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Abstract

The increasing proliferation of large-scale knowledge bases,
used in Computational Linguistics, Artificial Intelligence,
Expert Systems, Databases, and related fields, creates the need
for an integrated knowledge framework in which their contents
can be related to one another.  Over the past few years, the
availability of several large-scale symbol taxonomies and
axiomatizations (often called Ontologies) has generated
considerable interest, mostly for how they can be used to assist
with such integration.  This paper outlines recent attempt at
USC/ISI to create a single large Ontology for general free use
over the Web, as performed under the aegis of the ANSI Ad Hoc
Committee on Ontology Standardization.  Eventually, this so-
called Reference Ontology may combine the existing large-
scale ontologies WordNet, MIKROKOSMOS, EDR, CYC, and
SENSUS into a single framework.  The paper provides semi-
automated cross-ontology concept alignment heuristics and
describes their use, operation, and results.  

1. Introduction

In a world of increasing computerization, it is inevitable that
different computer systems represent and treat the same basic
entity or notion in different ways.  The concept of Person,
for example, connotes something different to a medical
specialist (and hence to his or her computer system) than it
does to a Census Bureau worker (and his or her system).  

When the systems work in isolation from each other, there
is no problem.  Humans do the ‘translating’ between them.
But when the systems are to be integrated, or just try to
share data, the problem arises.  Incommensurate views of the
‘same’ object mean incompatible systems, and incompatible
systems means no data sharing, no knowledge transfer, and a
necessary duplication of effort.  

The only solution is to try to map terms to each other,
either directly, using large bi-domain correspondence tables,
or indirectly, using some neutral internal terminology that is
structured to facilitate correspondence.  The former approach
has the disadvantage of requiring N2 sets of mappings for N

domains (one mapping between each two domains).  The
latter approach requires only N mappings (one mapping
between each domain and the central one).  When the
domains are large, and there are many domains, the latter
approach requires distinctly less work.  

The advantages of a single, neutral ontology are fairly
obvious:

1. They help standardize terminology.  The name chosen for
a term or a relation can be used by others in new domain
modeling work, and can be used to effect communication
among systems.  They do not however enforce
standards—something that is called Income in one domain
can still be called Income there, even though the ontology
name for the same concept may be Salary.

2. They assist knowledge transfer.  When a portion of
domain ontology, constructed by one expert in one area, is
appropriate for another area, another expert working in the
second area can easily find the portion via the neutral
ontology and integrate it into the second domain ontology.  

3. They facilitate interoperability.  When a computer system
is built to perform some actions using the neutral set of
terms, it can more easily be ported and adapted to new
domains that also use the neutral ontology.  

2. The ANSI Ontology Standardization
Effort

Practical experience makes clear that integrating different
ontologies is fraught with difficulty.  

However, so many ontologies, termsets, thesauri, and other
terminology collections are being built and used today that it
would seem wise to investigate automated methods of
ontology integration.  Even if they are only partially
successful, these methods can significantly speed up new
ontology efforts and system porting efforts.  This point is
illustrated in (Swartout et al., 1996), who describe practical
experiences of the benefits of building domains models by
starting with a large ontology.  



In 1996, representatives from several Ontology projects and
others interested in the issues formed an Ad Hoc Group on
Ontology standards.  Meeting twice a year, this group is a
subcommittee of the ANSI Committee X3T2, currently
called NCITS, and is headed by Mr. Robert Spillers,
formerly of IBM.  It contains representatives from various
universities (including Stanford University and the NL
Group at USC/ISI), research laboratories (including
LADSEB and Lawrence Berkeley Laboratories), companies
(including CYC and TextWise), U.S. Government officials,
and private individuals (including John Sowa).  

The group is creating a short document that will serve as a
model ontology standard and has commissioned some work
on the creation of an example of such a standard, called the
Reference Ontology.  An early version of the topmost
portions of this Reference Ontology has been created out of
the top regions of SENSUS (USC/ISI) and CYC (Cycorp).  

3. SENSUS and the Reference Ontology

One way to create a standard ontology is to begin with a
large, high-level, but rather content-neutral ontology, and
then to systematically add to it other ontologies, termsets,
data definitions, etc.  To make the process more open to
available data collections of any form, we define an
Ontology rather loosely, as follows:

An ontology is set of terms, associated with
definitions in natural language (say, English) and,
if possible, using formal relations and constraints,
about some domain of interest, used in their work
by human, data bases, and other computer
programs.  

