
Symmetric Slot Grammar (SSG): A Bi-directional Design for MT
P. Newman, IBM Palo Alto Scientific Center

1530 Page Mill Road, Palo Alto, CA 94304, USA

Abstract
Grammar formalisms combining a lexicalist orientation with an immediate-dominance/linear-precedence (ID/LP)
partitioning of information have considerable potential for bi-directional use, fundamentally because the information
is expressed in a modular way and thus can be applied differently in parsing and generation. This paper describes
an in-process design for a bi-directional formalism of this type. The formalism is intended for use in a multi-lingual
machine translation system, and is founded on the ideas of the currently unidirectional "Slot Grammar" of McCord
(1989a).

1. Introduction
In machine translation it is highly desirable to separate transfer from generation, with generation processors source-
language independent, for economic reasons. This allows the use of only one generation grammar per target lan-
guage L instead of one per translation pair x → L. Also, it lowers the cost of modifying transfer interfaces, e.g., to
incorporate more semantic and textual knowledge. Bi-directional grammars ensure source-independent generation,
and provide further economic advantage. Also, as observed by Dymetman and Isabelle (1988), they facilitate
grammar validation.

There have been major strides taken in recent years in bi-directional formalisms, based on many different
paradigms. Among these efforts are: (a) the CRITTER system described by Dymetman and Isabelle (1988), in
which an annotated definite clause grammar is compiled differently, based on the annotations, for the two purposes,
(b) the inversion of a systemic generator by Kasper (1988) (in which phrase structure is said to be added manually
for parsing), (c) the DEW generator of Caraceni and Stock (1988), which combines a Iexicalist framework with
augmented transition network (ATN) rules, and which seems to employ a "generate and test" approach to gener-
ation, and (d) the Berlin GPSG effort of Buseman and Hauenschild (1988) in which GPSG (Gazdar et al. 1985) is
adapted for implementation purposes to allow feasible rule specification and sequencing.

Head-driven grammars provide a very promising basis for bi-directional use. By the term "head-driven grammars"
is intended grammars like HPSG (Sag and Pollard 1987) and Slot Grammar (McCord I989a) which: (a) follow the
imrnediate-dominance/linear-precedence (ID/LP) partitioning of information associated with GPSG, and (b) repre-
sent substantial amounts of ID information in lexical terms. Some important advantages of this combination, as
discussed by Newman (to appear) are that: (a) the lexical focus facilitates mappings to and from abstract represent-
ations of utterance content suitable at transfer interfaces, and (b) the modularity afforded by the ID/LP partitioning
allows rules to be combined in different ways in parsing and generation. So, for example, during the parse ordering
constraints can be checked as they become applicable, while in generation one can first produce all components of a
constituent and then order them. This modularity also offers the potential for subsuming within the grammar the
analysis and use of textual features relating to ordering in a natural way.

In this paper we describe an in-process design for a bi-directional grammar of this type, intended for use within a
machine translation system. The description is given in terms of set of suggested modifications and additions to Slot
Grammar. The latter, which derives from an earlier hybrid effort by McCord (1980). is currently in use for parsing,
but not generation, within another experimental MT system, LMT-2 (McCord I989b). It is used here as a founda-
tion because it has some interesting features which seem naturally extensible to a bi-directional version - most
notably the use of named slots to represent dependents of various types. The slots are used as a basis for expressing
many other facts about the so-labelled dependents in a convenient, modular way.

We first outline the major structures of Slot Grammar and how they are currently used. We then sketch the
intended machine translation context for the adaptation, to provide a general motivation for the proposed modifica-
tions. The body of the paper is devoted to the proposal of a set of modifications and extensions to the current Slot
Grammar structures to support bi-directional use. It should be emphasized that these proposals should be inter-
preted as directional; they have not been tested sufficiently to represent a final form and a number of important
areas require further work.

145

2. Overview of Slot Grammar
Table 1 on page 3 illustrates some of the major structures as given by McCord (1989a).

Table 1. Some Major Constructs of Slot Grammar.

1. lexicon entries
give < v(obj.iobj)

< v(obj.advpart(up))

2. adjunct rules
adjuncts(noun, det.quant...)

