 printf("%6ld",john);
 if (ferror(Iwfp)!=0)

259

259

 {
 printf("Error reading input file %s",phil);
 queeut(1);
 }
 }
 silver = Oups;
 for(john=0L;john<silver;john++)
 {
 fread(&Obias[john],sizeof(float),1,Iwfp);
 if (john/100L*100L==john)
 {
 pos(13,37);
 printf("%6ld",john);
 }
 if (ferror(Iwfp)!=0)
 {
 printf("Error reading input file %s",phil);
 queeut(1);
 }
 }
 fclose(Iwfp);
 Iwfp = NULL;
}

/***
Given a string, this routine returns an index into a
sorted list.
**
/

long gtndx(symbol,ndxtot,ndxtab,wdtab)
char *symbol,huge *wdtab;
long ndxtot;
museum huge *ndxtab;
{
 int cond;
 long low=0L,high=(ndxtot-1L),mid=0L;
 while (low<=high)
 {
 mid = low + (high-low)/2L;
 if ((cond=strcmp(symbol,
 &wdtab[ndxtab[mid].wdoff]))<0)
 high = mid - 1L;
 else if (cond>0)
 low = mid + 1L;
 else
 return(mid);
 }

260

260

 return(ndxtot);
}

261

261

BIBLIOGRAPHY

Adriens, Geert, and Steven L. Small. 1988. "Word

Expert Parsing in a Cognitive Science

Perspective," Lexical Ambiguity Resolution,

eds. Steven L. Small, Garrison W. Cottrell, and

Michael K. Tannenhaus. San Mateo, California:

Morgan Kaufman.

Brady, John W. 1990. "ICSS (Interlingual

Communication Support Systems) and a

Wittgensteinian Language Game," Proceedings of

the 13th Annual European Studies Conference

(1988). In Press.

Charniak, Eugene. 1983. "Passing Markers: A Theory

of Contextual Influence in Language

Comprehension," Technical Report CS-80,

Department of Computer Science, Brown

University.

262

262

Church, Kenneth, and William Gale, Patrick Hanks,

and

Donald Hindle. 1989. "Parsing, Word

Associations, and Typical Predicate-Argument

Relations," Parsing Technologies Conference

Proceedings, Carnegie Mellon University.

Cottrell, Garrison. 1988. "A Model of Lexical

Access

of Ambiguous Words," Lexical Ambiguity

Resolution, eds. Steven L. Small, Garrison W.

Cottrell, and Michael K. Tannenhaus. San

Mateo, California: Morgan Kaufman.

The Daily Herald, Provo, Utah. October 20, 1988.

Dreyfus, Hubert L. 1985. "From Micro-Worlds to

Knowledge Representation: AI at an Impasse," in

Readings in Knowledge Representation, eds.

Ronald J. Brachman, Hector Levesque. Los Altos,

California: Morgan Kaufman.

263

263

Fass, Dan. 1988. "Collative Semantics: A Semantics

for Natural Language Processing," Report MCCS-

88-118, Computing Research Laboratory, New

Mexico State University.

Golden Common LISP Reference Manual, Version 1.01.

1983. Gold Hill Computers, Cambridge,

Massachusetts, pp. 20-21.

Gould, Roderick. 1957. "Multiple Correspondence,"

Mechanical Translation. Cambridge,

Massachusetts: MIT Press. 4:14-27.

Hirst, Graeme. 1987. Semantic Interpretation and

the

Resolution of Ambiguity. Cambridge: Cambridge

University Press.

Kaplan, Abraham. 1955. "An Experimental Study of

Ambiguity and Context," Mechanical Translation.

Cambridge, Massachusetts: MIT Press. 2:39-47.

264

264

Kawamoto, Alan H. 1988. "Distributed

Representations

of Ambiguous Words and Their Resolution in a

Connectionist Network," Lexical Ambiguity

Resolution, eds. Steven L. Small, Garrison W.

Cottrell, and Michael K. Tannenhaus. San

Mateo, California: Morgan Kaufman.

King, Gilbert W. 1956. "Stochastic Methods of

Mechanical Translation," Mechanical

Translation. Cambridge, Massachusetts: MIT

Press. 3:38-39.

Liberman, Mark. 1989. "How Many Words Do People

Know?" unpublished talk given at the 27th

Annual Meeting of the Association for

Computational Linguistics.

Madhu, Swaminathan, and Dean W. Lytle. 1965.