Under this formulation, a termset, a data dictionary, and even
a metadata collection are all types of ontologies.  We
specifically want it this way because we aim to incorporate
information from any of these sources, if appropriate, into
the Reference Ontology.  

We first describe the starting point, and then discuss the
problems of merging (automated assistance tools,
overcoming and sidestepping incommensurabilites, etc.)
below.  

As initial central and high-level ontology we take SENSUS
(Knight and Luk, 1994), built at USC/ISI to serve as the
internal mapping structure (the Interlingua termbank)
between lexicons of Japanese, Arabic, Spanish, and English,
in several projects:

• GAZELLE: machine translation (Knight et al., 1995),

• SUMMARIST: multilingual text summarization (Hovy
and Lin, 1998),

• C*ST*RD: multilingual text retrieval and management
(Hovy, 1997).

The lexicons contain over 120,000 root words (Japanese),
60,000 (Arabic), 40,000 (Spanish), and 90,000 (English).
SENSUS terms serve as connection points between
equivalent language-based words.  

SENSUS currently contains approx. 70,000 terms, linked
together into a subsumption (isa) network, with additional
links for part-of, pertains-to, and so on.  SENSUS is a
rearrangement and extension of WordNet (Miller, 1990)
(built at Princeton University on general cognitive
principles), retaxonomized under the Penman Upper Model
(Bateman et al., 1989) (built at USC/ISI to support natural
language processing).  

SENSUS can be accessed publicly via the Web, at
http://mozart.isi.edu:8003/sensus/sensus_frame.html via the
Ontosaurus browser (Patil, 1996).  

We consider SENSUS a good starting ontology because:

• it contains a large number of terms;

• the terms cover most of the general human areas of
experience;

• it does not contain any particular domains already;

• it does not make deep ontological commitments to
particular theories of existence, space, time, money,
emotion, cognition, etc.;

• its notation is simple and easy to read.  

4. Creating the Reference Ontology

When merging ontologies, three situations can arise (Hovy
and Nirenburg, 1992).  Given two most-closely related
terms, one from each ontology, either:

1. The two terms are exactly equivalent—in which case
they can be directly aligned;

2. One term is more general than the other—in which case
the more specific term (and its subordinates, and
possibly its siblings) can be integrated below the more
general one;

3. The terms are incompatible (that is, identifying them
would cause definitional and relational problems among
other terms)—in which case either (1) one of the terms
must be rejected and not incorporated, or (2) one of the
terms and the other terms depending on it must be
redefined, or (3) a separate ‘microtheory’ must be created
in which the terms, and all the other terms depending on
it, exist in parallel (Lenat and Guha, 1990), or (4) a
weaker version of the offending term can be incor-
porated, without the definitions or relations that caused
the inconsistency.  

The most problematic case is the last one.  In SENSUS, we
do not support microtheories; in cases on incompatibility
we work with the domain builders to either weaken or
redefine the terms in either ontology, or to leave the term



(and its dependents) out of the merged central ontology.  In
that case, the domain ontology will contain more
information than the merged one, which simply means that
some external user or system will not be able to exploit
fully the domain ontology’s content.  

Integration proceeds in several stages:

1. Initially, direct term identification: a core set terms from
the central and the domain ontologies that have
equivalent meanings are identified and aligned;

2. Next, content merging: the domain’s core terms’ defi-
nitional constraints, inter-term relationships, and related
axiomatizations are incorporated into their aligned
equivalents in the central ontology, to the extent
possible without overcommitting to a particular world
view or causing internal inconsistencies;

3. Next, wider term alignment: when the domain core
terms are integrated, the set of domain concepts with
near-misses in the central ontology are addressed.  Near-
misses occur either because the domain terms are more
specialized than or slightly different from the central
ontology’s terms (and hence that there are no direct
equivalents for them, only ancestral ones), or because
the domain terms’ definitions are not clearly enough
specified to allow them to be incorporated with
certainty.  By a combination of manual and automated
work, and consultation with the domain ontology’s
builders, we identify the appropriate locations for such
near-misses and incorporate them.  