3. slot filler rules
iobj = = > f(noun(*,dat.,*,*))
iobj = = > f(prep(to,*,*))

4. head/slot ordering rules
lslot(SLOT) <- CONDITION
rslot(SLOT) < - CONDITION

5. slot/slot ordering rules
iobj < < obj < - lf(noun(*,*,*)
obj < < iobj < - rf(prep(*,*,*)

The lexicon entry (1) for a word consists of subentries each representing a different syntactic configuration in terms
of part-of-speech + major differences in expected complements. Expected complements are specified in terms of
slots, which may be parameterized. For example, a slot "advpart" (adverbial particle) may take the specific particle
as a parameter.

Complements are listed in a canonical order subsequently reflected in a semantic predicate which forms part of the
parser output. Lexical transformations are used to change the complement slots for passivization and
nominalization. Subjects are omitted as verb complements, as they are assumed, and provisions are made for iden-
tifying complements as obligatory or optional. A lexicon subentry may also specify additional associated words and
word-types expected in fixed positions relative to the head, for use in specifying lexicalized compounds and non-
compositional forms, e.g., "at least N."

Adjunct rules (2) specify, for each syntactic category, the types of adjuncts which can modify heads in that category.
Adjunct types are also given in terms of slots.

Slot filler rules (3) indicate, for each slot, constraints on constituents which can fill that kind of slot. The con-
straints are specified in terms of structures with which dependent must unify ("f(...)"). Slot filler rules are used for
the specification of many types of "immediate dominance" rules in addition to dependent frame constraints. For
such purposes, e.g., to specify agreement requirements, additional condition terms may be included in the rules,
including unifiers for the head ("hf(....)"), or arbitrary conditions (which, in the current version of slot grammar,
refer to separate Prolog goals).

Head/slot ordering rules (4) indicate on which side or sides of a head a particular slot filler can appear. The
applicability of these rules may also be constrained based on unification with heads, the candidate slot filler, or other
arbitrary constraints.

Slot/slot ordering rules (5) indicate required precedence relationships among slot fillers, which also may be condi-
tional.

We will restrict our discussion of Slot Grammar to these types of rules. There are other rule types, most of which
are also given in terms of slots, used in specifying such aspects of the grammar as long distance dependency and
coordination.

A bottom up chart parser is used as the basic parsing mechanism. Each newly-formed adjacent pair is examined to
determine whether one member of the pair represents an expected complement or adjunct of the other. If that is the
case, the ordering constraints are examined to determine if any would be violated by the identification. If these tests
are passed, a larger node is formed by adding the complement or adjunct to the developing constituent associated
with the head.

Output from the parser consists of a relatively flat parse tree. Each node of the tree provides both (a) a "semantic"
representation listing only the complements of the head, in canonical order (i.e., the same order independent of slot
assignments), and (b) a list of all dependent constituents in source order, specifying the assigned slots. The semantic

146

representation isolates substantive parts of complements from obligatory ones, such as obligatory prepositions, to
some extent.

This parser is currently operational within an experimental machine translation system LMT-2 (McCord 1989b). In
this system, parsing is followed by a lexical transfer phase and then by generation. Lexical transfer is guided by the
association of one or more target lexical specifications with each source lexicon subentry. The target specifications
contain complement slot lists matching those of the source in length and order; differences in complement expression
are indicated by the use of different slotnames and by features. The transfer process substitutes the target lexical
items and slots for the source, identifying where structural differences exist. The generator, which is dependent on
both the source and target languages, then produces a target tree by tree transformations keyed to target slotnames.

3. Context Of Bi-Directional Adaptation
To motivate the specifics of the bi-directional adaptation, we discuss the intended machine translation system
context, MT/LASC, which is different from the current Slot Grammar usage context.

MT/LASC is a semi-interlingual, yet transfer-based, design. The unilingual lexicons contain entries for words
decomposed to subentries based on category + expected complements, as described in the previous section. The
subentries are linked to a shared "common lexicon" of concepts and associated frames. (A unilingual subentry may
be linked to multiple concepts, and vice versa.)

Utterances are represented at the transfer interfaces (i.e., analysis output and generation input) by relatively abstract
hierarchic feature structures. A constituent is represented as a collection of features associated with the head and
constituent as a whole, plus a list of "dependent connectors" identifying the dependents. Each dependent connector
is a feature structure; one feature is "value = the actual dependent," and other features describe the particular
head/dependent relationship. For complements, this relational information includes its "complement index" in the
canonical order for complements of the head.

