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Abstract 
In this paper we describe a language recogni- 
tion algorithm for multilingual documents 
that is based on mixed-order n-grams, 
Markov chains, maximum likelihood, and 
dynamic programming. We present the re- 
sults of an experimental study that showed 
that the performance of this algorithm has 
practical value. 

1     Introduction 
Language recognition algorithms are an essential 
component of many natural language processing sys- 
tems. For example, a system that translates web- 
documents must first determine the language of that 
document. Moreover, in multilingual documents, the 
system must determine monolingual segments and the 
language of each segment. Language recognition al- 
gorithms are also essential in the development of 
many natural language processing systems. For exam- 
ple, very large corpora are often required in the de- 
velopment of machine translation systems and a lan- 
guage identification system can be combined with a 
web spider to automatically collect such corpora. 

These recognition algorithms are not just concerned 
with the language of electronic texts, but also with 
how the characters of that language are encoded. This 
specification is important because the characters of a 
given language may be represented by several distinct 
encoding methods or code sets. For example, Japanese 
text may be in J1S-X-0208-1990 or JIS-X-0212-1990, 
among others, and Chinese text might be in GB-2312- 
80 or Big Five. Thus, throughout this paper we will 
always be concerned with identifying a specific lan- 
guage/code set pair. However, to ease exposition we 
use the term language to mean this language/code set 
pair. 

In the following sections we describe a language 
recognition algorithm for multilingual documents 
based on mixed order n-grams, Markov chains, 
maximum likelihood, and dynamic programming. We 
present the results of a study that examined the per- 
formance  of  this  algorithm  on  multilingual docu- 

ments, which consisted of fragments in 30 languages. 
We discuss how the algorithm can be incorporated 
into a web spider that collects multilingual documents 
in specified languages. 

2     Recognition Algorithm for Mono- 
lingual Documents 

A common sense and frequently used approach to 
language identification has been to use lists of words 
that commonly appear in the languages of interest 
(Ingle 76).That is, for every language of interest one 
constructs a list containing the most frequent words in 
that language. For example, the, of, and and are com- 
mon words in English, and el, de, que, and y are 
common words in Spanish. If you are trying to iden- 
tify the language of a text and you see a lot of the's 
of's and and's in the text a good guess would be that 
the text is in English. Similarly, if you see el, que, and 
de, a good guess would be Spanish. While this ap- 
proach is simple, intuitive, and performs adequately 
in many cases, it does have several drawbacks. First, 
while the approach works well for identifying texts of 
moderate length, its performance significantly de- 
grades as the text to be identified gets smaller. Sec- 
ond, since it is a word-based approach it crucially 
depends on the ability to segment the text into words. 
This is easy if the task is to recognize languages like 
English and Spanish where words are bordered by 
spaces, but is significantly more challenging if we 
include languages that do not use spaces as word de- 
limiters such as Chinese and Japanese. 

The approach we propose here is not dependent on 
identifying the words of a text. Rather, it is a statisti- 
cally based approach that learns to distinguish be- 
tween languages by building an n-gram model.1 It is 
similar to the work of Cavnar and Trenkle (Cavnar & 
Trenkle 94),  among  others,  in  that it makes use of 

1 The n-grams of a text are all the character sequences of 
length n contained in that text. For example, unmarked 
helicopters, contains 20 unigrams (u, n, m, a ,r, . . . ) ,  19 bi- 
grams (un, nm, ma, . . . ),  18 trigrams (unm, nma, mar, . . . )  
and so on. 
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mixed-order n-grams.2 In contrast to the Cavnar and 
Trenkle algorithm, which uses an ad hoc rank-order 
distance measure, the algorithm we propose here is 
theoretically well motivated based on a maximum 
likelihood approach. 

The algorithm has two main phases: training and 
classification. 

