
[First International Conference on Language Resources & Evaluation, Granada, Spain, 28-30 May 1998]

Evaluation of Terminology Extractors: Principles and Experiments

D. Bourigault & B. Habert
LLI - Université Paris 13 - db@lli.univ-paris13.fr

LIMSI & UMR 9952 - École Normale Supérieure de Fontenay St Cloud - bh@ens-fcl.fr

Abstract

We claim that the evaluation of terminology extraction systems
cannot rely entirely on the comparison of their results with a ref-
erence list, as the very existence of such a list made up indepen-
dently of any application is highly questionable and as these sys-
tems do not yield only actual terms but potential (or candidate)
terms. We propose instead to align their results on various cor-
pora, so as to isolate the divergences and the convergences and to
understand their rationale. This paper compares two noun phrase
(NP) extraction softwares. It proved necessary to translate the NP
parses produced by these softwares into a pivot grammar. We de-
veloped a Frontier to Root Transducer based on syntax-directed
translation schemas used for standardization and optimization in
the compiling process. These tried and tested compiling tech-
niques provide an efficient and nevertheless declarative way of ob-
taining mappings between very different parses ("skeleton parses"
/ detailled constituent structures) and to evaluate the underlying
softwares.

1 Context: Computational Terminology
The role of terminology has increased significantly over
the last decade. Various efforts have been made for the
development of tools and methods dedicated to the auto-
matic processing of terms. The need for terminology re-
sources has become particularly acute owing to the global-
ization of scientific and technical exchanges and the con-
current development of international communication net-
works. The stakes are high: scientific and technical ex-
changes between language and/or specialists communities
must be made more efficient (translation), the increasing
volume of electronic texts now available on communica-
tion networks must be mastered and managed (accessing
information).
But the costs related to the gathering of, access to, and
maintenance of terminology resources are high and will
continue to increase dramatically if these tasks are ac-
complished using conventional methods. This is why
research on computerised tools for terminology acquisi-
tion and use is of major interest. In the French-speaking
world, computational terminology is a growing, though
young, area of research. More and more research sys-
tems are developed for the acquisition of terminology data
from corpus (e.g. Termino, Lexter, Nomino, Ana,
Faster, Acabit). These "Terminology Extraction Sys-
tems" (henceforth TES) are corpus processing tools which
extract, by means of morpho-syntactic, statistical or hybrid
methods, sequences of words (most of the time NPs) which
are potential or "candidate" terms (henceforth CT).

2 Evaluating Terminology Extraction
Systems: Theoretical Background

Terminology extraction systems have not been intensively
used in real world applications yet. But conceptors and
users of such tools need already to evaluate them. Trying to
adapt tried and tested techniques and experimental frames
directly from the information retrieval community seems
promising. However, we do not think it is the most appro-
priate method. In particular, it is our view that it is not a
tenable option to aim at an absolute evaluation of terminol-
ogy softwares by comparing their results with a reference
list which would make up "the" terminology of the sub-
ject field, for the following reasons: first the very existence
of such a list made up independently of any application is
highly questionable (section 2.1) ; secondly what comes
out of the computer are not (supposed to be) terms but can-
didate terms (section 2.2).

2.1 Terminology Products and "Reference Lists"

With the development of the information society, the exten-
sion of text resources accessible on networks and the de-
mands of multilinguism, the research in terminology have
to take into account the diversification and the extension
of terminology. The "classical" terminology databank in
which each term is described according to a more or less
standard predefined pattern (the "terminology record") is
not an appropriate answer to these needs. Rather than
talking about "the" terminology of a domain, one should
consider instead different kinds of "terminology products"
matching different kind of uses, such as multilingual lex-
ical resources for computer-aided translation systems, ter-
minological indexes for electronic documentation, thesauri
for full text browsers, lexical resources for NPL systems,
ontologies for knowledge-based systems ...
Though the main component of these terminology products
is a description of the vocabulary used by the specialists
of the field, nevertheless, for the same given field and for
the same corpus, the list of the described lexical elements
(the base list chosen by an analyst) and the way they are
described (the mode of description: definitions, links with
other terms, contexts etc.) mainly depend on the function
assigned to the terminology product. It is as a matter of fact
essential to take into account cognitive factors (ergonomic,
pragmatic ones) related to the actual use of the product.
In these conditions, it seems extremely tricky to work out
what could be considered as a reference list. For that rea-
son, it would be a little bit reductionist to base the evalu-
ation of terminology extraction softwares on the compari-
son between this reference list and the candidate terms ex-
tracted by these softwares.