4. Next, inconsistency resolution: several types of
inconsistency may occur.  For each inconsistency, the
type is identified and, as mentioned above, the
appropriate actions are performed: either redefinition (in
consultation with the domain experts), or weakening,
or, if that fails, omission.  

5. The cycle of steps 3 and 4 are repeated, with
increasingly distant terms.  In practise, given the use of
automated alignment tools (described below) to identify
close terms, and given the incorporation en bloc of
whole domain subtrees that are more specialized than
the central ontology, the number of distant terms for
which incompatibilities exist may diminish rapidly.  

5. Semi-Automated Ontology Alignment

5.1 Background

At first glance, it might seem impossible to align two
ontologies automatically.  Almost all ontologies, after all,
depend to a large degree on non-machine-interpretable
information such as concept names and English concept
definitions to distinguish their concepts.  

However, the technique described here, and recently tested on
several different sources (both ontologies and dictionaries)

offers some promise of success.  This technique consists of
the following:

1. a set of heuristics that make initial cross-ontology
alignment suggestions

2. a function for integrating their suggestions

3. a set of alignment validation criteria and heuristics

4. a repeated integration cycle

5. an evaluation metric

This technique is not yet fully explored.  Different portions
of the technique have been used in different projects.  

In order to enable Japanese- and Spanish-to-English machine
translation in GAZELLE, Knight and Luk devised three
heuristics (definition match, hierarchy match, bilingual
match) to link English, Spanish, and Japanese words derived
from various online dictionaries into SENSUS (Knight and
Luk, 1994).  They found 11,128 noun matches with 96%
accuracy.  To extend this linkage for Japanese verbs,
(Okumura and Hovy, 1994) developed a fourth heuristic,
matching on the case role structure of verbs.  

In a subsequent application, a variant of this technique was
tried with the linking of several ontologies.  First, in 1996,
the topmost regions of SENSUS and CYC (Lenat and Guha,
1990) were aligned (Hovy, 1996; Lehmann, 1997).  The
initial experiences served both ontologies well in terms of
cleaning up hierarchy structure and sharpening definitions.  

Later, in 1997, the 4790-concept ontology MIKRO-
KOSMOS (Mahesh, 1996) was semi-automatically aligned
and verified with the topmost 6768 concepts of SENSUS.
During this procedure, several validation criteria were
developed and tested.  They are listed in Section 5.5.  

In this paper we describe only the most recent version of
this alignment and integration process, since it has evolved
out of the previous work.  We focus on the process of
aligning the principal ontology, SENSUS (marked by
“S@”), and the new ontology, MIKROKOSMOS (marked
by “M@”).  We only outline the subsequent validation steps
that preceded the actual merging of the two ontologies, since
that work is not complete.  

5.2 Alignment Cycle

The cycle for creating alignment suggestions is as follows:

1. Load the initial ontologies (in original state) and load all
patches (previous alignments and upgrades, as suggested by
validation editing, etc.), to bring the ontologies into the
most recent partially aligned state.  

2. For all unaligned concepts, create a new set of cross-
ontology match scores, running one or more of the
heuristics NAME, DEF, TAX.  Save the aligned pairs and
scores.  



3. Create a new set of alignment suggestions by combining
the above match scores using the combination function.
Sort them in descending (combined-score) order.  Display the
distribution of possible alignments and ask the user for a
cutoff value.  Extract and save the results.

4. Manual step: Check the suggestions by hand, deciding
which are correct alignments, which are wrong, and which
are near misses (at the moment, nothing special is done with
near misses).  Save the three sets of concepts separately.

5.3 Alignment Suggestion Heuristics

Three classes of alignment heuristics have been reported in
the literature.

1. Text matches operate upon strings of letters, e.g.:

• Concept name matches (cognate matching): similar-
enough names should provide some evidence that the
developers consider the concepts similar, when the
names are in the same language.

• Definition matches (word processing and overlap
measures, such as first used in (Knight and Luk, 1994)):
similar-enough natural language definitions should also
provide some evidence of concept similarity.  

