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Abstract 
In this paper we present a proposal to help 
bypass the bottleneck of knowledge-based sys- 
tems working under the assumption that the 
knowledge sources are complete. We show how 
to create, on the fly, new lexicon entries us- 
ing lexico-semantic rules and how to create new 
concepts for unknown words, investigating a 
new linguistically-motivated model to trigger 
concepts in context. 

1     Introduction 
When parsing or generating, the MT sys- 
tem heavily depends on the completeness of 
the static sources available to it, in terms of 
Lexical Knowledge Base (LKB), Conceptual 
Knowledge Base (CKB) or ontology, and the 
grammar. Fighting the incompleteness of the 
static sources has been addressed by both the 
Computational Linguistic (CL) and the Arti- 
ficial Intelligence (AI) communities. CL re- 
searchers extracted knowledge (usually lexi- 
cal and/or syntactic) from very large corpora. 
This lexical acquisition has been mainly con- 
cerned with surface level co-occurring data (e.g., 
Zernik and Jacobs, 1990), hyponymy extraction 
based on syntactic criteria (e.g., Hearst, 1992) 
or lexico-semantic associations (e.g., Resnik, 
1992). However these proposals cannot go be- 
yond a shallow level of learning (selectional re- 
strictions). Yet understanding needs a more 
fine-grained conceptual knowledge, in terms of 
roles and role filler constraints (e.g., Mahesh 
et al. (1997a) for a discussion on the neces- 
sity of such knowledge.) In this proposal, we 
only use positive occurrences of a small corpus 
of one text (there is however no limitation on 
the length of a text; in fact, the longer, the 
better) to avoid dealing with multiple mean- 
ings  of  a  word  used  in  different  contexts   (e.g. 

homonymy). AI researchers used standard ma- 
chine learning algorithms or adapted them to 
the language understanding task (see Wermter 
et al. (1996), for a review). As pointed out by 
Schnattinger and Hahn (1998), the main draw- 
back of these proposals is that they keep the un- 
derstanding and learning modes separate. How- 
ever the interpretation of a text depends on 
both, meaning that these modes have to interact 
with each other. In this proposal, we advocate a 
knowledge-intensive model of word and concept 
learning which interacts with the non-learning 
mode of text understanding. 

At the lexical level (Section 2), we make use 
of lexico-semantic rules (LSRs) to create new 
entries. LSRs create new syntactic and seman- 
tic mappings in a new entry. At the conceptual 
level (Section 3), we investigate a model to cre- 
ate new concepts for unknown words. To do 
so, we use the analysis of the text to provide 
the unknown word with its conceptual environ- 
ment in a given context, and a concept trigger 
model, we call Concept Trigger (CT), which 
builds the semantic space around the new con- 
cept (in other words, the conceptual frame) and 
attempts to place it in the CKB or ontology hi- 
erarchy. Briefly, when a word in a text is un- 
known to the system, i.e. it does not belong to 
the lexicon, lexico-semantic rules cannot be ap- 
plied to the root of the word (i.e. after the word 
has been lemmatized), then CT is activated to 
create a semantic mapping for the word. To do 
so, various data are consulted at run time by 
CT, namely: 

- the existent CKB which includes domain 
knowledge, 

- the semantic representation of the text be- 
ing processed providing the unknown word 
with a contextual environment, and 
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- a database of linguistic operators, discussed 
in Section 4, which helps establish the rela- 
tion between the unknown word and the co- 
occurring words, thus enabling CT in mak- 
ing hypotheses on the semantic type of the 
unknown word. 

This research has been carried out within the 
KB paradigm of Mikrokosmos (Nirenburg et al., 
1996).1 This is not because such a system is 
a prerequisite to the approach, but rather be- 
cause we are intimately familiar with it, ren- 
dering experimentation easier to perform and 
also because it already rests on the principles 
we wish to validate (e.g. use of KB systems 
for high-quality MT). In this paper, we do not 
discuss general principles. We focus on the au- 
tomatic extension of LKBs and CKBs. 

