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Abstract proper translation by a user without any expert
knowledge of how the computer stores and
represents rules. This paper demonstrates the
utility of neural networks in precisely this area
on a small scale translation problem.

We have tested the ability of neural networks to
perform natural language translation. Our
results have shown a greatly improved
translation accuracy in comparison to the work
of R.B. Allen (1987) in translating English into
Spanish. A neural network was trained on a set
of 10,000 sentences from a total of 24,750
sentences using a novel training algorithm. On
a test set of 100 sentences the neural network
showed a 98% sentence accuracy.   The neural
network had 48 input nodes, 70 nodes in the
first hidden layer, 1 node in the third hidden
layer, and 36 nodes in the output layer (48-70-
1-36).  A fully connected architecture was used.

Connectionist NLP
Research has already shown the usefulness of
neural networks in various natural language
processing tasks: (Allen, 1987), (Jain, 1991),
(Waibel, 1988) and (Waibel et al, 1991).

Grammar Used
The grammar used to generate the 24,750
English and corresponding Serbo-Croatian
sentences was kept simple. Each English
sentence consisted of up to eight (8) words with
two determiners, two nouns, a verb, an adverb,
a preposition and an adjective.  Each Serbo-
Croatian sentence contained two nouns, a verb,
an adverb, a preposition and an adjective for a
total of six (6) words.  The training set was
generated from a simple deterministic grammar
by a program. The program can grade 8
English components, with a total of (11 x 5 x 9
x 2 x 5 x 5 = 24,750) 24,750 sentences (see
Table 1). In addition to learning simple word
pair mappings certain words changed
translation depending on context. The adjective
and noun endings are different for different
adjective and noun combinations in Serbo-
Croatian, so this was a context rule that had to
be learned by the neural network. The noun
and adjective endings also changed when one
of the two different prepositions was used,
adding another context rule.
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Introduction
Machine translation of natural languages has
been tackled in many ways. This paper presents
the usefulness of feedforward neural networks
to perform such tasks. Most conventional
approaches to machine translation fail to
adequately address the problem of allowing a
machine language translation system to learn
form a human expert translator during its use.
Most systems have hard coded rules (with
varying depth of meaning) that can be modified
only by a knowledge engineer who is an expert
in expressing such rules in the language of the
computer. Neural networks, having the ability
to learn from examples, are a possible solution
to this problem. If such a neural network
translation system wrongly translates a
sentence it can be corrected and taught the
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Determiner Noun Verb Adverb Preposition Determiner Adjective Noun
The child runs quickly to the large house. English

Dijete tr}i brzo do velike ku}e. Serbo-Croat
Figure 1: Example Translation. The first line shows the parts of speech in each of the sentences under
it. The second line is the English sentence and the third line is the Serbo-Croatian sentence.

TABLE 1: Words Used For Each Part of Speech
First
Noun
(11 words)

Verb
(5 words)

Adverb
 (9 words)

Preposition
 (2 words)

English  Serbo-
Croatian

English Serbo-
Croatian

English Serbo-
Croatian

English Serbo-
Croatian

child dijete runs tr}i quickly brzo to do
man ~ovjek walks hoda slowly polako toward prema
woman `ena strolls kora~a carefully oprezno
person osoba skips poskakuje hurriedly ubrzano
actor glumac glides klizi tiredly pospano
driver vo`ac energetically snà no
doctor doktor instantane-

ously
trenutno

father otac insecurely nesigurno
mother majka blissfully radosno
brother brat
sister sestra

Adjective Second
Noun

English
(5 words)

 Serbo-
Croatian
 (20
words)

English
(5 words)

Serbo-
Croatian
(10 words)

large velike velikog velikom velikoj house ku}a ku}e ku}i
big ogromne ogromnog ogromnom ogromnoj car auto auta autu
small male malog malom maloj swimming

pool
bazen bazena bazenu

nice predivne predivnog predivnom predivnoj boat brod broda brodu
beautiful lijepe lijepog lijepom lijepoj field njiva njive njivi

The positioning of the verb and the adverb in
the English sentence was randomly chosen in
order to add more variety to the training set.
The training set was randomised after
generation, because it was found that the neural
network refused to learn after a certain time if
the training set was not properly randomised.
The translation was not a simple direct
mapping because of the difference in the
number of words and the context sensitive
change of the adjective and noun according to
both which preposition was used and which
adjective and noun pair was used, and also the
random change of verb and adverb positions in
the English sentence.