2.1 Training 
The algorithm is a variable length n-gram approach. 
We start with an empty common n-gram pool, CNP, 
which we will fill with n-grams from each training 
text—m1 unigrams, m2 bigrams, ... mn n-grams. For 
every language we extract the n-grams (n = 1...N) 
from the training text. (In our comparative experi- 
ments we used an N of 4.) First, we create separate 
lists for unigrams, bigrams, and so on. Next, we add a 
portion of these n-grams to CNP (the common pool); 
first we add unigrams, then bigrams, and so on. 

We select the unigrams to add to CNP as follows. 
For every unigram, a1 observed in the training data, 
we compute the following training weight:3 

 

We then order the list of all unigrams in descending 
order on this value and place the top m1 unigrams in 
the common pool, CNP. 

Then we use the following recursive procedure. 
Suppose we have already picked up n-grams of length 
1 ...  (k-1). For every k-gram (a1a2...ak) we compute a 
training weight. If the (k-l)-gram (a2...ak) has not 
been included in CNP the training weight value is4 

 
If (a2...ak) is in CNP, then we use a slightly different 
formula: 

 
Next we sort the k-gram list in descending order on 
this weight and place the mk top k-grams in CNP. The 
training  weights  describe  the  reduction of the cross 

2 See also. Churcher, Hayes, Johnson, and Souter (Chur- 
cher et al. 94) and Dunning (Dunning 94). 
3 p(a) represents the probability of a. 
4 p(an|a1.. .an-1) represents the conditional probability. 
That is, the probability of character an given that the im- 
mediately previous characters were a1...an-1. For exam- 
ple, p('e'|'th') is the probability that the third character is 
'e' given that the first two characters are 'th'. 

entropy between training data and the model if we 
include the k-gram (a1a2...ak) in our pool. We repeat 
the procedure for k = 2 ... N. For the comparative 
experiments described in §3 we used an m1 of 170, an 
m2 of 200, an m3 of 400, and an m4 of 230. The num- 
ber of unigrams chosen was enough to include all the 
unigrams for all languages in the training data. These 
numbers have been determined through experimenta- 
tion. 

At the end of this process CNP, the common n- 
gram pool, contains the union of the selected n-grams 
for all L languages in our training set. For every n- 
gram (n = 1 ... N) in CNP we compute a primary rec- 
ognition weight L-dimension vector, PRW, as follows. 
Each i-th component of the vector, PRW, is associated 
with the i-th language, and contains a recognition 
weight. For unigrams, the recognition weight is 

 
For all other n-grams, the recognition weight is: 

 
That is, the anti-log of the conditional probability of 
ak given a1a2...ak-1 in the training set associated with 
the i-th language. If some n-gram in CNP has not 
been encountered in some language training data, its 
recognition weight for this language is defined to be 
some maximum value MAX (in our experiments, 
MAX = 20.) At the end of this process we have a 
primary recognition weight vector, PRW(a1a2...ak) for 
every n-gram, a1a2...ak, in our n-gram pool, CNP. 
Now we define the recognition weight L-dimension 
vector of any N-gram (encountered or not encoun- 
tered in our training data) as 

 
In addition to developing the CNP containing rec- 

ognition weight vectors, we also compute a weight 
average and weight dispersion for each language 
(these are used in the verification step of the recogni- 
tion phase described in the following section). This is 
done as follows. We divide the training text of a given 
language, i, into K 500 byte segments (x1x2...x500). For 
every segment k we compute: 
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The weight average for language i is defined as 

 

The dispersion for language i i s  defined as: 

 

2.2 The Recognition Phase 
The recognition process consists of two steps. First, in 
the classification step, we tentatively classify the text 
to be recognized as being in one of the languages 
specified in the training phase. Next, in a verification 
phase, we determine how well the text to be recog- 
nized fits the proposed language. If the fit is not good 
enough, we classify the language of the text as un- 
known. 

Classification Step: Let x0x1...xs-1 be the byte se- 
quence of the text to be classified. We define a result 
recognition weight vector as: 

 

The recognition result (the proposed language of the 
text) is 

 

(That is, the text is classified being in the language, 
i*, associated with the result recognition weight vec- 
tor component with the lowest value.) 