2    Lexico-semantic Rules and New 
Lexicon Entries 

Lexicon entries are mapped to a CKB or ontol- 
ogy. The CKB is a large collection of informa- 
tion about EVENTS, OBJECTS and PROPERTYs 
in a domain. In Mikrokosmos, the ontology 
consists of concepts (named sets of property- 
value pairs) organized heterarchically on sub- 
sumption links, with about 14 links between 
concepts (e.g. AGENTOF; INSTRUMENT; EF- 
FECT; INTERNATIONALATTRIBUTE; see also the 
relations in TEACH below) (Mahesh, 1996). 

Figure 1 illustrates relevant aspects of the 
syntax, semantics and linking information of a 
lexicon entry of the English word teach.2 

The feature "sem" gives the semantics of the 
English word teach for its sense TEACH. This 
latter is a well-defined symbol or concept in the 
Mikrokosmos ontology as described in Mahesh 
(1996). We present below an example of con- 
ceptual information found in the ontology for 
TEACH. 

[key:   "Teach", 
def:[text:"To  explain  or teach  someone  about  some 

object,     subject matter,   or concept."] 
sem:[name:   Teach,   relations: 

1 We do not have room here to describe Mikrokos- 
mos. We refer the reviewer to papers in 
http://crl.nmsu.edu/Research/Projects/mikro/index.html 

2 The syntactic information is not complete here. 
Rules (e.g. alternation rules) can be applied to this base 
form to produce new subcategorizations (e.g. subj-obj- 
[to]obj2 for teach). 

 

Figure 1: Partial Sense Entry for teach. 

< % A  list  of  relations % 
[name:Isa, 
  dom:<AcademicActivity  CommunicativeEvent>] , 
[name:Agent, 
dom:<Human>, 

default:<AcademicSpecialist Teacher>], 
[name: Theme, 
 dom: <Information>], 
[name: Effect, 
  dom: <Learn Understand>], 
[name: Intention, 
  dom: <Education>], 
[name: Experiencer, 
  dom: <Animal>, default: <Student>], 
[name: HasAudience, 
dom: <Human>, default: <Audience>], 

[name: AreaOfActivity, 
dom: <FieldOfStudy>],>]] 

Acquiring the sense feature "sem" represents 
the most expensive operation in the acquisition 
of computational semantic lexicons, as the task 
involves human judgments and cannot be com- 
pletely automated. We argue that once a core 
lexicon has been acquired (about 7000 sense en- 
tries) then one can automatically extend this 
core lexicon providing a coverage good enough 
• to process a text. 

In the following, we show the advantage of 
using LSRs. First, they can be considered as 
a  means  to  reduce  the  number  of  lexicon en- 
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try types, and generally to make the acquisi- 
tion process faster and cheaper. Second, they 
can enhance the results of analysis processing 
by creating new entries for unknown words from 
the lexicon found in corpora. Lexical rules 
have been addressed by many researchers, e.g. 
Leech (1981), Ostler and Atkins (1992), Copes- 
take and Briscoe (1996), and others. More 
specifically, Onyshkevych (1999) addresses the 
theoretical background of Lexical Rules (LRs) 
mentioning three different types of LRs: i) in- 
flected forms (passivation - dative alternation); 
ii) word formation (derivational morphology) 
and iii) polysemy (sense extension - type co- 
ercion). It also addresses the pros and cons on 
when to apply the rules (acquisition time - lex- 
icon load time or run time). Note that hybrid 
scenarios are also plausible: for example, LRs 
can be applied at acquisition time to produce 
new lexical entries, and may also be available 
at run time as an error recovery procedure to 
attempt generation of a form or word sense not 
in the lexicon, as done for instance in Viegas et 
al. (1996a). 