2. Hierarchy matches exploit the taxonomization
structure of ontologies. They include:

• Ambiguity filtering by shared superconcept (such as
used in (Knight and Luk, 1994)): when a concept can be
aligned to more than one alternative, consider only
those whose superconcepts are somewhere aligned to the
superconcepts of the target concept.  

• Semantic distance (link distance) measures (such as the
inverse-depth formula discussed in (Agirre et al., 1994)).  

3. Data item or form matches operate upon the
computer-related content or formal restrictions of the
concepts themselves.  They include:

• Internal cross-links among sets of concepts (such as the
multilingual dictionary links employed by (Ageno et
al., 1994; Rigau and Agirre, 1995)).  

• Slot-filler restrictions (such as the verb case role
restrictions used by (Okumura and Hovy, 1994)).  

In the alignment of MIKROKOSMOS and the top of
SENSUS, three alignment measures were used to create
suggestions.  

NAME (cognate) match:  This match compares the
names N1 and N2 of two concepts.  It considers decreasing
substrings of N1, chopping off the left.  Composite-word
names are split into separate words, and the maximum score
is returned.  Names shorter than 3 letters are ignored.  

  NAMESCORE  :=  square of number of letters matched
                                    + 20 points if words are exactly equal
                                        or 10 points if end of match coincides

                                          with end of hyphenated section of name.

Example name match suggestions and scores:
 (alignval ‘|S@cuisine|
 ‘((NAME M@LIMOUSINE 26) (NAME M@VINE 19)
    (NAME M@MORPHINE 19)
    (NAME M@ENGINE-GOVERNOR 19)
    (NAME M@BUSINESS-COVERAGE-OF 16)
    (NAME M@AGRIBUSINESS-ACTIVITY 16)
    (NAME M@TABLE-LINEN 9) (NAME M@TRAINER 9)
   ... 120 more ...
  ))
(alignval ‘|S@Free World|
 ‘((NAME M@PERCENT-OF-WORLD-POPULATION 46)
    (NAME M@WORLD 35)
  ))
(alignval ‘|S@kept woman|
 ‘((NAME M@AMMAN 19)
    (NAME M@MAN-MADE-ATTRIBUTE 19)
    (NAME M@NAME-HUMAN 19) (NAME M@GERMAN 19)
    (NAME M@TRANSPORT-HUMAN 19)
    (NAME M@HUMAN-LIVING-EVENT 19)
    (NAME M@HUMAN-VOICE 19) (NAME M@HUMAN 19)
   ... 65 more ...
  ))

DEFINITION match: This match compares the English
definitions D1 and D2 of two concepts.  First, both
definitions are separated into individual words (apostrophes,
hyphens, etc., are removed) and all words are demorphed,
using ISI’s English demorpher (Lin 97).  Function words
and other stop words are removed, but duplicates are kept.
The processed definition of M@FOOD, for example, is

   ("any" "substance" "that" "can" "be" "metabolized"
     "organism" "give" "energy" "build" "tissue")

With the remaining words, three values are computed:

• strength = ratio of number of words shared in both
definitions to number of words in the shorter definition,

• reliability = number of shared words,

• defscore =  strength * reliability.

DEFSCORE  :=  (Shared(D1,D2) / min{D1,D2})*Shared(D1,D2)

Examples of Definition match suggestions and scores
(strength, reliability, score):

 (alignval ‘|S@cuisine|
 ‘((DEF M@KITCHEN (0.62  5   3.12))
   (DEF M@CHEESE (0.62  5   3.12))
   (DEF M@FOODSTUFF (0.62  5   3.12))
   (DEF M@PET-FOOD (0.62  5   3.12))
   (DEF M@CUTLERY (0.50  4   2.00))
   (DEF M@RACETRACK (  0.37 3   1.12))
   (DEF M@COOK (  0.40 2   0.80))
   ... 5 more ...
   ))
(alignval ‘|S@Free World|
 ‘())
(alignval ‘|S@kept woman|



 ‘((DEF M@PATIENCE-ATTRIBUTE (0.40  2  0.80))
   (DEF M@ACRYLIC-PAINT (0.33  2  0.67))
   (DEF M@SHAREHOLDER (0.33  2  0.67))
   (DEF M@SCALAR-ATTRIBUTE (0.33  2  0.67))
   (DEF M@FLOUR-MILL (  0.25 2   0.50))
   (DEF M@LIMITED-LIABILITY-PARTNER (  0.25 2   0.50))
   (DEF M@LEVERAGE (  0.25 2   0.50))
   ... 45 more ...
   ))

TAXONOMY match: for a given SENSUS concept, this
match collects all the concepts in the MIKROKOSMOS
taxonomy that are ‘closer’ than 10 links to it.  The
algorithm traverses the taxonomy in both superconcept and
subconcepts directions, jumping across into the MIKRO-
KOSMOS ontology as soon as possible.  The inverse of the
link distance is the match score.  