Incremental Search
Back-propagation (Rumelhart et al, 1986)
seems to be the most widely used learning
algorithm in feedforward neural networks
today. The back-propagation algorithm, being
an algorithm that can only find a local
minimum in weight space, has several
limitations in terms of speed of training and
modelling capability when one tries to  address
problems of growing complexity such as
natural language translation. Initially we tried
to use the back-propagation training algorithm
to solve our machine translation problem,  but
results were not satisfactory, so a new heuristic
algorithm for searching for an optimal neural
network topology and weights was developed
which uses back-propagation as one of its
subroutines.



Pseudo code for the "Incremental Search" algorithm:

1. Create a feedforward neural network (N.N.) that has only an input and an output layer with each
having a number of nodes predefined by the training data set.  Initialise all the variables.

2. Create a new current hidden layer and place it just before the output layer.

3. Add one more node (or use "chunks" of 'n' nodes as increments) to the current hidden layer and
connect it with random weights to all nodes in all other layers.

4. FOR NUM_RANDOMIZATIONS
(the purpose of this 'for' loop is to try different random starting weights used by the back-
propagation algorithm called in 4.1.1)
4.1. REPEAT

4.1.1. Train the N.N. using back-propagation over 1 presentation of the entire training set.  
During learning keep track of RMS (root mean squared) error on the training set 
(RmsTrain).

4.2.WHILE RmsTrain is decreasing (i.e. network is learning)
4.3.Calculate RMS error (RmsEval) on the early test set (note: the early test set is different from 

the final test set).
4.4.Update RmsTrain_best and RmsEval_best with the smallest values of RmsTrain and 

RmsEval. If an update was made then save the network architecture and the starting weights 
for that architecture.

4.5.Re-randomise the newly added weights.

5.    IF RmsEval_best < RmsEval_prev_layer (RMS error on the early test set just before a new 
layer was added)

THEN
        5.1.   IF RmsEval_best > RmsEval_prev  (RMS error on the early test set just before a new 

node was added)
 THEN  (memorisation has occurred)
  5.1.1. Remove the just added node and restore the state (topology and weights) of the N.N. 

to the state just before the node was added.
  5.1.2. Goto 2.
ELSE
  5.1.3 Goto 3.

ELSE
5.2.IF RmsEval_best <= RMS_LIMIT

        THEN
  5.2.1. Inform the user that a network has been designed that can correctly generalise 

within the given error limit  (RMS_LIMIT).
ELSE
  5.2.2. Inform the user that more training data is needed in order to achieve the desired 

error rate (RMS_LIMIT) on the early test set. (Also ask the user if the training data 
was properly randomised or not.)

For a graphic representation of the neural network architecture used by the algorithm please refer to
the following Figure 2.
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Figure 2: Language Translation Neural Network. Each circle represents one node in the neural
network. The input layer consists of a total of 48 bits.  Each group of 6 bits represents one word and
thus there are 8 words in the input layer. These 8 words represent the English sentence. The output
layer consists of a total of 36 bits which makes a total of 6 words in the output layer. These 6 words
represent the Serbo-Croatian sentence. Each layer if fully connected to every previous layer.

It has been shown that the first layer of a back-
propagation neural network serves as a feature
detector and that successive layers try to
combine these features in order to achieve the
desired output (Lang & Witbrock, 1988),
(Touretzky, 1989), (Mirchandani & Cao,
1989). It has also been observed that if there
are too many nodes in a layer then the ability to
generalise is lost (Caudill, 1990).  This is the
justification for why layers are constructed one
after the other in the "Incremental Search"
algorithm. We need to first find out all the
possible features from the data by using the
first hidden layer. We will know when the first
hidden layer is big enough when we observe no
further improvement in generalisation (i.e.
when memorisation starts to occur). Back-
propagation learning generally slows down by
an order of magnitude every time a layer is
added to a network.  This is because the error
signal, generated at the output layer, is
attenuated each time it flows through a hidden
layer. Learning progress is therefore limited by
the slow adaptation of units in the early layers
of a multi-layer network. To avoid this one can
use short-cut connections to provide direct
information pathways to all parts of the
network (Lang & Witbrock, 1988). This is why
our algorithm connects each new added layer to
all the previous layers. During the execution of
the "Incremental Search" algorithm the
architecture of the neural network is changed
slightly by adding a new node or a new layer
the error surface (Tank & Hopfield, 1989) will
also change allowing for an escape from a local
minima in the error surface that the learning
algorithm might be in.