In this structure many source-language specific elements have been removed or transformed. Thus pro-forma com-
plements (e.g., adverbial particles), and pro-forma elements of complements (e.g., the obligatory "for" in "wait for
Bill") are removed, and certain closed class items, such as determiners and auxiliaries, are represented only by the
appropriate constituent features. Remaining lexical items are represented as "word-senses," matching concepts in
the semi-interlingual lexicon.

Also, variations in complement structure beyond variations in obligatory lexical items are removed, so that, for
example, clefting (e.g., "It was John who...") is eliminated. Finally, textual devices used in the source are captured
by features indicating, to the extent possible, theme and focus elements, and special marking devices, such as
topicalizalion, passivization, and clefting.

During parsing, a similar structure is used, but one which retains surface features. Lexical items are represented at
this stage by indices to subentries of the unilingual lexicon. The disambiguation of unilingual subentries to common-
lexicon concepts is achieved subsequent to parsing by selecting links to the concept lexicon using an algorithm
described by Newman (1988).

Transfer is responsible for further decomposition of concepts, if necessary, and substantive paraphrase, with both
processes controlled by information in the concept entries. Some collocational decisions are made using conditions
on links between the semi-interlingual lexicon and the target lexicon using specifications related to lexical constructs,
described by Mel'cuk and Polguere (1987).

Generation is essentially source-language independent. The organization of a target constituent depends on a com-
bination of its relationship to its head, semantic content, and textual features. Producing target constituents involves
such processes as as (a) making decisions as to the use of marked textual forms, (b) adding, in target language
terms, obligatory lexical items, and (c) ordering dependents based on syntactic constraints and textual preferences.

147

4. Overview of Adaptation
To allow use of a Slot-Grammar-like formalism for both analysis and generation in above semi-interlingual context.
several kinds of modifications are proposed. Some modifications support mapping from source-oriented to rela-
tively neutral utterance representations. There are some mapping provisions in Slot Grammar; for example, those
which extract substantive content from some parameterized slots, and those which obtain implied subjects of
infinitive complements; these provisions are extended and integrated.

Other modifications are needed to allow generation decisions in the presence of alternatives, a function not needed
in a grammar used only for parsing. Decisions are needed among the following:

• Alternative basic constituent forms involving different allocation of material among contained constituents (e.g.,
as in "I believe he is...," "I believe him to be....")
Alternative expressions of individual logical complements (e.g. between the use of an indirect object or a pre-
positional phrase headed by "to."

* Alternative orderings of complements where many permutations are possible.

The proposed extensions to Slot Grammar relating to the "immediate dominance" area, that is, to mappings and to
selections among alternatives not directly involving ordering, are addressed in the next section. That discussion is
followed by an outline of how the extensions are used in the generation procedure. Next, the extensions relating to
ordering decisions are presented. The final section, on further work required, discusses aspects of the above listed
requirements not fully covered by the proposals.1

5. Immediate Dominance Modifications
This section details proposed modifications to lexicon entries and slot filler rules for purposes of (a) assisting in the
selection of specific complement combinations, (b) identifying slots appearing only in surface representations, i.e..
which should not appear at the transfer interface, and (c) explicitly mapping between surface and transfer-interface
representations of complements.

5.1 Complement Combination Selection

Figure 1 illustrates lexical provisions made for complement combination selection, using as an example the subentry
for "ask someone for something," which allows such alternative forms as "He asked Mary for a book," and "He
asked a book of Mary."

lex.ask.2 /* ask SOMEONE for SOMETHING */
(cat:v,
comps: ((obj).(reqp,of).(reqp,from)). /* SOMEONE */

((obj).(reqp.for)) /* SOMETHING */
prefs: (pref: (obj).(reqp,for)) cond : ...)...

Figure 1. Complement Combination Selection

Note first that the notation for lexical entries (and for other rules) is modified from the original formalism. A rule is
identified by a compound name indicating the type of rule ("lex"), and instance ("ask.2," the second subentry for
ask). The content of the rule is given as an explicit feature structure. This is intended both for clarity (at least
during development), and to allow the use of abbreviations (not shown) for information shared among entries.

In the modified entry, slots are given by the attribute "romps," which is a list of lists. Each sublist gives the alterna-
tive slots for a particular logical complement. Some slots are parameterized, and the associated filler rules (see
below) expect a parameter. Thus the slots which can be used for the first (canonical) complement (SOMEONE) in

1 It should also be mentioned that modifications to the unilingual lexicons have been designed to allow fully reversible
morphological processing. Those modifications, applicable in their current form to at least English and Romance
languages, will not be discussed here.