Verification Step: If 5 

 

then we recognize the text as belonging to language 
i*. If this does not hold then the language of the text 
is classified as "unknown". 

3     Evaluation of Monolingual Recog- 
nizer 

We evaluated this monolingual recognizer by com- 
paring its performance to the Cavnar and Trenkle n- 
gram algorithm (Cavnar and Trenkle 1994). 

3.1 The Method 
The training data for both algorithms consisted of 50k 
samples from the following 34 languages: 

Afrikaans Italian 
Albanian Japanese 
Arabic Korean 
Bulgarian Latin 
Chinese Lithuanian 
Croatian Malay 
Czech Norwegian 
Danish Persian 
Dutch Polish 
English Portuguese 
Estonian Russian 
French Serbian 
German Slovak 
Greek Spanish 
Haitian Creole Swedish 
Hawaiian Thai 
Icelandic Turkish 

We evaluated each algorithm under five conditions 
that varied as to the size of the text to be identified: 
1k, 500, 100, 50, and 20 byte samples. The samples 
were distinct from the training text and were drawn 
from 200k texts from each language. 200 samples for 
each language were used to evaluate the algorithms in 
the 1k condition, 400 samples for the 500 byte condi- 
tion, 2000 samples for the 100 byte condition, 4000 
samples for the 50 byte condition, and 10,000 samples 
for the 20 byte condition. 

5 The constant, VER_THR, is used to rule out documents, 
which are not in the pre-trained languages. 
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3.2 Results 
The comparison results for the algorithms (the Cavnar 
& Trenkle (C&T) algorithm, and the monolingual 
algorithm described above (mono) are shown in the 
following table. 

Percent Error Rate of Algorithms at Different 
Sample Sizes 

As this table shows, the performance of the algo- 
rithms is good when the text to be classified is rela- 
tively large (500-1,000 bytes). However, even under 
this condition it should be noted that the algorithm 
proposed here has less than one sixth the error rate of 
the Cavnar and Trenkle algorithm. A significant per- 
centage of the error rate in the 1,000 and 500 byte 
conditions is due to misidentification of the test sam- 
ples from Haitian Creole and its lexifier, French.6 This 
is probably due to the fact that Creoles borrow much 
of their vocabularies from their respective lexifiers 
(Romaine 88). It is interesting to note that the algo- 
rithms performed relatively well on Afrikaans and 
Dutch, although many creolists regard Afrikaans as a 
semi-creole of Dutch. 

4    Recognition Algorithm for Multi- 
lingual Documents 

While this algorithm has important uses in many ap- 
plications it does have some limitations in the current 
form. For example, suppose we have a multi- 
language machine translation system that converts 

6 Without these two languages the results for the 1,000 
and 500 byte tests are as follows: 

web pages into an "English-only" form that is dis- 
played to users. If the original web pages are in a sin- 
gle language then the task is simply to identify the 
language of the page using the current algorithm "as 
is" and then applying the appropriate machine trans- 
lation. However, if the web pages are multilingual 
then the process is more complex. In this case we 
need to segment the page into single-language 
chunks, identify the language of each chunk, and then 
perform the correct translation. This task is illustrated 
in the following example.7 

His example is essentially this (taken from Chechen): if 
in a language geminates occur only inter-syllabically, 
and the non-geminate version appears in those intersyl- 
labic positions plus word-initially and word-finally, then 
if we know the average number of syllables per word, we 
can make a prediction of the relative frequency of the 
single and geminate versions of a consonant. If our pre- 
diction does not match the reality, then we can infer there 
is something that remains to be accounted for. 

"Le chiffre absolu de la fréquence réelle d'un 
phoneme n'a qu'une importance accessoire. Seul le 
rapport entre ce chiffre et le chiffre de fréquence at- 
tendu théoriquement possède une valeur veritable. 
(284)'Le calcul des probabilités théoriques n'est pas 
toujours aussi simple que dans les exemples ci-dessus. 
Mais on ne doit pas se laisser rebuter par les diffi- 
cultés d'un tel calcul, car c'est seulement par com- 
paraison avec les chiffres de fréquence possible ob- 
tenus au moyen de ces calculs que les chiffres de 
fréquence effective acquièrent une valeur, en mon- 
trant si un phonème, dans la langue en question, est 
beaucoup ou peu utilisé. (285)." 