To sketch this operation briefly, applying 
LSRs to the entry for the Spanish verb com- 
prar (buy) produced automatically 26 new 
entries (comprador-N1 (buyer). comprable-Adj 
(buyable), etc). This includes creating new syn- 
tax, semantics and syntax-semantic mappings 
with correct subcategorizations and also the 
right semantics. For instance, the lexical entry 
for comprable will have the subcategorization for 
predicative and attributive adjectives and the 
semantics adds the attribute FEASIBILITYAT- 
TRIBUTE to the basic meaning BUY of comprar. 
The form list generated by the morpho-semantic 
generator (e.g. comprable, comprador, recom- 
pra, etc.), is checked against Machine Readable 
Dictionaries (MRDs) and dictionaries and the 
forms found in them are submitted to the ac- 
quisition process. However, forms not found in 
the dictionaries axe not discarded outright be- 
cause the MRDs cannot be assumed to be com- 
plete. Some of these "rejected" forms can, in 
fact, be found in corpora or in the input text of 
an application system. 

Viegas et al. (1996b) describes about 100 
LSRs which were applied to 1056 verb citation 
forms with 1,263 senses among them. The rules 
helped  acquire  an  average  of  26  candidate  new 

entries per verb sense. This produced a total 
of 31,680 candidate entries, with an average of 
over 90% and 85% correctness in the assignment 
of syntax and semantics respectively. 

LSRs are composed of lexical semantics, 
where the left-hand side of the rule specifies 
which information to look for in the entry of the 
dictionary and the right-hand side specifies the 
information which should be put in the new en- 
try. They are also linked to morpho-semantics, 
with the rule specifying which semantics are at- 
tached to which affix (e.g., able can be attached 
to any EVENT which has both an AGENT and a 
THEME). 

Here we use the same mechanism to enhance 
the results of analysis processing by creating 
new entries for unknown words found in cor- 
pora, on the fly. 

Formally, LSRs are rules. Practically, they 
create new entries from existing entries in the 
lexicon that they modify. We discuss below an 
example involving the LSR2AgentOf rule. 

For instance, LSR2AgentOf is a rule which 
takes as input a verb and modifies its POS, syn- 
tax and semantics. The "derived" entry has N 
for the POS, the subcategorization of a noun for 
the syntax and add AGENTOF to the event of 
the old entry. For instance, let us consider the 
entry drive mapped to the concept DRIVE in 
the ontology (Figure 2). The selectional restric- 
tions of drive are further constrained to HUMAN 
(with a Default DRIVER) for AGENT and PHYS-
ICALOBJECT (with a Default WHEELEDENGIN-
EVEHICLE) for THEME. 

Figure 2:   Partial Entry for the English word 
drive. 

If we apply the LSR LSR2AgentOf to the 
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Figure 3:   Partial Entry for the English word 
driver. 

The entry for driver specifies the new POS, 
a new "SYN" with an optional prepositional 
phrase (opt +), and a semantics which is the 
same as the one for drive. 

LSRs (such as LSR2AgentOf) are language in- 
dependent, and can therefore be used for the 
production of new entries for any language, as 
far as the semantics is concerned. It is also 
regular as far as POS and syntax is concerned 
for family-related languages.3 The morpho- 
semantic generator is obviously more language 
dependent as to which affix is assigned which 
rule is language dependent. For instance, in 
Spanish -dor is assigned LSR2AgentOf, whereas 
-er and -eur will be assigned the same rule for 
English and French, respectively. Viegas et al. 
(1996b) showed ways to avoid overgenerations 
of forms in the case of Spanish, which is more 
productive than English from a morphological 
viewpoint. Ultimately, the lexicon entry will 
have to be checked by a human to prune word 
forms with a wrong semantic assignment. For 
example revolver, which would be created from 
revolve with the semantics of LSR2AgentOf, 
thus would be missing the WEAPON meaning. 
However,  in  this  research,  we are using the LSR 

3 Note that for unrelated languages, the POS and syn- 
tax will necessitate a thorough manual checking. 

for analysis. As such, overgeneration of forms 
is not a problem as one does not expect to find 
a wrong form in a corpus. Overgeneration of 
forms appears in cases of "blocking," as identi- 
fied by Briscoe et al. (1995). For instance, the 
system will successfully apply the LSR2AgentOf 
to the entry steal, producing stealer, whereas 
this form should be blocked by thief in the lexi- 
con. It is important to filter out these "wrong" 
forms for generation (by trying to match the 
created form against an on-line dictionary for 
instance). But when using the LSRs at run time 
and for analysis, there is no need for such check- 
ing. 