299

2.2 From candidate terms to terms

Before developing a method for evaluating terminology ex-
traction softwares, one has to think about the way these
softwares are being used or should be used. The report of
experience concerning the use of such softwares are still
quite rare and there is still a lot of work to do to develop a
method of use really appropriate.
Our own experience of the subject comes from various
experiences in which the software Lexter (Bourigault,
1993) is used. Lexter has been developed at the Re-
search and Development Division of the French Electric-
ity Board (EDF/DER), in the framework of a collabora-
tion between EDF/DER and the French National Scien-
tific Research Centre (CNRS). Lexter performs a morpho-
syntactical analysis of a corpus of French texts on any tech-
nical domain and yields a network of NP which are likely
to be terminological units (CT). These results are then vali-
dated by a human analyst who is in charge of building a ter-
minological product (a thesaurus for an indexing system, a
terminological index for electronic documentation, a spe-
cialized dictionary, among others). Lexter is being used in
several R&D projects, at the same time by EDF/DER and
in some CNRS laboratories. The users' observations tell us
more about the way the results from Lexter are used in the
real context of an application.
Making a terminology is a work consisting in building up,
modelling knowledge and which is based on the analysis
of a reference corpus and on the discussion with experts.
Using the results of a terminology extraction software to
make a terminology doesn't come down to tick yes or no in
front of the extracted candidate terms. One has to make up
the description of each entry: definitions, links with other
terms (synonymy, hyperonymy, etc.), links with relevant
contexts, equivalents in other languages, etc. To built up
this description, the user has to look at the contexts of oc-
currences of the candidate terms. The user needs an er-
gonomic and user-friendly validation interface which en-
ables her/him to read the contexts from which the software
has extracted the CT. The use of such an interface allows a
transversal reading of the corpus - for a given CT, all text
units from which it has been extracted - which comple-
ments a classic linear way of reading. If the software pro-
poses syntactic kind of links between CT, as Lexter does,
the navigation in the network of CT also allows another
alternative way of reading.
According to the experiments, the rates of candidate terms
which are not accepted, in the end, as elements of the base
list depends, as we mentioned it earlier, of the kind of ter-
minology product built up. It can vary from 30% to 70%.
But one mustn't think too quickly that this figure is an eval-
uation of the noise, like one would do with classic infor-
mation retrieval applications. The really irrelevant terms
the analyst eliminates correspond to syntactic analysis er-
rors of the software and are very easily detected: therefore
they don't disturb the building up of the terminology. The
study of the contexts of the CT which won't be accepted
in the end is not always useless, as it allows the analyst to
progress towards a better understanding of the field.
Thus, the evaluation based on a comparison to a reference
list presents some limits. As we have just seen , one must
take into account the phase of human validation neces-
sary to transform the list of CT into a quality terminology.

We should be working on this validation and construction
phase, adapting the principles and procedures well known
in software engineering. Generally speaking, the issue is
to size up as accurately as possible the costs and benefits
derived from putting the software product into professional
practice, bearing in mind that using the software will itself
modify practices.
Therefore, one needs a long-draw-out reflection. From this
perspective, it appeared to us that comparing the results of
two NP extractors developed by different teams and for dif-
ferent applications could be an initial study full of lessons
to be learned concerning the research of a general method-
ology to evaluate terminology extraction softwares.

