
Relational-Grammar-Based Generation in the JETS Japanese-English
Machine Translation System

David E. Johnson
IBM Research, T. J. Watson Research Laboratory

P.O. Box 218
Yorktown Heights, NY 10598 USA

Hideo Watanabe
IBM Research, Tokyo Research Laboratory

5-19 Sanbaneho, Chiyoda-ku
Tokyo 102, Japan

Abstract

This paper describes the design and func-
tioning of the English generation phase in
JETS, a limited transfer, Japanese-English

machine translation system that is loosely
based on the linguistic framework of relational

grammar. To facilitate the development of
relational-grammar-based generators, we have
built an NL-and-application-independent gen-

erator shell and relational grammar rule-
writing language. The implemented generator,

GENIE, maps abstract canonical structures,
representing the basic predicate-argument

structures of sentences, into well-formed
English sentences via a two-stage plan-and-ex-

ecute design. This modularity permits the
independent development of a very general,
deterministic execution grammar that is driven

by a set of planning rules sensitive to lexical,
syntactic and stylistic constraints. Processing
in GENIE is category-driven, i.e., grammatical
rules are distributed over a part-of-speech

hierarchy and, using an inheritance mech-
anism, are invoked only ff appropriate for the
category being processed.

1- Introduction

This paper discusses relational-grammar-based gener-
ation in the context of JETS, a Japanese-English

machine translation (MT) system that is being devel-
oped at the IBM Research Tokyo Research Laboratory.

To put our work in perspective, we first explain the
motivation for basing JETS on relational grammar (RG)

and then sketch the processing flow in translation. With

this background, we (i) describe and illustrate certain

aspects of the rule-writing language, GEAR, in which

the GENIE English generator has been written; (ii)

comment on key aspects of the generator shell, GEN-

SHELL, in which GENIE has been developed; and (iii)

discuss the design and functioning of the GENIE
English generator.

With few exceptions such as the work being done

at CMU (cf. KBMT-89 (1989), Nirenburg (1987), and

Nirenburg, et. al. (1988)), in the SEMSYN project at

the University of Stuttgart (Rosner (1986)), and the

joint work between the ISI Penman project and the

University of Saarbrticken (Bateman, et. al. (1989)),

generation within the area of machine translation has

received very little attention. Typically, MT systems

have no independently functioning, linguistically justi-

fied generation grammar. In the case of transfer

systems, much of the target language grammar is typi-

cally built into the transfer component, resulting in a

non-modular, rigid and linguistically inadequate system.

It is the norm in MT systems for the linguistic complexi-

ties inherent in robust generation to be simply ignored,
contributing to the inadequacy of MT systems.

In contrast, we have sought to shift more of the

processing burden from transfer onto generation,

allowing our system to incorporate a variety of results
coming from theoretical linguistics. GENIE is an appli-

cation-and-language-independent generator embodying

174

a robust, linguistically justified RG grammar of English.

Moreover, GENIE incorporates a syntax planner that

applies a set of planning rules determining which rules

in the execution grammar should be applied. As long

recognized in work on text generators, the incorpo-

ration of a syntax planner introduces the kind of flexi-

bility required for robust generation.

JETS is a so-called limited transfer system, i.e., a

system in which structural transfer is kept to a

minimum. The key RG notion in our work is that of

canonical (relational) structure (CS), an abstract level of

syntactic structure representing the basic predicate-ar-

gument structure of clauses in terms of a universal set of

primitive (grammatical) relations such as subject, direct

object, indirect object, chomeur. 1

Given the basic assumption that one is developing

a limited transfer system, implying deep analyses of

both the source and target languages which converge on

structurally similar internal representations for trans-

lation equivalents in a wide range of cases, it is critical

to select a linguistic framework which supports the

required analyses, enabling one to conceptualize the lin-

guistic processing in a uniform manner. As discussed in

Johnson (1988b), with respect to MT, RG is a logical

choice of linguistic framework since CSs provide a

natural syntactic bridge between languages as diverse in

structure as Japanese and English. This is s o for two

reasons: (1) within one language, the CSs of para-

phrases are typically the same or highly similar and (2)

translation equivalents often have structurally similar if

not isomorphic CSs.