     TAXSCORE  :=  1 / number-of-links

(alignval ‘|S@end>come out|
 ‘((TAX M@SOCIAL-EVENT   0.17)
    (TAX M@EMANATE   0.17)
    (TAX M@EMIT-LIGHT   0.17)
    (TAX M@EMIT-SOUND   0.17)
    (TAX M@REFLECT-LIGHT   0.17)
    (TAX M@EXTRACT   0.17) (TAX M@APPLY-FORCE   0.20)
    (TAX M@PACK   0.20)
   ... 22 more ...
  ))
(alignval ‘|S@scatterbrain|
 ‘((TAX M@INTANGIBLE-OBJECT   0.17)
    (TAX M@MENTAL-OBJECT   0.17)
    (TAX M@SALAMANDER   0.17) (TAX M@FROG   0.17)
    (TAX M@CANARY   0.17) (TAX M@RAPTOR   0.17)
   (TAX M@CHICKEN   0.17) (TAX M@TUNA   0.17)
   (TAX M@SALMON   0.17) (TAX M@FISH   0.20)
   (TAX M@RESTAURANT-ROLE   0.17)
   (TAX M@SOCIAL-ROLE   0.25) (TAX M@EGO   0.20)
   ... 69 more ...
  ))

5.4 Combination Function

Several combination formulas were created and tried.  Each
formula had to have the following characteristics:

• it must increase with increasing values of NAME,
DEF, and TAX

• it must ‘normalize’ the heuristics’ scores

• it must mitigate the NAME scores’ tendency to grow
large quickly

• it must mitigate the TAX scores’ tendency to diminish
quickly

• it must return a nonzero score if any heuristic returned a
nonzero score

The suggestion combination formula eventually used was:

 SCORE  :=  sqrt(NAMESCORE)  *  DEFSCORE
                                                                          *  (10 * TAXSCORE)

with the proviso that if NAMESCORE or DEFSCORE are
zero, they are replaced by 1, and if TAXSCORE is 0, it is
replaced by 0.01.  Typically, the alignment scores ranged
between zero and 16.  

Since too little correctly aligned data was available, no
automated training of combination formula coefficients was
possible.  

5.5 Validation Heuristics

As mentioned above, the process of validation and ontology
merging is not yet complete.  The heuristics mentioned here
were developed by Tom Russ, Hans Chalupsky, and Eduard
Hovy, all of USC/ISI.  They are:

Hierarchy matching (Chalupsky and Hovy):

1. New Superconcept test: When a MIKROKOSMOS
concept Cm is merged into SENSUS, it acquires all the
SENSUS-superconcepts of its sister concept Cs.  Some of
these may be equivalent to MIKROKOSMOS concepts
themselves.  Did the alignment create any new super-
concepts of Cm in MIKROKOSMOS (i.e., concepts that
were not already superconcepts of Cm)?  If so, Cm is
wrongly aligned, for it may not acquire new MIKRO-
KOSMOS superconcepts though a merge.  

2. Disjunction test: Is mutual disjointness observed after
alignment?  That is, if Cm (or its parents, or its children)
participate in mutual disjointness requirements, and they
themselves have SENSUS equivalents, would the inclusion
of Cm into SENSUS violate these requirements?  

3. Cycles/Bowties test: A cycle is created when a
superconcept chain leads back upon itself; a bowtie is created
when concepts Cm1 and Cm2 in MIKROKOSMOS are
respectively aligned to Cs1 and Cs2 in SENSUS, but while
Cm1 is superordinate to Cm2, Cs1 is subordinate to Cs2.
If merging a MIKROKOSMOS concept into SENSUS
causes a cycle or bowtie to appear, its alignment is
incorrect.  