148

the example are (obj).(reqp.of).(reqp.from). The last two slots are both "reqp" (required preposition) slots, respec-
tively with parameters "of and "from."

The modified entry also contains a "prefs:" specification, which lists preferred complement combinations. Each list
element gives one combination, together with an optional condition for the selection of that combination. The con-
ditions, which are not shown here, are expressed as unifiers for the head, and involve variations such as "register"
and presence or absence of specific optional complements. In the above example, the single preferred combination
is specified as "ask x for y." We note that the selection of a combination may also be based on more general
textual features. This latter subject is discussed briefly in conjunction with "directions for further work."

a. lex.give.2 /* give up = surrender */
(cat:v, comps: ((obj)).((advpart,up)))

b. lex.wait.2 /* wait for */
(cat:v, comps: ((reqp.for)))

c. lex.take.3 /* take (good) care of */'
cat:v, comps: (((pfnom,care)).((reqp,of)))

Figure 2. Unilingual Lexicon Subentries

Figure 2 shows some additional example lexicon entries, for "give up," "wait for," and "take care of," respec-
tively, which will be related to filler/map rules below. For "take care of," the first complement slot is "pfnom"
(pro-forma nominal), a complement noun appearing only in the surface structure, taking an optional adjective modi-
fier.

5.2 Surface Slot Specification

The specification of entire slots appearing only in surface forms is done by "surfaceslots" rules, as illustrated in
Figure 3.

surfaceslots.adjuncts (slots: det.aux....)
surfaceslots.comps (slots: advpart...)

Figure 3. Unilingual Slot Specifications

The rules state that fillers for the adjunct slots "det" and "aux," and for the complement slot "advpart" do not
appear at the transfer interface. The use of these rules is discussed below in conjunction with explicit mappings, and
with generation control.

5.3 Filler/Map Rules

Explicit mappings between surface and transfer interface forms are included in the grammar by recasting slot filler
rules to serve both as conditions on surface slot fillers and as expressions of the necessary transformations. The
filler/map rules are influenced by generalized unification structures but depart from them in significant ways.

Generalized unification is a popular method for mapping between "syntactic" and "semantic" representations, as
described, for example, by Shieber (1986). Thus one might obtain a mapping for prepositional phrases containing
required prepositions as shown in Figure 4.

filler.reqp (
syn: (cat: p lex: $parm pobj: < 1 >)
sem: < 1 >)

Figure 4. Mapping by Unification Only

149

In parsing the "syn" substructure would be unified with that representing the source prepositional phrase to obtain
the "sem" substructure, etc. But restricting possible operations to unification, both in testing fillers and in mapping,
can present some difficulties. For example, it is difficult to indicate that a given attribute must be present. Also, list
handling tends to be difficult. For these reasons the notation adopted is a more flexible, procedural one.

The filler/map rules consist of lists of binary expressions

opndl operators opnd2

for example,

#syn.cat = p

where operands may be variables (#xxx) representing structures or atoms, attribute references (#xxx.yyy....), func-
tions ($xxx, see below), or literals. The structure references of left-hand operands may be factored, so that

#xxx:(att1 - val1, att2 = val2)

is equivalent to

(#xxx.att1 = val1).(#xxx.att2 = val2)

Some variable names are reserved; others may be introduced as needed. Each expression may have one or two
operators. If there is one operator, it applies both in parsing and generation. If there are two, the first applies in
parsing and the second in generation.

The operators include " = " (unify), "!" (test for equivalence), and " <-" (assign). "<" indicates "contains," or,
more precisely, "find a member of the list denoted by the first operand which either unifies with the one on the right
(if the latter is an atom or variable), or for which the indicated operations succeed (if not)." " + " specifies that the
second operand (if it is an atom or variable) be added to the list.

Examples of filler/map rules are shown in Figure 5.

a./* Adverbial Particle */
filler.advpart (#syn: (cat = particle lex = $parm)).

b./* Required Preposition */
filler.reqp (#syn: (cat=p, lex = $parm)). .

(#syn: (dtrlist > + (compix = 1, value = #sem)))

c. /* A Class of Idiomatic Object */
filler.pfnom (#syn: (cat = n, lex = $parm, dtrlist > + (type = adjunct,

value = #sem)).
(#sem: (cat = adjective)).

filler.pfnom (#syn: (cat = n, lex = $parm, dtrlist !<- $empty). .
(#sem < -! $empty).