One of the key advantages of RG comes from its

explicit representation of grammatical relations like

subject and direct object, which are argued to be uni-

versal. In contrast, structure-based frameworks such as

transformational-generative grammar (TG) at best only

implicitly represent grammatical relations such as

subject and direct object in terms of linear precedence

and dominance, which are language particular. If one

considers the task of transfer, for instance, it is clear

that representing basic clause structure in terms of

explicitly marked, order-independent relations rather

than in terms of language-dependent structural relations

reduces the amount of structure changing to be done in

the transfer component. This is especially true for lan-

guages like Japanese and English, which differ greatly in

superficial structural properties (not to mention the fact

that Japanese has very free word order, which arguably

makes it even less suited to structure-based frame-

works).

2 - P r o c e s s i n g F low in J E T S and G E N I E

As in all transfer systems, linguistic processing in JETS

can be divided into three phases: analysis, which con-

sists of lexical analysis and parsing, transfer and gener-

ation. The output of analysis is a Japanese CS, which

represents the basic predicate-argument structure of the

Japanese sentence. 2 Transfer produces an English CS,

which is often, but not always, isomorphic to the Japa-

nese CS. The English CS is passed to the GENIE gen-

erator, whose task is to generate a grammatically

correct and stylistically appropriate English sentence

given a well-formed CS.

To illustrate, consider the following Japanese sen-

tence and two of the possible English translations:

1. karera wa Tookyoo e itta rashii

they top Tokyo to went seem

2. They seem to have gone to Tokyo.

3. It seems that they went to Tokyo.

In translating (1), analysis maps the input string into the

Japanese CS shown at the left in Figure 1 on the next

page. Transfer then maps the Japanese CS into the

English CS shown at the right in Figure 1.

I For theoretical background on RG, see the many articles listed in the bibliographic reference Dubinsky and Rosen (1987).
Note that the following abbreviations are used in glosses of Japanese examples: top (topic), nm (nominalize), and pp (post-
position).

2 For discussion of parsing in JETS, see Maruyama, Watanabe and Ogino (1989).

175

Japanese CS for (1) English CS for (2) & (3)

rashii seem

itta go(tense, past)

/ l o c i 1/ l o c i

karera Tookyoo they Tokyo

(topic. wa) (pp. e) (topic. T) (prep. to)

seem

go(past)

loci

Tokyo(to)

Tense-
Spelling

they

seem

have they

go(pastpart) ,<
Tokyo(to)

Figure 1. Canonical structures for (1), (2) and (3). Note

that "1" means "subject", "loc" means "locative".

Given the English CS, it is up to the GENIE English

generator to generate either (2) or (3). Based on the

information that they in the English CS is marked as the

topic of the sentence, GENIE will map the CS into the

superficial (unordered) relational structure shown in

Figure 2 via the relational rule of Subject-to-Subject

Raising (so-called A-raising). Subsequent rules of

Tense-Spelling and Linearization (including the spelling

out of verbal forms and prepositions) will result in the

string They seem to have gone to Tokyo, as shown in

Figure 3.

seem seem

go(past) go(past) they

they Tokyo(to) Tokyo(to)

Figure 2. A-Raising Applied to the CS of (2) and (3).

Note that "6" means "complement".

- - - Lineanzation, etc >

They seem to have gone to Tokyo

Figure 3. Rest of the Derivation of (2)

As illustrated above, RG, like TG, is a "multi-
stratal" theory, i.e., clauses typically have more than
one level of syntactic analysis, and these levels/strata
are mediated by clause-level rules. In the case of TG,
the structures are phrase-structure trees, and transf-
ormations map trees into trees; in the case of RG, the
structures are edge-labelled trees (called relational struc-
tures (RS)), where the edge labels represent primitive
relations, and the rules map RSs into RSs.

The use of multiple strata sets RG apart from
functional frameworks such as FUG (Kay 1979) and
LFG (Bresnan 1982), which also use primitive relations
(functions), and from all other monostratal frameworks
such as GPSG (Gazdar, et. al. 1985), whether func-
tional or not. The manipulation of explicitly marked
relations in unordered relational structures sets RG
apart from TG. In our work on Japanese-English MT,
the RG concept of multiple relational strata has proven
to be of significant practical use - - facilitating the
design and development of a limited transfer component
and a robust generation component, enhancing modu-
larity, and allowing the linguistic processing to be con-
ceptualized in a uniform fashion.