Optimal Neural Network
The "incremental search" algorithm does not
guarantee an optimal neural network topology
and weights (Judd, 1987), (Baum, 1989)
because it is a heuristic algorithm. However,
our experiments show that it will produce a
satisfactory network topology and weights for
those problems where back-propagation fails.

Other Growth/Trimming Algorithms
The Cascade-Correlation Learning Architec-
ture (Fahlman & Lebiere, 1990), The Tiling
Algorithm (Mezard & Nadal, 1989), Optimal
Brain Damage (Le Cun et al, 1990),
"Optimization of the Architecture of Feed-
forward Neural Networks with Hidden Layers
by Unit Elimination" (Burkitt, 1991) are some
examples of existing growth and trimming
algorithms for training neural networks and
automatic neural network topology formation.
Our "incremental search" algorithm differs in
very important details from all the above listed
algorithms. Our algorithm is capable of
generalising well when real valued numbers
are used as outputs whereas the Cascade-
Correlation Architecture does not do this well
and the Tiling Algorithm can deal with only
binary valued outputs. The Optimal Brain
Damage algorithm and Burkitt's algorithm are
both trimming algorithms which are
fundamentally different from ours so we cannot
compare the them.
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Results
Note in table 2 that as the size of the first
hidden layer grows toward 70 nodes that the
performance of the network improves, but then
falls after further increasing the number of
nodes. This is a clear indication that
memorisation of the training data is occurring.
Thus a good approximation to the optimal
number of nodes in the first hidden layer is 70
from the results observed. Because of the
structure of the grammar used, it was easiest
for the neural networks to learn how to
translate the preposition (there were only two
prepositions used). It was hardest to learn the
grammar context sensitive rules between the
adjective and the second noun and this was also
observed. Furthermore, it was also slightly
harder to learn the adverb because of the fact
that the grammar randomly chose to
interchange the positions of the verb and
adverb in the training and test sets.

Each word in each language was assigned a
unique binary code.  Because the total number
of words in one language did not exceed sixty
four (64) it was possible to use six (6) bits to
encode all the words in one language. Please
refer to Figure 2 to see how this encoding
scheme produced a total of 48 bits in the input
layer and a total of 36 bits in the output layer of
the neural network. The evaluation scheme
used was very thorough. Both word errors,
sentence errors and part of speech errors were
evaluated and recorded.  Any output greater
than .5 was interpreted as a 1 , otherwise it was
interpreted as a 0.

The results that are shown in the series of
tables in this section were achieved after
training each neural network on a training set
of 10,000 English sentences and their Serbo-
Croatian translations.  Each neural network
was then evaluated on a set of 100 English and
Serbo-Croatian sentences. It was shown that
using the "Incremental Search" algorithm that
it was possible to achieve a high accuracy rate
on the test set. The neural network
architectures produced at different stages of the
execution of the algorithm are listed in the
tables 2,3 and 4 shown below.  The left-most
column of each table shows the network
architecture that was evaluated.  It was found
that the results achieved were extremely
sensitive to randomisation of the input/output
vector training pairs.  If no randomisation was
present the neural network would learn certain
words in the translation very quickly but would
refuse to learn those words with a low
frequency of change in the training set. It was
also found that the random starting weights of
each neural network architecture tested had a
major influence on the accuracy of the resulting
neural network solution.

 It can also be observed that a marked increased
in network performance occurs each time a
new layer is added. It must be noted that this
performance increase is greatly due to the fact
that the weights of the previous layer are
preserved and that the learning rate of the
previous layer(s) is changed to zero (frozen)
when the new layer is added to the neural
network architecture.

All of the following neural networks had these
parameters in common:
• Training File: 10,000 sentences 
• Test File: 100 sentences
• Learning Rule: Delta  Learning Rate: 0.6

Momentum: 0.9
• Number of Presentations: 10,000
The results achieved with the different
architectures on the test set follow:

TABLE 2: Performance Measurement of Three (3) Layer Neural Networks
Network Word Sentence Parts of Speech Error %
Structure Error