3 Aligning NP Extractors
3.1 Context

For several years, EDF/DER has been leading researches
on the application of Natural Language Processing to the
field of Electronic Document Management. Two main areas
are concerned: automatic text indexing and semi-automatic
terminology construction. To index the documents written
by its staff, EDF/DER uses several software tools. Some of
them were developed by GSI-Erli company in the frame-
work of the Eureka GRAAL project (Sabbagh and team,
1994; HP, 1996). These tools make use of NLP tech-
niques to analyse French (or English) texts and yield a stan-
dardized representation with keywords belonging to a the-
saurus. One of these tools (AlethIP-NP) is a NP extractor
whose function is to extract, from the input text, NPs which
will then be compared with the entries of a thesaurus (con-
trolled indexing). As an answer to the needs for building
and updating the thesaurus exploited by the automatic text
indexing system mentioned above, the terminology extrac-
tion software Lexter is used as well.
Lexter and AlethIP-NP are two NP extractors available at
EDF/DER. They were developed by different teams for dif-
ferent purposes. Before maintaining the investment on such
rather similar tools, EDF/DER managers needed a fair eval-
uation on the complementary features and results of these
extractors. They funded a project for an empirical com-
parative evaluation of these two softwares, whose goal was
to explain their differences and to identify their respective
weak and strong points. In this paper, we report the ini-
tial work we did in this project, namely the translation of
Lexter and AlethIP-NP parses into a pivot grammar.

3.2 How to compare NP parses resorting to different
grammars ?

To make an assessment of Lexter and AlethIP-NP without
resorting to the "reference list" paradigm, an empirical ap-
proach was adopted: comparing the NP parses produced by
both softwares for each sentence of two test corpora.
We chose two middle-size length test corpora (around 200
000 words), i.e. large enough to exhibit all the different
cases on which one software could differ with the other,
but short enough to allow for a qualitative analysis of the
results: an automatic comparison brings out the relevant
discrepancies which can be carefully examined.
The first test corpus is the Guide for Regional Electrical
Networks Planning. This corpus (henceforth the GDP cor-
pus) is the reference document used by regional planners

300

who forecast the short and middle term evolution of elec-
tric networks. It is one of the corpora on which Lex-
ter was used to build a terminological index. The second
test corpus is a set of scientific paper abstracts written by
EDF/DER research-engineers. This corpus (henceforth the
ABS corpus) was extracted from the general collections
of EDF/DER internal reports on which AlethIP-NP is cur-
rently used for automatic indexing.
Let us give a flavor of the problem with an input sentence
(#7880 in GDP corpus). Lexter's results are underlined and
AlethIP-NP's ones are in bold face:

<SEQ NUM="00769-07880"> <TXT>(*)

: Productible hydraulique : Ce terme designe la

quantite maximale d'energie electrique que l’ensemble des apports corriges

(c'est-a-dire : en dehors de toute gestion humaine) constates

pendant l' intervalle de temps considere permettrait de produire dans les

conditions les plus favorables de disponibilite des groupes . </TXT>

Note that the only NP which is obviously a term (ce
terme designe ...) — productible electrique - was not
extracted: productible was wrongly tagged as an adjec-
tive, and the sequence of two adjectives did not consti-
tute a valid NP. In this example, Lexter's sequences are
generally included within AlethIP-NP's ones1. How-
ever quantite maximale d' energie electrique, which Lex-
ter considers as a unit, is split into two NP by AlethIP-
NP. The parse trees differ as well. AlethIP-NP pro-
duces for instance the following parse for conditions
les plus favorables de disponibilite des groupes: [gNP
[gNP [frNoun CONDITION][gCompAdj [frAdv LES-
PLUS][adjStd FAVORABLE]]][gPP [frPrep DE][gNP
[frNoun DISPONIBILITE][gPP [frPrep DE][gNP [gDet
[frArt LES]][frNoun GROUPE]]]]]], whereas for the
sub-group disponibilite des groupes, Lexter yields: [H
[NounFS DISPONIBILITE][E [Prep DE][Det LES][H
[NounMP GROUPE]]]]. As they rely on the same tagger,
AlethIP-NP and Lexter use a pre-terminal tagset of about
the same size (twenty tags), half of these tags correspond-
ing to "guesses" made by the tagger (for instance xxAdj
for a word which is believed to be an adjective). However,
each parser changes some tags for its own purposes2 and
uses an idiosyncratic terminal and non-terminal tagset.
Mapping the two tagsets into a pivot one would not be suf-
ficient to compare the parse trees. As a matter of fact the
main differences concern the description of the syntactic
structure. These parsers produce different bracketings, re-
sorting to very different principles, as seen on the same NP:
gestion hebdomadaire de le parc hydraulique national3.
Lexter gives "skeleton" dependency trees, with only two
non-terminal tags: H, for Head; E, for Expansion, which
gathers modifiers and arguments (see figure 1). AlethIP-
NP proposes more classical and detailled constituent struc-
tures4 (see figure 2).
It was therefore necessary to find a way to translate these

1The sequence ensemble des apports corriges constates
pendant 1'intervalle de temps considere is even analysed by
AlethIP-NP as a single NP, in spite of the parenthesis (c'est-a-
dire, en dehors de toute gestion humaine).