Figure 5. Filler/Map Rules

The filler/map rules are used in three different ways. During the initial parse they are used to check the candidate
slot filler. To do this, the variable #syn is set to the value of the candidate slot and #head to the current head.
Then the expressions are evaluated in sequence up to an empty expression denoted by two successive "." (i.e.. . .).
During the evaluation of a filler rule, the function $parm gives the value of the slot parameter, if any. Thus part (a)
of Figure 5 specifies that the filler for an "advpart" slot must be a particle whose lexical head (lex =) is equal to the
value of $parm.2

2 In general, functions represent either derived attributes, in which case their implicit argument is the structure imme-

150

After the parse, all expressions in the listed sequence are evaluated, including those beyond the empty expression (.
.), with the aim of finding a value for #sem, the transfer interface representation for the slot. If no value is found for
#sem, and the slot has been identified as surface only, or #sem is explicitly set equal to $empty, the slot is removed
from the transfer input representation3. When the surface and transfer-interface representations of a slot are equiv-
alent, the filler/map expression should be "(#sem = #syn)."

In generation the expressions are evaluated in the reverse order, with the goal of finding a value for #syn, the
surface representation. The use of the filler rules in generation differs depending on whether the slot is a comple-
ment or adjunct, and whether it is surface-only. For complements present in the transfer output, #sem is set equal
to the interface representation, and then filler/map rules for the different potential slots associated with the comple-
ment (i.e., with the complement index) are evaluated. For surface-only complement slots indicated by the
(unilingual) lexical entry for the head, the filler/map rules are also evaluated, to find a value for #syn if appropriate
(but #sem is naturally not set). For adjuncts present in the transfer output, #sern is set to their interface represen-
tation, and filler/map rules for adjunct slots associated with the head category are evaluated to find an appropriate
slot and surface representation (#syn). Finally, for all surface-only adjunct slots (e.g., aux) associated with the head
category, the associated filler/map rules are also evaluated, in this case to determine (usually via head features) if the
slots are needed as well as to find their surface representation.

To discuss the examples a bit further, the filler/map rule in part (b) of Figure 5 deletes or adds an obligatory prepo-
sition: after parsing, evaluating the expressions in sequence produces a value for #sem equal to the object of the
preposition. In the inverse direction the obligatory preposition is added. Part (c) contains two alternatives,
depending on whether the complement contains an optional adjective ("take GOOD care of"). If it does, the adjec-
tive becomes the value of the transfer input representation of the complement. Otherwise, that value is null 4.
Similar, but more complex, mappings are used to add logical subjects to the semantic representations of infinitive
complements, with different slots used for different kinds of control (e.g., subject control).

Summarizing to this point, the extensions proposed in the area of "immediate dominance" concern selection among
surface forms, and mappings between surface and transfer representations. The latter include simple
addition/deletion of complements and adjuncts, as well as more complex transformations. Not discussed are a few
additional modifications made to Slot Grammar specifications of Iexicalized compounds and non-compositional
structures.

6. Generation Control

The discussion in this section is somewhat tentative. It should be considered more as an indication of how the rules
interrelate for generation purposes than as an algorithm, for which further development is required.

The overall sequence of generation is top-down, and must have considerable backtracking capability. At the begin-
ning of the expansion of each constituent the following situation exists:

The head of the constituent is known, and some additional features of the head have been instantiated by prior
processing.

• One of those features is the specification of dependent slot combination alternatives. This may be just a copy
of the "comps:" list from the lexical entry, but it may also be a result of applying lexical transformations, e.g.,
to modify the slot alternatives for passives.

diately containing the reference, or general functions, which may have either explicit or implicit arguments. $parm is
a function whose implicit argument is the most current filler/map rule parameter.

3 Note that to allow complements to be properly numbered at transfer interfaces, unilingual complements (such as
advpart) should be given the highest complement indices in the ordering.

4 It is currently customary for transformations from surface to internal forms to be accomplished by specifying sepa-
rate "syntactic" and "semantic" subframes, and relating them by structure sharing. We depart from this somewhat
in that syntactic and transfer-interface representations can be related by transformation rather than by separate
frames, to avoid the necessity for inordinate care in segregating "syntactic" and "semantic" features.

151

The constituent has an associated list of dependents in transfer-output form. Each is labelled as complement or
adjunct and, if it is a complement, the attribute "compix" gives the complement index.