This is a powerful notion that remains to be fully ex- 
plored. What Troubetzkoy (and others since) have seen is 
that a study of frequency can often be tantamount to a 
search for lurking generalizations. 

As described above, the system needs to segment this 
document, identify the languages of the chunks (in 
this case English and French) and translate the French 
segment into English. Fortunately, an important ad- 
vantage of the approach presented above is that it can 
be generalized for multilingual documents. This gen- 
eralization is accomplished by adding a dynamic pro- 
gramming algorithm based on a simple Markov model 
of multilingual documents. This algorithm is de- 
scribed in the following section. 

7 from 
http://humantities.uchicago.edu/faculty/goldsmith/Royaum 
ont98/lnfoTheory.html. 
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4.1 Segmentation algorithm 

The algorithm is based on dynamic programming that 
had been first used for segmentation in (Vintsiuk 70) 
and is a further development of a computationally 
effective algorithm presented in (Ludovik 82). It con- 
sists of two steps: 

• a recognition step where we apply a dynamic pro- 
gramming algorithm to find the segmentation maxi- 
mizing the likelihood of the total character sequence 
of the document being processed, 

• a verification step, which determines how well every 
segment fits the language assigned to it. 

Recognition step 

The segmentation algorithm is based on the following 
Markov model of a multilingual document. The model 
has one state per language, 1 ≤ i ≤ L plus one addi- 
tional 0-state accounting for segments that are not in 
any of pre-trained languages, in particular, such seg- 
ments may be in no language at all (e.g., a table of 
numbers). 

If a system is in a state i it generates characters in the 
i-th language depending on the left context according 
to the n-gram model described above in §2. Switch- 
ing from language i1 to language i2 is defined by tran- 
sition probabilities p(i2/i1) and probability distribution 
of segment length r p(r), rmin ≤ r ≤ rmax, ranging from 
minimal segment length rmin to maximal rmax. The 
algorithm presented below finds the segments and 
segment languages assuring the maximum likelihood 
of the observed text given the Markov model. If k-th 
segment starts at sk-1 and ends at sk-1, then using an- 
tilog, the criterion to minimize is as follows: 

 
where TSW is a segment weight: 

 

if ik is not 0. Otherwise:8 

 

The dynamic programming algorithm that finds opti- 
mal values of {sk, ik, 0<k<K } consists in the follow- 
ing iterative step for 

 
with initial values: 

 
After the algorithm has finished with the recursive 
steps, we find the language of the last segment in the 
optimal set of segments: 

 

where S is the total length of the text 
The value i* together with information stored in array 
Ind(i, s) will allow us to get all segments with corre- 
sponding language labels from the optimal set of 
segments. During this process, the optimal number of 
segments is automatically determined. 

8 The constant JUNK_THR ("junk threshold") is used to 
rule out document segments that are not in any of the pre- 
trained languages. 
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Verification step 
The verification step is executed exactly as in the 
monolingual algorithm regarding every segment as a 
separate monolingual document. 

4.2 Evaluation 
We evaluated the performance of the segmentation 
algorithm on segmenting documents that contain 
multilingual text. The test data contained text in the 
following languages: 

Afrikaans Japanese 
Albanian Korean 
Arabic Latin 
Chinese Lithuanian 
Croatian Malay 
Czech Norwegian 
Danish Persian 
Dutch Portuguese 
English Russian 
Estonian Serbian 
French Slovak 
German Spanish 
Greek Thai 
Italian Turkish 

The test documents were created by concatenating 
randomly selected segments from documents in the 
languages listed above. In this way we created six 
documents; each document contained 1000 segments 
having approximately the same length (20, 50, 100, 
200. 500, or 1000 bytes).9 Thus, all bytes in a docu- 
ment are labeled with a language. We compared this 
known labeling to the labeling based on the optimal 
segmentation produced by the algorithm. The error 
rate was computed by dividing the number of misla- 
beled bytes by the length of the document. The fol- 
lowing table shows the segmentation error rate as a 
factor of segment byte size. 