2Lexter for instance has different tags for the gender and num-
ber inflections of nouns and adjectives (AdjFS / AdjFP /
AdjMS / AdjMP).
 3Weekly management of national hydraulic power.

4Note the different bracketing obtained after tag removal for
the PP de les groupe: [[DE] [LES] [[GROUPE]]] for

very different parses into a pivot grammar. Choosing a
pivot grammar is not an easy task at all. During the ex-
periment, we successively adopted different trade-offs be-
tween a grammar richer than Lexter's one in order to have
more precise information available for the comparison, and
a grammar poorer than AlethIP-NP's one to make the as-
sessment of the results easier for the human analyst. Since
the very beginning of the experiment, we knew that we
would have to proceed by trial and error, before choosing
a definitive pivot grammar. This is the reason why we de-
cided to develop an efficient transducer, which could allow
us to quickly tune the best pivot format (at least accord-
ing to our wishes and current purposes). This transducer is
described in section 3.4.

3.3 A sentence to sentence "maximal-length" NP com-
parison

In order to accurately identify the main differences between
the two softwares, it is not sufficient to compare their re-
sults at the global level of the entire corpus. Knowing that
a given NP was extracted by the first software n times more
than by the second one is not that helpful. Instead we need
to examine the contexts (the sentences) from which the sec-
ond software did not extract this NP. We have to identify
the precise reasons for such a difference with respect to the
way both softwares process the same sentence, in terms of
grammar rules applying or not. That's why we chose a sen-
tence to sentence comparison.
Furthermore, we chose to compare only the parses of the
"maximal-length" noun phrases extracted by both soft-
wares from each sentence, that is NP which are not them-
selves constituents of larger NP within the same sen-
tence. Since both softwares propose as outputs these
maximal-length noun phrases together with their NP sub-
constituents, the identity of the maximal-length NP parses
implies the identity of all the sub NP extracted.

Figure 3: Transformed parse tree for gestion...

The overall comparison process is then as follows:

1. Lexter and AlethIP-NP process the GDP and ABS
corpora. Only the maximal-length NP parses are
kept, together with the number of the sentence they
are extracted from, in order to permit the sentence to
sentence comparison ;

Lexter/ [[DE] [[[LES]] [GROUPE]]] for AlethIP-NP.

301

Figure 1: Lexter parse tree for gestion hebdomadaire...

Figure 2: AlethIPGN Parse tree for gestion hebdomadaire...

2. The transducer rewrites the parses produced by the
softwares into the pivot grammar. In figure 3 is the
translated version of the parses given in figure 1 and
figure 2 ;

3. A comparison program aligns sentence to sentence
the translated NP parses. It compares each NP parse
produced by Lexter successively to each parse pro-
duced by AlethIP-NP - and then makes the same
comparison with the sequences of lemmas if neces-
sary (see section 4).

3.4 A Frontier To Root Pushdown Transducer

We choose to rely on tried and tested techniques used
in compiling: pushdown transducers (Aho and Ullman,
1972a; Aho and Ullman, 1972b, ch. 3 and 9). They are
obtained by providing a pushdown automaton with an out-
put. They are useful for standardizing the results of the
parsing process (for instance mapping arithmetic expres-
sions in infix notation into equivalent expressions in Pol-
ish notation) or for making them more efficient (Wilhelm
and Maurer, 1995, ch. 11). We developed a variant of
a frontier to root transducer (henceforth FRT). As the out-
put of Lexter is rather similar to a "skeleton parse", that is,
a simple bracketing of the words in the analyzed NP with
a part-of-speech tagging of these words, it was necessary
to use a bottom-up syntax-directed translation schema: the
non-terminal symbols were too few (2 !) to allow for a
top-down translation.
This kind of transducer (Gecseg and Steinby, 1984, ch. IV,

p. 139-143) rewrites a tree from its leaves to its root. The
one we developed uses rules such as the following ones :
(1) [E[Adj a1]] [AP(A al]]
(2) [H[Noun a1]] [NP[N a1]]
(3) [H[N P a1][AP a2]] (NP[NP a1][AP a2}]
(4) [H[NP a1][PP a2]]