Content-based matching (Russ):

1. Several examples of inconsistent or missing names, or of
type constraints violations, were encountered during the
attempted merge.  Automated procedures that checked each
concept name and each filler of each slot were developed.  

2. Both SENSUS and MIKROKOSMOS employ only one
superconcept link, and hence overload the relationship (they
should be converted to use both Subclass-of and Element-of
instead).  Since they misuse isa in different ways, inconsis-
tencies appear.  

3. SENSUS does not enforce property inheritance require-
ments; MIKROKOSMOS usually does.  The resulting in-
consistencies have to be reconciled.  



 6. Experiments and Results

6.1 Performance Figures

We report on the experiments aligning the MIKROKOS-
MOS ontology with the top region of SENSUS.  
  MIKRO: 4790 concepts
  SENSUS: 6768 concepts (Pangloss origin: 367 concepts  
                                      WordNet origin: 6401 concepts)

The number of possible alignment arangements is
enormous: 6768! / 4790!  The number of concept pairs that
each alignment heuristic has to consider is over 32.4 million
(i.e., 4790 x 6768).  

The alignment suggestion cycle was repeated 5 times.
Alignment suggestions were computed once only by the
NAME and DEFINITION match heuristics, at the beginning
of the sequence, since these suggestions never change (the
names and definitions remain the same).  However, since
every new alignment creates a new bridge across the
ontologies, the TAXONOMY match heuristic is re-run
every time.  Its new suggestions, combined with the other
heuristics’ suggestions, produce the new suggestions in
every run.  

For each run, an appropriate matching value combination
score cutoff level was chosen, by simple inspection of the
score distribution (under the desire to avoid too much
manual work checking low-scoring suggestions).  The
system’s results of run 3, with cutoff value 7.8, are:

  Now excluding from consideration all near-misses
  Done.  6768 concepts have suggested alignments.

  Alignment suggestion scoring statistics:
  Numbers of possible alignment suggestions:
     NAME = 461628   DEF = 90701   TAX = 205143

  NAME:
    score     number of suggestions
    >= 100  :  804
    >= 70    :  3036
    >= 50    :  2398
    >= 30    :  33889
    >= 25    :  67075
    >= 20    :  0
    >= 15    :  218879
    >= 10    :  1791
    >= 5       :  128785
    >= 0       :  4971
  DEF:
    score      number of suggestions
    >= 3.00  :  448
    >= 2.00  :  2074
    >= 1.50  :  2997
    >= 1.00  :  16233
    >= 0.75  :  9461
    >= 0.50  :  34198
    >= 0.00  :  25290

  TAX:
    score         number of suggestions
    >= 1.000  :  0
    >= 0.500  :  0
    >= 0.300  :  0
    >= 0.210  :  0
    >= 0.190  :  5810
    >= 0.150  :  0
    >= 0.140  :  35219
    >= 0.120  :  0
    >= 0.105  :  164114
    >= 0.090  :  0
    >= 0.000  :  0

  Now saving suggestion definitions...
  Now saving suggestion alignments...
  Distribution of alignment scores:
    >= 30  :  0
    >= 20  :  0
    >= 15  :  1
    >= 12  :  2
    >= 10  :  6
    >= 8     :  160
    >= 6     :  739
    >= 5     :  493
    >= 0     :  155430
  Please enter a cutoff value greater than 0: 7.8

  Done: 170 suggestions collected.
  170 suggestions to be saved...

The results of the five runs were as follows:
cutoff                           1.4                10           7.8           12          15
new heur.    NAME,DEF,TAX   TAX        TAX        TAX      TAX
total                            187              151          170         218       241
correct                          73                11             18            36       106
near                               51                92              51           60            2
wrong                           63                48           101         122         39

After 5 runs, the heuristics provided the following results:
 correct suggestions:   244  = 3.6% of all SENSUS concepts
 incorrect suggestions:
         - near miss:      256  = 3.8%
         - far wrong:      383  = 5.6%

That is, the combined heuristics extracted 883 suggestions
for validation (= 2.72% of the total number of pairs, or 13%
of the portion of SENSUS under consideration).  Of these,
244 (= 27.6%) were correct, 383 (= 43.4%) were incorrect,
and 256 (= 30.0%) were nearly correct.  