Moreover, in the approach proposed here, it is 
still possible to ignore some of the "incorrect" 
entries using the selectional restrictions of the 
other words with which the entry created auto- 
matically co-occurs in context. In other words, 
we evaluate the "correctness" of the entry in the 
light of the other words in which it appears in 
the text. For instance, in He killed Paul with 
this revolver, if the system can use the selec- 
tional restrictions of kill such as (AGENT: AN- 
IMAL, THEME: ANIMAL, INSTRUMENT: ARTI- 
FACT), then revolver as the HUMAN AGENTOF a 
"revolving" event will be dismissed, at the ben- 
efit of ARTIFACT - INSTRUMENTOF KILL. This 
is one of the reasons why the learning mode 
must interact with the parsing mode: context 
helps build hypotheses on the validity of the new 
entry. 

When multiple LSRs can be applied to an un- 
known word, all are tried and the semantic con- 
straints of the co-occurring words provided by 
the analysis parser (e.g. the Text Meaning Rep- 
resentation (TMR) in Mikrokosmos) filter out 
the ones which do not fit, as described in Beale 
et al. (1995). Mahesh et al. (1997b) showed 
that the quality of the TMR (on the word sense 
disambiguation task) did not fully degrade with 
unknown words. Therefore, here we start the in- 
teraction between the understanding and learn- 
ing modes on an already built TMR to restrain 
the search space of hypotheses. We present 
an extract of the TMR for (1) below assuming 
teacher has not been found in the LKB. 

(1) "There is incredible pressure on school sys- 
tems and teachers to raise test scores," 
says..., [Wall Street Journal]. 
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PROPOSITION-l 
RAISE-1 
AGENT: teacher-l*unknown* 
THEME: SCORE-1 

SCORE-1 
PURPOSE: TEST-1 

Here, teacher will be processed by a morpho- 
logical analyzer producing the root teach (which 
we assume here to be available in the lexicon), 
and the suffix -er, which is available in the data 
bank of affixes and will be assigned the rule 
LSR2AgentOf as follows: 
      teacher: TEACH, -er LSR2AgentOf 
      However, teacher is a social category as well 
as a person who teaches; its lexicon entry (Fig- 
ure 4), which has been automatically created, 
accounts for the latter but not the former. In 
other words, LSRs help construct the semantics 
HUMAN AGENTOF TEACH but not the social 
role TEACHER which should be in the subtree 
of ACADEMICROLE. 

 

Figure 4:   Partial Sense Entry for teacher De- 
rived from teach with LSR2AgentOf. 

Accounting for the former involves two op- 
tions: 

1. The concept TEACHER already exists in the 
ontology under, say, the concept ACADEMI- 
CROLE. 

2. The concept TEACHER does not exist in the 
ontology and we want to create it and au- 
tomatically insert it in the CKB. Here we 
have two subcases: 

2.a the entry for teacher was created by an 
LSR; 

2.b no LSR could be applied to create an 
entry for teacher. 

Case 1. is easy as we can directly replace 
AGENTOF TEACH by TEACHER. This informa- 
tion is already part of the frame of TEACHER in 
the CKB. 

Case 2. is more complex. Briefly, the idea 
is to create a new concept, labeled as the lex- 
ical item preceded by TC_. We use this nota- 
tion for convenience purposes only, to help the 
CKB developer to semi-automatically check the 
new concept created at run time during mainte- 
nance checking. In 2.a, the idea is to introduce 
the new concept in the CKB. The new concept 
TC_TEACHER will have minimally encoded that 
it is AGENTOF TEACH as part of its frame in 
the CKB. In 2.b, no LSR could produce infor- 
mation and here the system primarily relies on 
the semantic information provided by the se- 
mantic analyzer on the words co-occurring with 
the unknown word (e.g., in the TMR). 