176

3 - T h e R G Rule Wr i t i ng L a n g u a g e : G E A R

One key aspect of our implementation of an RG gener-

ator is the GEAR rule-writing language. GEAR permits

a grammar developer to write computationally powerful

RG rules in a linguistically natural manner . GEAR

rules identify grammatical objects via path specifica-

tions, of which there are two types: (1) node-specifier,

consisting of a sequence of one or more relation names,

and (2) property-specifier, consisting of a node-specifier

followed by a property name. For instance, 1:1 indi-

cates a node that is the subject of a node that is the

subject of the node currently being processed (the

focus) and 2.tense denotes the value of the property

tense of a node that is the direct object of the focus.

GEAR path expressions are superficially similar to the

expressions used in unification-based frameworks such

as FUG and PATR (Shieber, et. al. (1983)). However,

GEAR is not unification based, rather it provides a

number of procedural operations, including node

deletion and node creation.

Each rule consists of a sequence of statements, of

which there are several types, e.g., IF-THEN-ELSE,

CALL, ON and restructuring statements. IF-THEN-

ELSE statements control the rule internal processing

flow. CALL statements are used to invoke rules by

name. An ON statement invokes a specified rule on a

node reachable from the focus via a node-specifier.

There are several types of restructuring state-

ment, e.g., ASSIGN, CREATE, DELETE and COPY.

An ASSIGN statement is used to alter the relations of a

node identified via a node-specifier; the new relation is

also specified by a node-specifier. The core of

GENIE's A-raising rule, whose relational changes are

illustrated in Figure 2 above, is (using 6 for "comple-

ment"):

(ASSIGN 1 6) "Assign my subject as my complement"

(ASSIGN 6:1 1) "Assign my complement's subject as

my subject"

The complete rule is shown in Figure 4.

% % Define the rule A-raising for intransitive verbs

(DEF-RULE A-Raising OF Intransitive-verb
% % If the A-raising rule switch is turned on

(IF (A-raise is 'yes)
% % then assign my subject as my complement

THEN (ASSIGN 1 6)

% % and assign my complement's subject as my subject

(ASSIGN 6:1 1)
% % and on my complement call the rule

% % which makes infinitives

(ON 6 (CALL Make-lnf'mitive))))

Figure 4. GENIE's A-Raising rule

Creation, copying and deletion of nodes are also

specifiable but space limitations preclude discussion.

4 - T h e G E N S H E L L g e n e r a t o r shel l

Building on our experience with an earlier prototype

developed by Schindler (1988), we have developed an

NL-independent generator shell, GENSHELL, to facili-

tate the development of RG generators. For any given

generator, grammar developers need only specify the

designated grammatical relations, parts of speech, a

part-of-speech hierarchy, dictionaries and grammars.

GENSHELL takes this information and constructs a

runtime generator.

One of the distinctive aspects of GENSHELL,

due to Sehindler (1988), is the concept of category-
driven processing. In category-driven processing, parts

of speech are represented as categories in a category

hierarchy (POSH) and nodes in RSs are represented as

objects which are instances of categories and thus can

inherit properties via the POSH, Among the inheritable
properties are grammar rules. For instance, the rules

for Passive and Subject-to-Object Raising (so-called

B-Raising; discussed later) would be associated with the

class Transitive Verb, A-raising would be associated

with the class Intransitive Verb, and Subject-Verb

Agreement would be associated with the superordinate

class Verb.

In our implementation, all rules are defined with

respect to named rule bundles, and rule bundles are

associated either with categories in the POSH, the

general/default eases, or with lexical entries, the special

cases. Rule definitions have the form:

I_77

(DEF-RULE rulename OF rule-bundle-name

(rule-body)).

(As shown in Figure 4 above, a default rule bundle

associated with a POS class is given the same name as

that class.) When a node N associated with category C

and lexical entry L is being processed, the rule search

routine, given a rule named R - - the'latter comes from

so-called agenda rules which are also associated with C

D uses inheritance to first search for R among any rule

bundles named in L, then searches for R among C's

rules, then C's parent's rules and so on up to the top of

the hierarchy until either some rule named R is found or

the top category is reached and the process fails. In

short, in category-driven processing, the grammar

invoked on N is constructed as appropriate at proc-

essing time on the basis of lexically activated rules and

the rules accessible to N's category using the POSH and

inheritance.