"A Figure of Merit Technique for the Resolution

of Non-Grammatical Ambiguity," Mechanical

Translation. Cambridge, Massachusetts: MIT

Press. 8:9-13.

265

265

Masterman, Margaret. 1957. "The Thesaurus in

Syntax

and Semantics," Mechanical Translation.

Cambridge, Massachusetts: MIT Press. 4:35-43.

McClelland, James L. and David E. Rumelhart. 1988.

Explorations in Parallel Distributed

Processing. 1988. Cambridge, Massachusetts:

MIT Press.

Papegaaij, B. C. 1986. Word Expert Semantics, an

Interlingual Knowledge-Based Approach, V.

Sadler and A. P. M. Witkam, editors.

Dordrecht, Holland: Foris Publications.

Perry, James W. 1955. "Translation of Russian

Technical Literature by Machine," Mechanical

Translation. Cambridge, Massachusetts: MIT

Press. 2:15-26.

Pimsleur, Paul. 1957. "Semantic Frequency Counts,"

Mechanical Translation. Cambridge,

Massachusetts: MIT Press. 4:11-13.

266

266

Piron, Claude. 1988. "Learning from Translation

Mistakes", Conference Proceedings of New

Directions in Machine Translation. Dordrecht,

Holland: Foris Publishers.

Sedelow, Sally Yeates and Walter A. Sedelow, Jr.

1986. "Thesaural Knowledge Representation,"

Proceedings, Advances in Lexicology, Second

Annual Conference of the UW Centre for the New

Oxford English Dicitonary. Waterloo, Canada:

University of Waterloo.

Sedelow, Sally Yeates and Walter A. Sedelow, Jr.

1990. "Conceptual Primitives," ms. University

of Arkansas at Little Rock.

Slator, Brian M. 1988. "Lexical Semantics and a

Preference Semantics Parser," Report MCCS-88-

116, Computing Research Laboratory, New Mexico

State University.

267

267

Smith, Joseph. 1978. "Joseph Smith History",

The Pearl of Great Price. Salt Lake City,

Utah: The Church of Jesus Christ of Latter-day

Saints.

Sparck-Jones, Karen. 1965. "Experiments in

Semantic

Classification," Mechanical Translation.

Cambridge, Massachusetts: MIT Press. 8:97-

112.

Tarlburt, John R. and Donna K. Mooney. 1990. ms.

University of Arkansas at Little Rock.

Walker, Donald E. and Robert A. Amsler. 1986. "The

Use of Machine-Readable Dictionaries in

Sublanguage Analysis," Sublanguage: Description

and Processing, eds. R. Grishman and R.

Kittredge. Lawrence Erlbaum.

Weaver, Warren. 1967. "Selected Papers of Warren

Weaver", in Science and Imagination. New York:

Basic Books, Inc.

268

268

Weiss, Stephen. 1973. "Learning to Disambiguate,"

Storage Information and Retrieval. Pergamon

Press. 9:33-41.

Wilks, Yorick. 1968. "On-Line Semantic Analysis of

English Texts," Mechanical Translation.

Cambridge, Massachusetts: MIT Press. 11:59-

72.

Wilks, Yorick. 1975. "Preference Semantics,"

Formal

Semantics of Natural Language, ed. Edward L.

Keenan. Cambridge: Cambridge University Press.

Wilks, Yorick, and Dan Fass, Cheng-Ming Guo, James

E.

McDonald, Tony Plate, and Brian M. Slator.

1987. "A Tractable Machine Dictionary as a

Resource for Computational Semantics," Report

MCCS-87-105, Computing Research Laboratory, New

Mexico State University.

269

269

VITA

 Dan Walter Higinbotham was born May 10, 1954,

in Denver, Colorado, the son of Oliver A.

Higinbotham, Jr., and Birdie Jane Epstein

Higinbotham. He received the degrees of Bachelor of

Science and Master of Science in Mathematics at

Brigham Young University in 1978 and 1980, with the

Master's thesis Binary Structures on a Finite

String. As a software engineer for Weidner

Communications, Inc., he directed a team producing

software to translate Japanese to English, before

entering The University of Texas in 1981. Following

classwork in 1984, he became Director of Research at

Executive Communication Systems, Inc., in Provo,

Utah, where he designed and implemented a machine

translation system based on Lexical Functional

Grammar. On December 1, 1989, he married Barbara

Ann Morrell, and lived happily ever after.

Permanent address: 756 N. 400 E.

 Orem, Utah

 84057

270

This dissertation was typed by the author.