[NP[NP a1][PP a2]]
(5) [E[Prep a1][Det a2][NP a3]]

[PP[P a1][NP[D a2][NP a3]]]
These rules relate a source (on the left-hand side) and a
target subtree. When the source subtree is present at the
current node of the frontier, it is replaced with the target
subtree. The indices show the parts matched in the source
subtree which must be transferred as such in the target sub-
tree. For instance, according to rule 5, an E node domi-
nating a Prep node, a Det node and an NP node, can be
replaced by a PP node dominating a P node and a NP node
dominating a D node and another NP node (a level of em-
bedding is added). The sub-trees dominated by Prep, Det
and NP are then copied under the P node, the D node and
the second NP node respectively.
The frontier is examined from left to right as many times
as necessary. At the beginning, the frontier (in boldface in
the example below) consists in the leaves of the tree. When
a source subtree matches at the current node of the fron-
tier (in a box in the example), the root of the correspond-
ing target subtree replaces at the frontier the nodes which
were dominated by the source tree (the frontier is partially
reduced). The nodes below the frontier (in italics in the
example) cannot be modified any more.

302

The rewriting process stops either when there is only one
node remaining at the frontier (in this case, the whole tree
has been transformed) or when it is not possible any more
to transform the current tree (in that case, the tree is par-
tially transformed).
Let us examine the work of this transducer on t1, a sam-
ple of Lexter output on GDP corpus (see figure 1) with the
leaves (in boldface) as initial frontier and the current node
in a box:

[H [H [H [Noun [gestion]][E [Adj hebdomadaire]]]
[E [Prep de][Det le][H [H [H [Noun parc]][E [Adj hy-
draulique]]][E [Adj national]]]]]
The source-tree of rule 2 matches at the left corner of the
frontier: [H [Noun gestion]] is replaced with [NP(2) [N
gestion]]5. Thanks to the index a1, the terminal symbol
gestion is copied in the target subtree which is inserted in
t1. Note that the frontier has changed: gestion and its father
are no longer accessible. The FRT shifts to the next node
at the frontier. The new frontier of t1 is now:
[H [H [NP(2) [N gestion]][E [Adj [hebdomadaire]]]]
[E [Prep de][Det le][H [H [H [Noun parc]][E [Adj hy-
draulique]]][E [Adj national]]]]]
Scanning the rest of this new frontier leads to the use of
rules 2 and 1 on the rest of the frontier. As the tree is not
totally transformed, the frontier is examined again from the
left-hand side. The current item is then at the beginning of
the changed frontier:
[H [H [|NP|(2) [N gestion]] [AP(1) [A hebdomadaire]]]
[E [Prep de][Det le][H [H [NP(2) [Noun parc]] [AP(1) [A
hydraulique]]] [AP(1) [A national]]]]]
During the second traversal of the (changing) frontier, the
rule 3 yields the NP for gestion hebdomadaire and for parc
hydraulique. A third traversal makes an NP with rule 3
from parc hydraulique and the AP national. Here is the
situation after this third traversal:
[H [[NP](3) [NP(2) [N gestion]] [AP(1) [A hebdo-
madaire]]] [E [Prep de][Det le] [NP(3) [NP(3}[NP(2)

[Noun parc]] [AP(1) [A hydraulique]]] [AP(1) [A na-
tional]]]]]
A fourth traversal makes a PP, and adds an embedding level
inside it (a new NP dominates the determiner and the NP
parc hydraulique national):

[H [[NP](3) [NP(2) [N gestion]] [AP(1) [A heb-
domadaire]]] [PP(5) [Prep de][NP [Det le] [NP(3)

[NP(3)[NP(2) [Noun parc]] [AP(1) [A hydraulique]]]
[AP(1) [A national]]]]]]
The fifth and last traversal ends the transduction and makes
a NP from the NP gestion hebdomadaire and the PP de le
parc hydraulique national:

[[NP](4) [NP(3) [NP(2) [N gestion]] [AP(1) [A heb-
domadaire]]] [PP(5) [Prep de][NP [Det le] [NP (3)

[NP(3) [NP(2) [Noun parc]] [AP(1) [A hydraulique]]]
[AP(1) [A national]]]]]]
The whole tree has been translated.
The tree rewriting techniques available in Prolog III could
have been used. However, we needed a very fast translation
program, running on different computers (Sun worksta-
tions and PCs), with different operating systems (SunOS,
Solaris, Linux). We wanted as well to ease the interface
with other programs. We therefore developed this FRT in

5The number of the matching rule is given in the resulting tree.