One example is the ordering of adjectives and

nouns. The class Noun is associated with a

general/default lineanzation rule which orders adjec-

tives before nouns, generating phrases like tall woman.

Nouns like someone, anyone, etc. are associated with a

lexically triggered lineafization rule which places the

adjective after the head noun. These two rules are both

named Linearize. Thus, if the focus is someone and it is

modified by tall, the search routine, looking for

Linearize, will first find the special rule, correctly gener-

ating someone tall.

A category-driven system has two advantages

over more conventional rule systems: (i) it provides a

natural mechanism for dealing with special cases trig-

gered by lexical items, while providing a fail-soft mech-

anism in the form of the general rules inherited from the

POSH and (ii) only rules that in principle could be rele-

vant to processing a given node in an RS will be tested

for application. That is, the POSH provides a linguis-

tically motivated means for organizing a large grammar

into subgrammars. 3

5- GENIE: the English generator

Generating from CSs requires a robust generation

grammar of the target language, as well as a decision-

making component that decides which surface form is to

be generated. The generation grammar employed in

GENIE is a (deterministic) relational grammar having a

substantial number of clause-level rules which alter

grammatical relations, e.g., Passive, A-raising and

B-raising, as well as minor rules such as Tense-Spelling

and Linearization (the latter of which does not alter

grammatical relations).
As illustrated in Figure 1 above, CSs typically do

not correspond directly to grammatical sentences.

Further, any given CS typically constitutes the basis for

the generation of a number of superficial forms, e.g.,

(2) and (3) above. This control problem has been

addressed by splitting generation into two phases: a

syntax planning phase and an execution phase. The

function of GENIE's planner is quite different from that

of other generators. Typically, generator planners

decide "what to say", constructing some sort of internal

representation that is then processed by a realization

component. Typical planners will be concerned with

chunking into sentences, topic selection and word

choice (see, e.g., Appelt(1985), Danlos (1984),

Hovy(1985), Kukich (1983), McKeown (1985), McDo-

nald (1984)), and Mann (1983)).

In the case of JETS, however, since we are in the

domain of transfer-based MT, all of these "high level"

considerations are decided by the analysis and transfer

components. In GENIE's case, the planner must, on

the basis of a given CS, deal with a myriad of low-level

syntactic conditions and their interactions (most of

which have not been discussed or even recognized in

the generation literature). Internal to GENIE, this

means deciding which of the rules in the deterministic

execution grammar should be applied. For instance,

CSs with seem have a disjunctive grammatical condi-

tion: they must either be raised, yielding the pattern NP

seem to VP (as in (2) above) , or extraposed, yielding

the pattern It seems that S (as in (3) above). Failure to

apply either A-raising or so-called It-Extraposition

3 Earlier work using a lexical hierarchy and inheritance in natural language processing includes Wilensky (1981), Jacobs
(1985) and Zernik and Dyer (1987). These works make heavy use of phrasal patterns (so-called pattern-concept pairs) and
so the conception of grammar and lexicon and hence the notion of what is inherited in these works differ greatly from ours,
which is part of the generative-linguistic tradition.

178

would result in the ungrammatical pattern *That S

seems (in the case of Figure 1 above: *That they went to

Tokyo seems). The decision to apply A-raising in the

above example is stylistic ("make the topic the main

clause subject, if possible"), but the disjunctive require-

ment ("apply either A-raising or It-Extraposition") is

grammatical. Having no control over "what to say",

GEN IE ' s planner is conceptually part of the realization

phase and not part of the typical "planning phase".

GENIE ' s planner communicates which rules

should be applied to the execution grammar via a set of

so-called rule switches, which are simply binary-valued

properties whose property names are the names of exe-

cution rules, e.g., (A-raise . Yes), (Passive . No). As

shown in Figure 4 above, IF statements are often used

to test for a rule-switch value, which value is either set

by a planning rule or comes from a lexical entry. Rule

switches are a generalization of the earlier concept of

transformational rule features (cf. Lakoff 1970); the

generalization is that rule switches can be dynamically set

by planning rules, based on lexicul, syntactic, semantic and

stylistic considerations (see Johnson 1988a for more

examples and further discussion).'*

For example, in (1) above, based on the informa-

tion that they is the topic (this information comes from

transfer), a syntax planning rule which is partly respon-

sible for making topics surface subjects sets the switch

(A-raise . Yes), turning on A-raising, and the switch

(I t -Ext ra . No), turning off I t - extraposition, resulting in

(2) rather than (3). GENIE ' s architecture is shown in

Figure 5.