Recall is more difficult to measure; it would involve
manually searching the entire MIKROKOSMOS to see how
many concepts the heuristics should have picked out but did
not.  Informal estimates, based on browsing the MIKRO-
KOSMOS files and seeing if plausible-looking concepts
were picked up for suggested alignment, place the Recall
level fairly high, at over 85%.  

6.2 Alignment Examples



It is informative to inspect some of the suggestions returned
by the heuristics.  Correct alignments occurred when name,
definition, and taxonomy heuristics combined:

 |S@foodstuff<food|
  =    a substance that can be used or prepared for use as food
  superconcepts: (|S@food|)

 M@FOODSTUFF
  (COMB = 13.35  NAME = 91  DEF = 10.00  TAX = 0.14)
  =  a substance that can be used or prepared for use as food
  superconcepts: (M@FOOD M@MATERIAL)

----------------------------------------

 |S@change of location,move|
  =  the act of changing your location from one place to
      another
  superconcepts: (S@MOTION-PROCESS)

 M@MOTION-EVENT
 (COMB = 4.59  NAME = 26  DEF = 4.50  TAX = 0.20)
  =  a physical-event in which an agent changing location
      moves from one place to another
  superconcepts: (M@CHANGE-LOCATION)

Often, however, it was difficult to decide whether an
alignment suggestion was in fact correct or not:

 |S@man<soul|
  =  the generic use of the word to refer to any human being
      "it was every man for himself"
  superconcepts: (S@PERSON)

 M@HUMAN
 (COMB = 1.43  NAME = 19  DEF = 0.00  TAX = 0.33)
  =  homo sapien
  superconcepts: (M@PRIMATE)

----------------------------------------

 |S@library>bibliotheca|
  =  a collection of literary documents or records kept for
       reference
  superconcepts: (|S@aggregation|)

 M@LIBRARY
  (COMB = 2.74  NAME = 59  DEF = 3.57  TAX = 0.00)
  =  a place in which literary and artistic materials such as
       books periodicals newspapers pamphlets and prints
       are kept for reading or reference an institution or
       foundation maintaining such a collection
  superconcepts: (M@ACADEMIC-BUILDING)

----------------------------------------

 |S@geisha|
  =  a Japanese woman trained to entertain men with
      conversation and singing and dancing
  superconcepts: (|S@adult female| |S@Japanese<Asian|)

 M@GEISHA
  (COMB = 1.54  NAME = 46  DEF = 2.27  TAX = 0.00)
  =  a Japanese girl trained as an entertainer to serve as a hired
      entertainer to men
  superconcepts: (M@ENTERTAINMENT-ROLE)

Both |S@library>bibliotheca| and |S@geisha| seem to align
well to their partners, until one considers their
superconcepts, which focus on different aspects (or qualia) of
their nature.  A library is both a collection of books and a
building that houses such a collection; the word can be used
to mean both in the same sentence quite naturally.
Differentiating such senses is the focus of some recent work
in both knowledge representation (Guarino, 1997) and
computational lexicon work (Pustejovsky, 1996).  This
example illustrates why further ontological validation is
required by machine; even with the human reading quite
carefully, it is easy to miss distinctions that appear in
ancestral nodes.  

Finally, the alignment process can even be used to find
errors...is an archipelago land or sea?

 |S@archipelago|
  =  many scattered islands in a large body of water
  superconcepts: (|S@dry land|)

 M@ARCHIPELAGO
 (COMB = 1.522  NAME = 131  DEF = 1.33  TAX = 0.00)
  =  a sea with many islands
  superconcepts: (M@SEA)

7. Conclusion

This work is far from being complete.  New alignment
suggestion heuristics are easy to think up, especially when
the ontologies contain many concept interrelationships.
More sophisticated validation techniques are required,
especially ones that automatically determine the extent of
the effects of an alignment inconsistency.  A simple
browser-editor interface would facilitate manual checking.  

Still, we found it greatly useful to be able to focus in on
only about 13% of the SENSUS terms, and of these, to find
just over half to be correct or nearly correct.

Acknowledgments

Many thanks to Bruce Jakeway for patiently sifting through
ontologies and remaining cheerful.  