C as an elaborate filter which can be pipe-lined with other
processes. The rapidity of this FRT (between 60 and 90
trees transformed per second, i.e. 16,000 trees transformed
in 3 or 4 minutes) proved adequate to test a set of rules and
tune them quickly.
The rules available with this FRT permit to change the
labels of the pre-terminal and the non-terminal symbols,
to add levels of embedding (as in rule 5 above), or to
eliminate "spurious" embeddings6. This last facility was
very important to standardize AlethIP-NP output, as this
parser has a great number of unary productions, resulting in
sub-trees such as [/gDet [/frArt LE]] or [/gInc
[/xx I]].
It is as well possible to change the linear order of the daugh-
ters of a node, or even to add or suppress nodes. However,
theses features were not relevant for our task.
Note that this FRT is deterministic: only one rule can be ap-
plied in a given configuration. Additionally, the fact that
trees of arbitrary depth can be matched gives more control
on the translation process.

4 Comparison
In the output of this FRT on AlethIP-NP and Lexter NP
parses, there are only 11 pre-terminal symbols and 5 non-
terminal ones. About forty rules only7 were necessary to
obtain this syntactic alignment.
Table 1 provides some numerical information on AlethIP-
NP and Lexter parses in GDP and ABS corpora and helps
comparing these softwares as far as the length and the com-
plexity of the trees before and after the use of this FRT are
concerned. The NP parses extracted represent more than
30 % of the corpora. AlethIP-NP builds trees which are
less numerous but longer, and more complex than the ones
produced by Lexter.
Table 2 shows that the number of exact matches between
the two softwares (#1) is rather important. The number of
parses and sequences found only by one software (#6+#7)
makes a high score as well. Surprisingly, the number of se-
quences which differ only in bracketing (#4) is rather small.
The detailled results of the comparison were used to im-
prove both softwares, the advantages of one of them re-
vealing the limits of the other. The qualitative importance
of the differences was assessed in function of the interest
regarding the building up of a terminology (Habert et al.,
1997). Below are some lessons drawn from this experiment
regarding the Lexter software.

6As a matter of fact, our FRT is rather similar to the push-
down processor (PP) defined in (Aho and Ullman, 1972b, ch. 9,
p. 737): "A pushdown processor is a PDT [pushdown transducer]
whose output is a labeled directed graph, generally a tree or part
of a tree which the processor is constructing. The major feature
of the PP is that its pushdown list, in addition to pushdown sym-
bols, can hold pointers to nodes in the output graph. Like the ex-
tended PDA [pushdown automaton], the pushdown processor can
examine the top k cells of its pushdown list for any finite k and
can manipulate the contents of these cells arbitrarily. Unlike the
PDA, if these k cells include some pointers to the output graph,
the PP can modify the output graph by adding or deleting directed
edges connected to the nodes pointed to. The PP can also create
new nodes, label them, create pointers to them, and create edges
between these nodes and the nodes pointed to by those pointers
on the top k cells of the pushdown list."

744 for AlethIP-NP and 38 for Lexter

303

Table 1: Tree parameters in GDP and ABS corpora.

Table 2: Comparison on GDP and ABS corpora.