In this section, we dealt with the incomplete- 
ness of the lexicon and ways to fight it by ap- 
plying LSRs on the lemmas of unknown words. 
This resulted in two possibilities: a) a rule (or 
more than one) could successfully be applied, 
then producing an entry (multiple entries) for 
the unknown word with POS, syntactic infor- 
mation and semantic information; or b) no rule 
could be applied, in which case the word was 
given the label of the unknown word preceded 
by CT_. 

In next section, we investigate a new model 
to create a new concept using the existent CKB 
and the semantic context in which the unknown 
word appears. The model helps in solving 2.a 
and helps in making hypotheses in the case of 
2.b. 

3    The Concept Trigger Model 
A concept from the CKB, once acquired or 
checked by the CKB developer at acquisition 
or maintenance time, is considered a "con- 
structed" concept. Otherwise it is a "triggered 
concept" (TC), automatically created at run 
time by CT and waiting for manual checking 
to get (or not in case it is wrong) the status of 
"constructed concept" and become an integral 
part of the CKB. The manual checking of the 
TC consists in verifying its place in the concep- 
tual hierarchy, i.e. verifying its ISA and SUB- 
CLASS   links,   and   then   checking  the  inherited 
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links and eventually adding more roles (e.g. in 
TEACHER, one could add PURPOSE: EDUCATE) 
and defaults to inherited roles (e.g., LOCATION: 
PLACE; DEFAULT:  CLASSROOM). 

CT uses four resources: i) a CKB; ii) an 
LKB (e.g. lexicons developed for Mikrokosmos 
in Spanish, English and Chinese, with 35,000, 
12,000 and 2,500 word sense entries respec- 
tively); iii) the meaning of the text (expressed 
with concepts from the CKB) where the un- 
known word appears (e.g. TMR in Mikrokos- 
mos); and iv) linguistic operators helping iden- 
tify semantic relationships between concepts, as 
discussed further. 

To illustrate iii), let's assume that "revolver" 
is unknown in (2), then the selectional restric- 
tions of hand-out will help create the hypothesis 
that the THEME must be of type OBJECT. 

(2) At a recent dinner for institutional in- 
vestors, a New York portfolio manager 
says, the mood was so bleak that "if 
they had handed out revolvers instead of 
cigars, some people would have shot them- 
selves." [Wall Street Journal] 

A further hypothesis, derived from the con- 
ceptual information of shoot oneself mapped to 
the concept KILL can help derive the hypothe- 
sis that it could be of type DEVICE (ISA ARTI- 
FACT) via the INSTRUMENT filler of KILL. This 
real life example shows the complexity of deriv- 
ing the right hypotheses. We cannot yet show 
how to derive the right relation, rather we aim 
at providing the system with the set of valid 
possibilities, going as far down the hierarchy of 
concepts in the CKB as possible. 

3.1     Towards a Characterization of CT 
A concept cannot be acquired independently 
from other concepts. CT stands for that pur- 
pose, where a concept is being related to the 
other concepts triggered from the analysis of the 
text and the CKB. CT helps build the concep- 
tual frame of the new concept. 

CT relies on different kinds of knowledge used 
to grasp the semantics of the TC. We illus- 
trate through TC_TEACHER associated to the 
unknown English word teacher which kind of 
information enters in a TC: 

1. The "Natural Logic" zone contains infor- 
mation  concerning   the  semantic  space  of 

the TC, by means of type/sub-type rela- 
tions, including all the role fillers avail- 
able to the immediate hyper-/hyponyms, 
(e.g., ACADEMICROLE, UNIVERSITYFAC- 
ULTY, ACADEMICBUILDING, ...); 

2. The "Encyclopedic" zone provides informa- 
tion on encyclopedic knowledge, providing 
the TC with its associated concepts, for a 
particular domain: for instance in the aca- 
demic domain we will find at least SUB- 
JECT,   COURSENUMBER,   ....    This infor- 
mation is subdivided in three sub-zones, 
namely intrinsic, extrinsic and functional. 