Planning rules insure that a multitude of lexico-

syntactic and stylistic conditions are met, e.g., that

clauses with modals do not undergo A-raising, pre-

venting the generation of, e.g., *They seem to can swim;

that clauses with verbs like force have passivized subor-

dinate clauses where required to meet coreferential

deletion conditions (cf. She forced him to be examined

by the doctor, *She forced him (for) the doctor to
examine him); and that verbs like teach undergo dative

alternation if there is no specified direct object, gener-

ating He taught her rather than *He taught to her (cf.

sing, which has the opposite condition - He sang to her

but *He sang her).
It is also the responsibility of the planner to make

sure island constraints are not violated. For instance, if

a wh-nominal is in a sentential subject, then planning

rules turn on execution rules such as A-raising resulting

in sentences like Who is likely to win (via A-Raising)

rather than *Who is to win likely? or the stylistically

marginal ?Who is it likely (that) will win?. This heuristic

planning rule also insures that in the case of so-called

Tough-Movement sentences, G E N I E will generate sen-

tences like Who is easy to please?, (via Tough-Move-

ment) rather than either *Who is to #ease easy? or

?Who is it easy to please?.

Engli sh CS (Transfer Output)

English CS
(dictionary information added)

[Syntax Planner I ~ ~w~t~che
Eng l i sh CS (r u l e se t)

RG Execution Grammar

- Precyc le
- Cycle
- P o s t - c y c l e
- k i n e a r i z a t i o n

Eng l i sh Sentence

Figure 5. GENIE Components. Note that the P O S H
contains the agenda rules and the default planning and

execution rules organized by POS.

4 After completing this work, we discovered that Bates and Ingria (1981) also used a mechanism similar to our "rule
switches" to control generation within a TG framework. Their transformational constraints, however, were set by a human
who wished to test what a given set of constraints would produce. That is, their system had no syntax planner which would
evaluate a given base structure via a set of planning rules and set constraints insuring the generation of only grammatical
sentences.

179

Execution rules are turned on (or off) either by
syntax planning rules or by lexical entries. To illustrate
the use of lexical rule-switches, consider the following
example from JETS involving verbs of prevention:

4. kanojo wa kare ga iku no o habanda
she top he pp go nm pp prevent

5. She prevented him from going.

On the Japanese side, the postposition ga marks the
subject of the embedded clause kate ga iku, which has
been nominalized with the dummy noun no, which
carries the direct object marker o. Following the argu-
ments given in Postal (1974), we assume that prevent is
a so-called B-raising trigger (B-raising is the controver-
sial rule which relates sentences such as He believes that
she knows (not raised) and He believes her to know, in
which her is raised up as direct object of believe). The
CS for (5) is as shown to the fight in Figure 6 and the
CS of the Japanese sentence (4) is shown to the left: 5

Japanese CS for (4) English CS for (5)

habanda

kanojo iku

(topic. w i /

kare

prevent

TRANSFER / 2 ~

she go
(topic. T) 1 /

7
he

Figure 6. Canonical Structures for (4) and (5)

GENIE's rule of B-raising, given in Figure 7, maps the
English CS into a superficial RS, as shown in Figure 8.
As shown in Figure 6, the English and the Japanese
CSs are isomorphic, i.e., there are no structural changes

in transfer.
To produce (5) from the English CS in Figure 6,

as illustrated in Figure 8, merely requires the dictionary

entry depicted in Figure 9.

% % Define the rule B-raising for transitive verbs
(DEF-RULE B-Raising OF Transitive-Verb
% % If the B-raising rule switch is "yes"

(IF (B-raise is 'yes)
% % then make my direct object my complement

THEN (ASSIGN 2 6)
% % and make my complement's subject

% % my direct object
(ASSIGN 6:1 2)

% % and on my complement call the rule
% % that makes infinitives

(ON 6 (CALL Make-lnf'mitive))))

Figure 7. GENIE's B-Raising Rule

prevent prevent

- > Y l

s e/o :L go 1

(prep. from)

he (ccomp. ing)

= Other Rules = > She prevented him from going

Figure 8. Example of B-Raising Application

:lexical-form. prevent
:category. transitive-verb
:rep-lexical-form. nil

:rep-category. nil
:properties. (B-Raise. Yes) (cprep. from)(cvform, ing)

:additional-rule-sets. nil

Figure 9. Lexical entry for "prevent"

This lexical entry states that prevent is a transitive verb,
hence has access to the rules defined for transitive verbs

s Postal's English-internal arguments were based on the fact that the direct object of prevent could be existential there,
weather it and idiom chunks (cf. She prevented there from being a riot/it from raining/the cat from being let out of the bag).