References

Ageno, A., I. Castellon, F. Ribas, G. Rigau, H. Rodriguez,
A. Samiotou. (1994). TGE: Tlink Generation
Environment. In Proceedings of the 15th COLING
Conference, Kyoto, Japan.  



Agirre, E., X. Arregi, X. Artola, A. Diaz de Ilarazza, K.
Sarasola. (1994). Conceptual Distance and Automatic
Spelling Correction.  Proceedings of the Workshop on
Computational Linguistics for Speech and Handwriting
Recognition. Leeds, England.

Bateman, J.A., Kasper, R.T., Moore, J.D., and Whitney,
R.A. (1989). A General Organization of Knowledge for
Natural Language Processing: The Penman Upper Model.
Unpublished research report, USC/Information Sciences
Institute, Marina del Rey, CA.  

Guarino, N. (1997). Some Organizing Principles for a
Unified Top-Level Ontology.  New version of paper
presented at AAAI Spring Symposium on Ontological
Engineering, Stanford University, March 1997.  

Hovy, E.H. and S. Nirenburg. (1992).  Approximating an
Interlingua in a Principled Way.  Proceedings of the
DARPA Speech and Natural Language Workshop.  Arden
House, NY.  

Hovy, E.H. (1996). Semi-Automated Alignment of Top
Regions of SENSUS and CYC.  Presented to ANSI Ad
Hoc Committee on Ontology Standardization.  Stanford
University, Palo Alto, September 1996.  

Hovy, E.H. (1997). C*ST*RD: Information Clustering,
Summarization, Translation, Reformatting, and Display.
Unpublished draft, USC/Information Sciences Institute,
Marina del Rey, CA.  

Hovy, E.H. and C.Y. Lin. (1998). Automated Text
Summarization in SUMMARIST.  In M. Maybury and I.
Mani (eds), Advances in Automatic Text Summarization.
1998. MIT Press, to appear.  

Lehmann, F. (1997).  Reworked Alignment of Top Regions
of CYC and SENSUS. Presented to ANSI Ad Hoc
Committee on Ontology Standardization.  Stanford
University, Palo Alto, March 1997.  

Lenat, D.B. and R.V. Guha. (1990).  Building Large
Knowledge-Based Systems.  Reading: Addison-Wesley.  

Lin, C-Y. (1997).  The ISI English Demorpher.
Unpublished ms, USC/Information Sciences Institute,
Marina del Rey, CA.  

Knight, K. and S.K. Luk. (1994). Building a Large-Scale
Knowledge Base for Machine Translation.  In Proceedings
of the AAAI Conference.  

Knight, K., I. Chander, M. Haines, V. Hatzivassiloglou,
E.H. Hovy, M. Iida, S.K. Luk, R.A. Whitney, and K.
Yamada. (1995).  Filling Knowledge Gaps in a Broad-
Coverage MT System. In Proceedings of the 14th IJCAI
Conference. Montreal, Canada.  

Knight, K. (1997).  SENSUS and SENSOR. Unpublished
documentation, USC/Information Sciences Institute,
Marina del Rey, CA.  

Miller, G.A. (1990).  WordNet: An Online Lexical database.
International Journal of Lexicography 3(4) (special issue).  

Mahesh, K. (1996). Ontology Development for Machine
Translation: Ideology and Methodology.  New Mexico
State University CRL report MCCS-96-292.  

Okumura, A. and E.H. Hovy. (1994). Ontology Concept
Association using a Bilingual Dictionary.  Proceedings of
the 1st AMTA Conference. Columbia, MD.

Patil, R. (1996). The Ontosaurus Ontology Browser.
Unpublished ms, USC/Information Sciences Institute,
Marina del Rey, CA.  

Swartout, W.R., P. Patil, K. Knight, and T. Russ. (1996).
Toward Distributed Use of Large-Scale Ontologies. In
Proceedings of the 10th Knowledge Acquisition for
Knowledge-Based Systems Workshop.  Banff, Canada.  

Pustejovsky, J. (1996).

Rigau, G. and E. Agirre. (1995). Disambiguating Bilingual
Nominal Entries against WordNet.  Proceedings of the 7th
ESSLI Symposium, Barcelona, Spain.  