Percent Error Rate of Multilingual 
Algorithm at Different Segment Sizes 

As this chart shows, this algorithm works extremely 
well for moderate-sized segments and performs ade- 
quately for short (approximately 3 word) segments. 

5     Spider for collecting multilingual 
corpora 

A variety of natural language processing tasks (for 
example, creating lexicons, and proper noun diction- 
aries) could make use of multilingual corpora. While 
pre-existing multilingual corpora are available for 
some languages (often in the form of aligned texts), 
they are not available for all languages that are of 
interest to researchers. The algorithm we have just 
described is a key element in a web spider, which 
collects such texts. 

The person using this spider specifies a set of lan- 
guages (for example, English, and Russian) and ap- 
proximate percentage desired for each language. For 
example, if we are trying to collect potentially parallel 
texts, the user would specify that the document be 
approximately 50% English and 50% Russian. The 
person using the spider also specifies a set of starting 
URLs. These URLs are placed on a queue of places to 
visit. The user can optionally specify an "only get 
pages modified since" date. 

The spider is of standard design and conforms to 
general spider behavior conventions. It examines the 
robots.txt file at each site specified to see if it is ex- 
cluded from that site. It checks for meta robot tags in 
the URL text itself to see if it is either excluded from 
reading the text or excluded from following the links 
contained on the page. It identifies itself by using the 
user-agent and from fields supported in HTTP header 
requests. Finally, it waits several minutes before vis- 
iting the same site again to avoid overloading the 
server. 

If the spider is not excluded from reading the URL 
text, it gets the text, strips out the HTML tags and 
passes the text to the language recognizer. If the rec- 
ognizer identifies the text as matching the specified 
languages in the specified percentages, the text is 
saved in a local file. If the spider is not excluded from 
following the links on a page the links are collected. 
This link list is filtered to exclude a variety of links 
including those to JPEG and MIDI files, links to CGI 
scripts and links to common sites like 
www.altavista.digital.com and www.hotbot.com. 
URLs of sites the robot has previously visited are also 
filtered out. If the page containing these links 
matched the target language the links are placed on a 
priority queue. If the page does not match the target 
the links are placed on the regular queue. URLs on 
the   priority   queue   are   visited   before   those   of    the 
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regular queue. The algorithm continues until there are 
no URLs in either queue. 

6     Conclusions 
In this paper we have described a language recogni- 
tion algorithm for multilingual documents. This algo- 
rithm is based on mixed order n-grams, Markov 
chains, maximum likelihood, and dynamic program- 
ming. In §3, we described the results of an experi- 
mental study that shows that the proposed algorithm 
significantly outperforms the Cavnar and Trenkle al- 
gorithm, one of the most popular language recogni- 
tion algorithms. Moreover, the proposed algorithm 
has an additional benefit. The Cavnar and Trenkle 
algorithm finds the closest language that matches the 
text to be classified, but give no guarantee that this 
language is actually the language of the text. The pro- 
posed algorithm has a separate verification step that 
assures, with a controllable degree of certainty, that 
the text to be classified is actually in the closest lan- 
guage. Because of these advantages, the algorithm can 
be successfully used in a variety of applications. 

In §4 we described a language recognition algo- 
rithm for multilingual documents, and presented the 
results of an experimental study which showed that 
the performance of this algorithm was extremely 
good. For example, for 20 byte segments (roughly 
three words) the error rate was only 13%, which 
means that only that the initial and final bytes are 
misrecognized. These misrecognized initial and final 
bytes could be spaces or punctuation and not be seri- 
ous errors for applications. These results suggest that 
the algorithm has practical value; this algorithm offers 
a new reliable tool for natural language engineering, 
which allows for more sophisticated processing of 
documents including web pages. In §5 we presented 
one such application for this algorithm: a web spider 
that collects multilingual documents. 
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