180

in the POSH, e.g., Passive and B-raising (and the rules

of superordinate classes), and that among its properties

are the rule switch setting (B-Raise . Yes), which trig-

gers Subject-to-Object raising, the feature (ccomp .

from), which determines that the complement clause

(fragment) will be flagged with from via a general rule,

and the feature (cvform . ing), which Make-Infinitive

will use when called by B-Raising to determine the verb

form going in the example. Prevent has no

rep(lacement)-lexical-form, which is used, e.g., to map a

single input form such as look-up into a verb look and a

particle up, or more generally to map senses into lexical

strings. "Rep-cat", also nil here, can be used to map

one category system into another (not used in GENIE).

"Additional-rule-sets", also nil, is the repository for the

names of any rule bundles associated with a lexical

entry (e.g., easy, hard, etc. would have the additional-

rule-set name tough-movement, which contains the

Tough Movement rule and the planning rule that turns

Tough Movement on).

As depicted in Figure 5 above, the execution

component consists of three relation-changing phases,

called "pre-cycle", "cycle" and "post-cycle", in which

execution rules are applied bottom-to-top, followed by

a top-down linearization phase, which builds an output

string that is then sent to the morphological component

(not shown). Each phase has its own set of agenda

rules, whose functions are to either call grammatical

rules or shift control, i.e., agenda rules are a sequence of

CALL statements. Agenda rules, like grammatical rules,

are defined for classes, so that, e.g., the cyclic agendas

for adjectives, nouns and verbs are different. For

instance, part of the agenda for the cyclic phase of tran-

sitive verbs is: ... (Call B-raising) (Call Dative) (Call

Passive) but none of these rules are relevant to

adjectives, nouns or intransitive verbs. It should be

noted that rules called by a particular agenda might be

accessed via inheritance. E.g., Reflexivization is called

in the cyclic agenda for transitive verbs, but it is associ-

ated with the class Predicate so that it is available to

adjectives in cases like He is proud of himself (it is
assumed that Reflexivization is executed on the proud
clause before A-Raising applies on be).

The grammar implemented in GENIE to date

includes many of the important rules for English clause

structure, including Yes /No questions, Wh-questions,

relative clauses, subordinate clauses of various types,

verb-particle combinations, raisings of various sorts,

passives, and extrapositions.

6 - Co n c lu d in g Remarks

We have developed an application-and-NL-independent

generator shell, GENSHELL, including a flexible dic-

tionary system and a high-level rule-writing system,

GEAR, to facilitate the development of category-driven

RG generators. G E N S H E L L / G E A R provides a pow-

erful computational framework for the development of

RG-based natural-language-processing components.

We have also implemented GENIE, a robust English

generator, within G E N S H E L L / G E A R . Besides the

novel use of RG and category-driven processing,

GENIE is notable for its two-stage plan-and-execute

design.
JETS and GENIE are currently being tested on

sentences from Asahi newspaper editorials on economic

matters, a challenging task since editorial sentences can

be very long, with essentially unrestricted vocabulary.

Nevertheless, we have found the initial tests of the gen-

erator encouraging, supporting our view that besides its

intrinsic theoretical interest, RG has practical value in

natural language processing.

R e f e r e n c e s

Appelt, D. E. 1985. Planning English Sentences. ACL

Series: Studies in Natural Language Processing.

Cambridge UP, Cambridge.

Bateman, J., R. Kasper, J. Schtttz and E. Steiner. 1989.

"Interfacing an English Text Generator with a

German MT Analysis," submitted to the European

ACL, Manchester, 1989.

Bates, M. and R. Ingria. 1981. "Controlled Transfor-

mational Sentence Generation," Proceedings of the
19th Annual Meeting of the Association for Compu-
tational lJnLqlistics, Stanford, CA.