4.1 Coordination processing

Coordination processing in real-life technical texts is ex-
tremely difficult. The configurations found, even in the re-
stricted case of NP, are extremely varied. An important per-
centage of the differences found between the results of both
softwares are due to a different way of processing coordi-
nation. In most cases, AlethIP just produces a coordinate
sequence, with componential description, whereas Lexter
has many different parsing rules, particularly for the recon-
stitution of the underlying coordinated components when
necessary. For instance, when AlethIP extracts the only
CT (the) organisation and the regulation of electric sys-
tems, Lexter extracts the following two CT organisation of
electric systems and regulation of electric systems, which
share the same expansion electric systems but have differ-
ent heads (organisation and regulation). The experience
(Daille et al., 1996) shows that coordinate structures rarely
constitute terms as such whereas one or two of the underly-
ing components can be actual terms. Therefore, the heavy
investment allowed for the development of processing rules
regarding coordination proves to be worthwhile.

4.2 Endogenous corpus-based disambiguation

To sort out the ambiguous cases of preposition phrase
or adjective attachment, Lexter uses endogenous corpus-
based learning procedures which enable it to make a more
precise processing work than AlethIP. For instance, Lex-
ter analyses correctly the CT programme d'investissement
lisse (H: programme d'investissement, E: lisse), as it has
found in another part of the corpus analysed at least one
occurrence of the phrase programme d'investissement in a
non-ambiguous situation, and no occurrence of investisse-
ment lisse. The fact that Lexter resorts to these procedures
explains an important part of the cases, admittedly rare (see
table 2, #4), where both softwares offer different analysis
for the same sequence of lemmas.

4.3 Constraints related to determiners

The comparison showed that Lexter is too strict as to the
determiners which can be part of terms. It rejects noun
phrases including possessive determiners (his, her, their,
etc.), demonstratives (this, these, those, etc.) or indefinites
(some, several, etc.), that AlethIP quite rightly accepts.
Phrases including these determiners (such as installation
of this electric line) will never be chosen to appear in a
base list. Nevertheless, as we explained it in section 2.2,
building up a terminology is not just making a base list, it
also consists in describing terms. But, some CT that are not
kept as entries in a terminology can yet give access to inter-
esting text contexts useful to make the description of other
CT from which they can be variations. For instance, the
contexts of the CT installation of this electric line are cer-
tainly relevant for the description of the term installation of
an electric line. Therefore, we had to change the rules of
Lexter to loosen the constraints concerning determiners.

5 Evaluation and Future Work
Obviously, comparing only NP parses makes easier the
task of syntactic alignment. However, this restriction fol-
lows from the limited aim of our study. A syntax-directed
translation schema like the one we developed can be

304

used to align parses of whole sentences, as it is based
on the grammar of the input trees. Secondly, we have
not tried the whole set of possible mappings between the
two types of output. The "pivot grammar" which is being
used for the current task of alignment lies somewhere be-
tween a "skeleton dependency representation" and a rich
constituent-structure tree. It would have been possible to
try both ends of the range. So far, we have neither guide-
lines nor methodology for building such a pivot grammar.
However, it is already rather satisfactory to be able to "up-
grade" a "skeleton parse" via a bottom-up syntax-directed
translation schema so as to mimic a much more detailed
constituent structure.
Parsed corpora can range from skeletal marking to detailled
labelling- as in Susanne (Sampson, 1994), with every kind
of intermediate situation - like the Penn Treebank (Mar-
cus et al., 1993). For the evaluation we are aiming at, we
aligned "skeleton parses" with more detailed ones. This
situation is rather typical of the variety of formats which
are likely to be found with the rapid expansion of parsed
corpora. These corpora serve as input to a growing number
of softwares. These software enforce as such various for-
mats (Black, 1994). For instance, the Nijmegen Linguistic
Database (vHalteren and Oostdijk, 1993; Nederhof and
Koster, 1993), which is a tool for storing and investigating
large numbers of tree structures of different kinds, still
needs a conversion to its own format. As the establishment
of standards for pre-terminal and non-terminal categories is
rather unlikely (Souter, 1993), it is necessary to devise tree
transducers in order to map existing and future tag sets as
well as various bracketing strategies, as suggested in
(Souter and Atwell, 1994). Our approach, which relies on
well-tried compiling techniques, provides an efficient and
nevertheless declarative way of obtaining such mappings
and of re-structuring parse trees as required. It represents as
well a practical means to compare parsed corpora, and thus
to help in parser evaluation.