In general, expanding a constituent consists of (a) selecting a combination of slots for its dependents, (b) validating
that combination by finding appropriate filler/map rules, which serve to set head features for the dependents, and (c)
ordering the dependents. If a combination fails another must be tried until a successful one is found. After depen-
dents are ordered, the process continues by expanding those dependents, etc.

The process is initiated using a dummy constituent "top," whose single dependent is the internal representation of
the entire sentence. That dependent has a single slotname alternative, "sentence." Expansion of the dummy constit-
uent thus consists of (a) selecting the slot "sentence," and (b) finding and applying an appropriate filler rule for the
slot "sentence." An abbreviated set of such rules is sketched in Figure 6.

filler.sentence
(#syn:

(voice = active,
dtrlist > + (compix = #ix, theme!true)
$possubj > #ix)).

(#syn: (slots = $activeslots)).
(#sem = #syn).

filler.sentence
(#syn: (voice = passive

Figure 6. Filler Rules for Sentence Slot

To evaluate the first rule, #sem is given the value of the internal representation, and then #syn is given the same
value. Then a slot alternative list is established by "slots = $activeslots," where $activeslots is assumed to be a
function returning the unmodified content of the "comps" attribute in the lexical entry associated with the head.
Following this,5 the voice is set to active, and a check is made to see that, given the "activeslots" alternatives, there is
a complement in the input which (a) can be a subject and (b) has been identified as a theme.6 If these tests fail, a
passive form is tried, etc.

After a filler rule for a slot is used in generation, if the head feature "slots" of the slot filler has not been set by that
rule, the "comps:" value from the lexical entry is used by default.

To specify the expansion of a constituent in somewhat more detail, the individual steps used are roughly as follows:

1. Select a complement slot combination covering both standard and surface-only complements from the sets of
alternatives (slots:), using preference information (pref: from the lexical entry), and global constraints (e.g., there
can be only one object).

2. Validate the selection, at least at the first level, by finding an applicable filler/map rule for each slot in the
combination. If the selection is invalid, find another.

3. Find a slot for each adjunct in the input.

4. Add additional adjunct slots (e.g. aux) using "surfaceslots" lists for the head category, and filler/map rules to
determine the need for those slots.

.5. When a successful combination (to this point) is found, order the result using the fixed ordering rules in combi-
nation with the preferential ones described in the next section.

5 While the "sentence" filler rule is not used in parsing, other filler rules referencing $xxx built-in functions are.
Because of this the functions must generally operate differently in the two directions.

6 Because the check on possible subjects must follow the establishment of a trial slot alternative list, there are two pairs
for #syn.

152

7. Ordering Extensions

7.1 Use of Zones

Constituent ordering rules in Slot Grammar relate only to grammaticality. Additional rules are needed to determine
the generation order of constituents susceptible to many syntactically acceptable placements. Such rules must be
given in terms of relative acceptability, based on factors such as conventional positioning for certain kinds of depen-
dents, the need to limit ambiguity, and the means provided by the language for expressing topic and focus. The
rules, if symmetric, should also be usable in parsing to assist in disambiguation and to determine, to the extent
possible, textual features implied by the ordering. The latter is a rather difficult problem for written text, but impor-
tant criteria are given by Hajicova (1989) and Sgall et al. (1986) for Czech and English, and by Wesche and Renz
(]987) for German.

The added preferential ordering rules are expressed in terms of (a) preferred placements of constituents within zones
of their containing constituents, and (b) relative orderings within those zones. Some zones are already used in Slot
Grammar, namely "left-of-head" and 'right-of-head". But finer decompositions are useful both conceptually and in
writing rules. Quirk et al. (1972) identify zones for English clauses, such as initial (pre-subject), medial-1 and
medial-2 (two different zones if auxiliaries are present, collapsing to one if not), and end (post-verb).7 Then preferred
placements of English adverbials are described in terms of these zones. Thus viewpoint adjuncts, such as "visually"
and "technically," prefer initial placement:

2 (a) Visually, it was very impressive.
2(b) It visually was very impressive.

It is not only convenient to think of constituent placement in terms of zones, but also to express placement rules in
those terms. Consider the alternative. To express the preference of "viewpoint" adverbs using only "slot/slot" rules
might require something like the following:

adjunct < subj left(class = viewpt) head(mood = indic) pref(1)

This is problematical in that there is no indication of which constituent the preference is stated about (i.e., the
adjunct or subject) and thus what the alternatives (presumably with other preference numbers) to that preference
are. Also, placing a constituent in non-initial and non-final zones requires two pairwise ordering rules (the first
specifying that the constituent succeeds the left boundary of the zone, and the second that it precedes the right
boundary), which must somehow be bound together as expressing a single preference.