3. The "Lexical" zone points to an entry in 
the lexicon, when created by an LSR. 

For instance in TC_TEACHER one could find 
the following: 

[Tc_Teacher(X): 
[natural_logic: 

Teacher(X),Professor(X),Lecturer(X),   ...] 
[encyclopedic: 
[intrinsic:  Name(B),  Address(C),   . . .  
extrinsic:   Student(Y),   . . .  
functional:Teach(X,Subject,Student),   ...]] 
[lexical:   teacher(X)]] 

To "trigger" knowledge in the TC we rely on 
the KBs and the TMR. In the case of teacher, 
in 2.a, the system has the knowledge that it is 
AGENTOF TEACH: CT retrieves all AGENTOF 
TEACH from the CKB, constructing the "natu- 
ral logic zone." We also rely on linguistic knowl- 
edge from the text where the system labels the 
different relations found between the unknown 
word and its co-occurring words. To do that, 
we use linguistic operators, modeled to provide 
interconceptual relations between the Tc and 
other concepts in the semantic representation 
of the text (e.g., TMR), as described in next 
section. 

3.2    From Linguistic Operators to 
Interconceptual Relations 

From a linguistic point of view, in the case 
of the "logical zone," the interconceptual re- 
lations belong to the linguistic domain of BE 
(teacher/professor/...). In the case of the en- 
cyclopedic zone, the interconceptual relations 
belong  to  the  linguistic  domains  of  HAVE   and 
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DO (teacher/students). Here the operator can 
be lexicalized into a static verb (my teacher 
has 60 students), or into a dynamic verb (the 
teacher lectures students). Linguistic opera- 
tors are mapped to interconceptual relations, 
which capture generalizations across languages. 
Linguistic operators and interconceptual rela- 
tions help build hypotheses gathered in TCs, 
using a quality-based learning approach as de- 
scribed in Schnattinger and Hahn (1998) for 
instance. We base our qualitative ranking of 
the linguistic operators on linguistic construc- 
tions AND available semantic information com- 
ing from the existent CKB. The ranking follows 
a partial order >. In the case of some construc- 
tions into which a noun can enter, we have the 
following order: 
N V N (clause - V-DO) ) N's N (possessive) 
N's N } N of N (possessive, membership - of- 
HAVE or descriptive - of-BE-IN) 
N's N ) N have N 
N have N ) N be N 
N be N } NN (compounds)4 

We have discovered three operators for BE 
and HAVE (Identification (Iden), Differ- 
entiation (Diff) and Localization (Loca)), 
which can further be subdivided along intrin- 
sic (intr) or extrinsic (extr) properties, as illus- 
trated below through examples: 

Idenintr: he IS a teacher; the city OF Sin- 
gapore. 

Idenextr: she IS nice. 

Diffintr: he HAS blue eyes; HER green 
eyes; he IS blue-eyED; the legs OF the 
table. 

Diffextr: she HAS a car; john'S car; the 
car OF the company. 

Locaintr: the City OF London. 

Locaextr: he STANDS IN the garden. 

For instance, "OF" and "ADJ-N_ed" (blue- 
eyed) can be linguistic traces of HAVE. Depend- 
ing on the semantics of the nouns, "of" will 
be further categorized as Diffintr or Diffextr. 
These operators are organized into a hierarchy. 
For instance Diffintr and Diffextr are subtypes 

4See Viegas et al. (1999) for the description of the 
semantics involved in compounds. 

of Diff; the more semantics available, the more 
distinctions can be made in the operators, the 
higher is the score attributed to the operator. 

Any relation belonging to BE can be mapped 
to either Idenintr or Idenextr under the following 
conditions: 

Identintr: (xpos                                                          : 
N, xsem : Human, ypos : N,ysem : SocialRole 
→ HumanSocialRoleRel(y,x)) 

This means that if the first noun (x) is of type 
HUMAN and there is a HUMANSOCIALROLEREL 
between x and y (also a noun), then y must be 
of type SOCIALROLE. 