%
Error % Noun 1 Verb Adverb Preposition Adjective Noun 2

48-2-36 72.92 100 15.34 9.47 14.77 0.0 16.67 16.67
48-5-36 57.39 100 14.96 9.09 15.53 0.19 16.67 0.95
48-10-36 58.14 100 7.20 6.06 7.77 4.36 16.67 16.1
48-15-36 36.17 100 5.11 6.06 6.25 0.0 15.34 3.41
48-20-36 20.08 100 4.36 5.87 5.49 0.0 4.36 0.0
48-25-36 30.30 100 5.11 5.30 5.49 0.0 14.39 0.0
48-30-36 17.80 100 4.55 3.03 4.55 0.0 5.68 0.0
48-35-36 19.89 100 2.27 3.60 2.84 0.0 11.17 0.0
48-40-36 18.18 100 4.55 7.58 5.49 0.0 0.38 0.19
48-45-36 27.27 100 0.95 3.03 5.30 0.38 15.91 1.70
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48-50-36 29.36 100 2.08 4.92 6.82 3.79 9.85 1.89
48-70-36 2.84 18.0 0.95 0.0 0.95 0.0 0.95 0.0
48-90-36 13.26 78.0 0.57 0.19 1.89 0.57 10.04 0.0
48-110-36 36.36 97.73 3.41 16.29 16.29 0.0 0.38 0.0
48-130-36 18.94 100 0.76 6.76 2.27 0.0 15.15 0.0

Table 2. The second layer i.e. the first hidden layer was incrementally given more nodes and the
resulting neural network performance was measured for each of these networks.

TABLE 3:  Performance Measurement of Four (4) Layer Neural Networks
Network Word Sentence Parts of Speech Error %
Structure Error

%
Error % Noun 1 Verb Adverb Preposition Adjective Noun 2

48-70-1-36 1.33 12.0 0.57 0.0 0.0 0.0 0.76 0.0
48-70-5-36 0.95 6.0 0.38 0.0 0.0 0.0 0.56 0.0
48-70-10-36 0.57 3.41 0.38 0.0 0.0 0.0 0.19 0.0
48-70-15-36 0.76 4.55 0.38 0.0 0.0 0.0 0.38 0.0
48-70-20-36 0.76 4.55 0.57 0.0 0.0 0.0 0.19 0.0

Table 3. The third layer i.e. the second hidden layer was incrementally given more nodes and the
resulting neural network performance was measured for each of these networks.

TABLE 4: Performance Measurement of Five (5) Layer Neural Networks
With Different Random Starting Weights

Network Word Sentence Parts of Speech Error %
Structure Error

%
Error % Noun1 Verb Adverb Prepositio

n
Adjective Noun 2

48-70-10-1-36 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
48-70-10-1-36 0.19 1.14 0.0 0.0 0.0 0.0 0.19 0.0
Table 4.  Each neural network had the same structure 48-70-10-1-36 only different random starting
weights distinguished one network form the other.

Discussion the outputs. On the test set this trained network
was incorrect on average 2.5 bits and 1.3
words.

Neural networks have been shown to have the
capability to translate sentences from English
to Spanish (Allen, 1987). Sentences used in
Allen's research were generated using a highly
limited vocabulary and format. All sentences
included a subject, verb, direct object, and
indirect object. The verb was either 'to give' or
'to offer' and three different verb tenses were
used (present, past, and past perfect). In the
English sentences, the order of direct object
and indirect object was randomly selected,
while in the Spanish sentences the preferred
sentence structure always places the indirect
object after the direct object. Nouns referring to
people (including two first names) and animals
were used as subjects and indirect objects,
while nouns referring to things were used for
direct objects. Nouns were randomly modified
by one of the two adjectives. A training set of
3310 sentences and 33 test sentences were used
to train and test a multi-hidden-layer 50-150-
150-150-66 back-propagation network with
learning rate=0.01 and momentum=0.9. After
2 million presentations training produced a
root mean squared error rate of 0.027 over all

The Scalability Problem
Terence K. Sejnowski in his work "Parallel
Networks that Learn to Pronounce English
Text", (Sejnowski, 1987) used a context of
seven (7) characters (including the space) from
a word as input to a neural network and the
phoneme corresponding to the middle character
as output. This same approach could be taken
in using neural networks to perform real-world
machine translation. The neural network would
be given a sliding window of words from the
source language and the neural network output
would be a single word in the target language
text.

Multiple Meaning Words
Context rules (i.e. multiple meaning words) of
language translation would be captured by
using Sejnowski's method (Sejnowski, 1987)
just the same as for the scalability problem  just
discussed. Requirements for the neural network
size in terms of the number of neurons and
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hidden layers would be also reduced. If the
sliding window of words from the source
language is increased sufficiently to cover three
or more sentences then inter-sentence
information could be captured and used in
translation.

attributes as input to the neural network during
training and during its use by a skilled operator
would greatly enhance the accuracy and
versatility of translations that the neural
network could perform.
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