Bresnan, J. (ed.) 1982. The Mental Representation of
Grammatical Relations. MIT Press, Cambridge,

Mass.
Danlos, L. 1984. "Conceptual and Linguistic Decisions

in Generation," Proceedings of COLING-84, Stan-

ford, pp. 501-504.

Dubinksy, S. and C. Rosen (eds) 1987. "A Bibli-

ography on Relational Grammar Through 1987 with

Selected Titles on Lexieal-Functional Grammar,"

181

distributed by Indiana University Linguistics Club,
Bloomington, Indiana.

Gazdar, G., E. Klein, G. Pullum and I. Sag. 1985. Gen-
eralized Phrase Structure Grammar. Harvard Univer-
sity Press, Cambridge, Mass.

Hovy, E. 1985. "Integrating Text Planning and Pro-
duction in Generation," Proceedings of IJCAI-85,
Los Angeles, CA.

Jacobs, P. S. 1985. A Knowledge-Based Approach to
Language Production. PhD dissertation, UC
Berkeley, Computer Science Division, UCB/CSD
86/254, Berkeley, CA.

Johnson, D.E. 1988a. "On the Linguistic Design of
Post-Analysis in the JETS Japanese-English
Machine Translation System", Proceedings of the
International Conference on Fifth Generation Com-
puter Systems 1988, Tokyo.

Johnson, D. E. 1988b. "A Relational Grammar
Approach to Machine Translation," Proceedings of
the Information Processing Society of Japan, Natural
Language Processing, Vol. 88.61.

Kay, M. 1979. "Functional Grammar," Proceedings 5th

Annual Meeting of the Berkeley Linguistics Society,
Berkeley, CA, pp. 142-158.

KBMT-89. 1989. KBMT-89 Project Report, Center
for Machine Translation, Carnegie Mellon Univer-
sity.

Kukich, K. 1983. Knowledge-Based Report Generation:
A Knowledge Engineering Approach to Natural Lan-
guage Report Generation. Phi) dissertation, Infor-
mation Science Department, University of
Pittsburgh.

Lakoff, G. 1970. Irregularity in Syntax. Holt, Rinehart,
Winston, New York.

Mann, W. 1983. "An Overview of the Penman Text
Generation System," Proceedings of the National
Conference on Artificial Intelligence, pp. 261-265.

Maruyama, H., H. Watanabe, and S. Ogino. 1989. "An
Interactive Japanese Parser for Machine Trans-

lation," Proceedings of COLING90, Helsinki, to
appear.

McDonald, D. 1984. "Description Direct Control: Its
Implication for Natural Language Generation," in
N. J. Cercone (ed.) Computational Linguistics, Per-
gamon Press, Oxford, pp. 403-424.

McKeown, K. 1985. Text Generation. Cambridge Uni-
versity Press, Cambridge.

Nirenburg, S. 1987. "A Distributed Generation System
for Machine Translation," Technical Report, Center
for Machine Translation, Carnegie Mellon Univer-
sity.

Nirenburg, S., R. McCardell, E. Nyberg, P. Werner, S.
Huffman, E. Kenschaft, and I. Nirenburg. 1988.
"Diogenes-88," Technical Report, Center for
Machine Translation, Carnegie Mellon University.

Postal, P. M. 1974. On Raising. MIT Press, Cambridge.
ROsner, D. 1986. "When Mariko Talks to Siegfried -

Experiences from a Japanese/German Machine
Translation Project," Proceedings of COLING-86,
Bonn.

Schindler, Peter A. 1988. "General: An Object-Or-
iented System Shell for Relational Grammar-Based
Natural Language Processing", master's thesis,
Department of Electrical Engineering and Computer
Science, MIT.

Shieber, S. M., H. Uszkoreit, F.C.N. Pereira, J.J.
Robinson and M. Tyson. 1983. "The Formalism
and Implementation of PATR-II," In Research on
Interactive Acquisition and Use of Knowledge, AI
Center, SRI International, Menlo Park, CA.

Wilensky, R. 1981. "A Knowledge-Based Approach to
Natural Language Processing: A Progress Report,"
Proceedings Seventh International Joint Conference

on Artificial Intelligence, Vancouver.
Zernik, U. and M. G. Dyer. 1987. "The Self-Ex-

tending Phrasal Lexicon," Computational Linguistics,
vol. 13, No. 3-4, pp. 308-325.

182