Identextr: ( x p o s  :          N ,x s e m         : 
Object, ypos : Adj,ysem : Relation ∨ Attribute)) 
→ Property (x,y)) 

With Identextr, if x is a noun of type OB- 
JECT and y an adjective and there is a PROP- 
ERTY between x and y, then y must be either a 
RELATION or an ATTRIBUTE. 

For instance, the operators between a TC and 
the concepts of the "natural logic" zone belong- 
ing to the domain of BE can be an Iden or 
a Loca interconceptual relation. The intrin- 
sic and extrinsic sub-zones of the "encyclopedic 
zone" belong to the domain of HAVE and are a 
Diff relation.5 

The TC_TEACHER type-example below pro- 
vides an illustration of the interconceptual rela- 
tions: 

[tc_teacher(X,Y): 
[iden:  professor(X),  lecturer(X), . . .  
  diff:   name(B),   student(Y), . . .  
oper:   teach(X,subject,student) , . . . ] ]  

To make assumptions on the hypotheses, we 
follow the proposal of Schnattinger and Hahn 
(1998). However, developing linguistic opera- 
tors and interconceptual relations enables us to 
get a better set of accurate hypotheses than re- 
lying on linguistic constructions alone as done 
by Schnattinger and Hahn. On the experiments 
done, we noticed that a finer-grained ontology 
and finer-grained linguistic operators reduce the 
number of hypotheses. 

Then inserting the concept TEACHER at the 
right place in the hierarchy, is more diffi- 
cult. It consists in finding a frame (from the 

5The operator DO is still under study. 

- 372-  



MT Summit VII                                                                                                                                                    Sept. 1999 

frames associated to the concepts of the ''nat- 
ural logic" zone), which has the closest con- 
straints compared to the partial frame associ- 
ated to TEACHER (namely, AGENTOF TEACH). 
This new frame will have to be checked by a 
human ultimately. 

4    Perspectives 
In this paper, we have outlined solutions and 
directions to bypass the bottleneck of KB sys- 
tems by providing ways of expanding the knowl- 
edge sources (LKB and CKB) at run time. We 
believe that this constitutes a necessary step 
in the development of future knowledge-based 
high-quality MT systems. 

We have used LSRs to create new lexical en- 
tries, and investigated a new model called CT 
to create new concepts for unknown words. CT 
makes use of conceptual knowledge from the ex- 
istent CKB and also of linguistic operators to 
help identify interconceptual relations and con- 
cepts in context. CT interacts with the non 
learning mode of the analyzer to make hypothe- 
ses on the semantics of the unknown word. At 
this stage, the automatically created entries can 
help in better disambiguating a text by having 
CT feed the analyzer with valid hypotheses on 
the semantics of the unknown word. The issue 
of placing the new concept at the right place 
in the conceptual hierarchy is more complex 
and still under study. The proposal developed 
in this paper helps in recovering or repairing 
from incomplete inputs to the analyzer. There- 
fore, putting the concept at the right semantic 
sub-tree (e.g., TEACHER placed in SOCIALROLE 
or ACADEMLCROLE and not say under EVENT) 
seems reasonable. 

Further research concerns applying the same 
methodology to more unknown words per text 
and also among interdependent unknown words 
per text. If the unknown words do not interact, 
then we expect that the same approach be used; 
if the unknown words are connected, hypothe- 
ses made by CT should have a lower confidence 
than when only one word is unknown. 

We have starting exploring this framework on 
Spanish text too, showing that our methodol- 
ogy is language independent. Linguistic oper- 
ators are also language independent. What is 
language dependent is the realization of the op- 
erators. 

Yet another angle of this research concerns 
using CT for large-scale acquisition of concepts 
and therefore developing the algorithm to place 
the concept at the right place in the conceptual 
hierarchy. The best way to do so might be to 
move towards an interactive system of acquisi- 
tion of concepts where a human immediately re- 
vises the suggestions made by CT and CT learns 
from human input. 
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