Acknowledgements
This work has been supported by the Research and De-
velopment Division of the French Electricity Board as a
contract between EDF/DER and ELI/ENS de Fontenay St
Cloud. We thank Marie-Luce Herviou-Picard (EDF/DER)
and Richard Quatrain (EDF/DER) for the discussions we
had during this contract. Bernard Lang (INRIA) gave us
access to (Gecseg and Steinby, 1984). Christian Jacquemin
(LIMSI) explained us the tree rewriting techniques avail-
able in Prolog III. Elie Naulleau (EDF/DER) gave us a
hand to transfer our FRT on different computers. Patrick
Paroubek (LIMSI) pointed out the more general relevance
of the technique we used.

References

Aho, Alfred V. & Ullman, Jeffrey D. (1972). The Theory
of Parsing, Translation and Compiling. Englewood
Cliffs, New-Jersey:Prentice Hall, Inc., volume 1 :
Parsing.

Aho, Alfred V. & Ullman, Jeffrey D. (1972). The Theory
of Parsing, Translation and Compiling. Englewood
Cliffs, New-Jersey:Prentice Hall, Inc., volume 2 :
Compiling.

Black, Ezra (1994). An experiment in customizing the
Lancaster Treebank. In Nelleke Oostdijk & Pieter
de Haan (Eds.), Corpus-based research into language
(pp. 159-168). Amsterdam: Rodopi.

Bourigault, Didier (1993). An Endogenous Corpus-Based
Method for Structural Noun Phrase Disambiguation. In
Actes, 6th Conference of the European Chapter of the
Association for Computational Linguistics (EACL'93)
(pp. 81-86). Utrecht.

Daille, Beatrice, Habert, Benoît, Jacquemin, Christian &
Royauté, Jean (1996). Empirical Observation of Term
Variations and Principles for their Description.
Terminology, vol. 3 (2), 197-257.

Gécseg, Ferenc & Steinby, Magnus (1984). Tree
Automata. Budapest: Akadémia Kiado.

Habert, Benoît, Herviou-Picard, Marie-Luce, Bourigault,
Didier, Quatrain, Richard & Roumens, Marielle (avril
1997). Un outil et une méthode pour comparer deux
extracteurs de groupes nominaux. In 1ères Journées
Scientifiques et Techniques FRANC1L. Avignon.

Herviou-Piccard, Marie-Luce (1996. Les outils
d 'indexation AlethIP issus du projet GRAAL: principes
et utilisation. Technical Report HN-46/96/022,
Clamart, EDF, Direction des Études et Recherches.

Marcus, Mitchell, Santorini, Beatrice & Marcinkiewicz,
Mary Ann (June 1993). Building a Large Annotated
Corpus of English : The Penn Treebank.
Computational Linguistics, vol. 19 (2), 313-330.

Nederhof, Mark-Jan & Koster, Kees (1993). A customized
grammar workbench. In Jan Aarts, Pieter de Haan &
Nelleke Oostdijk (Eds.), English language corpora :
design, analysis and exploitation (pp. 163-180).
Amsterdam: Rodopi.

Sabbagh, Simon & team, GRAAL (1994). GRAAL
Eureka project: re-usable grammars for automatic
language analysis. In Proceedings of the Language
Engineering Convention. Paris.

Sampson, Geoffrey (1994). SUSANNE : a Domesday
Book of English grammar. In Nelleke Oostdijk &
Pieter de Haan (Eds.), Corpus Based Research into
Language (pp. 169-187). Amsterdam: Rodopi.

Souter, Clive & Atwell, Eric (1994). Using parsed corpora
: a review of current practice. In Nelleke Oostdijk &
Pieter de Haan (Eds.), Corpus-based research into
language (pp. 143-158). Amsterdam: Rodopi.

Souter, Clive (1993). Towards a standard format for parsed
corpora. In Jan Aarts, Pieter de Haan & Nelleke
Oostdijk (Eds.), English language corpora : design,
analysis and exploitation (pp. 197-212).
Amsterdam: Rodopi.

van Halteren, Hans & Oostdijk, Nelleke (1993). Towards a
syntactic database : the TOSCA analysis system. In
Jan Aarts, Pieter de Haan & Nelleke Oostdijk (Eds.),
English language corpora: design, analysis and
exploitation (pp. 145-162). Amsterdam: Rodopi.

Wilhelm, Reinhard & Maurer, Dieter (1995). Compiler
Design:Addison-Wesley.