Using explicit zones also allows the imposition of constraints on zones per se. That is, they provide a convenient
way of coping with zone co-occurrence restrictions. For example, the medial zone might be constrained to a single
non-negative adverbial, allowing 3(a) to be chosen over 3(b).8

3(a) Generally, John easily passes exams.
3(b) John, generally, easily passes exams.

Before detailing proposed zone-related extensions, one other addition is introduced to simplify these and other rules,
namely, the use of a slot lattice, i.e., where some slots can be declared superordinates. This allows more generalized
placement rules. For example, one might like to say (in the absence of considerations with higher priority), that in
the "end" (postverb) zone of a clause, complements are positioned before adjuncts, independent of the specific com-
plement slot type.

7 Jacobson (1964) identifies a more elaborate set of zones for English clauses.

8 Note that these examples assume very flat syntactic structures, as in Kartunnen (I986). In the statement of zone
allocation and other ordering rules this allows dependents assigned to different pre-main-verb zones to be considered
logical siblings. Thus auxiliaries are treated as adjuncts and, unlike most current approaches, fronting is not viewed
as an example of long-distance dependency (except for fronting of components of complements or adjuncts).

153

7.2 Zone Definition and Allocation to Zones

Figure 7 illustrates proposed rules for defining zones and allocating items to those zones.

(1) Zone definition rules

zone.initial (head:($clausetype > mainclause),
lbd:($slot > begin), rhd:($slot > subj))

zone.medial (head:($clausetype > mainclause),
lbd:($slot > subj). rbd:($curhead = true),
limits:(cond: ($slot - > (or.aux.neg)) limit = 1)...

(2) Zone Placement Rules
zput.adjunct (cond:($domain > viewpoint),

prefs:(initial,4). (medial,3). (final,1))

Figure 7. Zone Definition and Placement Rules

A zone definition rule (1) names a zone, describes the conditions under which it exists, and identifies its boundaries.
It also describes constraints on the contents of the zone. Referring to the example, "head:" indicates existence
conditions in terms of constraints on the head. "$Slot" is a function identifying the slotnames associated with a
constituent. "Lbd:" and "rbd:" identify the left and right boundaries of a zone in terms of constraints on the
boundary constituents. "Begin" and "end" are built-in slotnames representing the beginning and end of a constit-
uent, respectively. "Limits:" is a list indicating conditions on sets of contained constituents; that shown limits non-
auxiliary and non-negative complements within the medial zone to a maximum of 1.

Zone implication specifications, which relate nested ones to their containing ones, are not shown. They are used to
specify combined content limits, and to infer preferences for larger zones where smaller ones do not apply.

Zone placement rules (2) specify one or more possible zone placements for the named slot fillers, in order of relative
preference. The preferences can be weighted, with the weights used (at least) to indicate relative preferences beyond
simple ordering, e.g., that a particular placement is acceptable but unfortunate.

These rules can be used in generation as follows. First, absolute ordering rules (equivalent to those in Slot
Grammar) are employed to place some constituents right or left of head, and to order them. This will not, in
general, produce a total ordering, but there must be sufficient absolute rules to totally order any zone boundary slots
present. Then the most deeply nested zones present are found. Placement roughly proceeds by performing initial
allocations based on first preferences until a constraint of a zone or containing zone (limits are stated on both) is
violated. At this point the search "backtracks" (logically), while attempting to place a constituent in a less preferred
zone.

Zone placement rules are also to be used in parsing, for two purposes: (a) disambiguation, and (b) discovering
textual features. Zone rules can assist in disambiguation by helping to choose between alternative parses. I or
example, the most probable meaning of "happily" in 4(a) might be selected by noting that "attitudinal" adverbs
prefer an initial position, while manner adverbs do not except in certain kinds of texts.

4(a) Happily John did the homework.
4(b) John happily did the homework.

The process of discovering textual features, using both zone placement rules and relative ordering rules (discussed in
the next section), should be a process of identifying which rules were applied to obtain the input ordering. For
example, given the sentence:

5 That house Mary never saw.

and the rule

154

zput.comp (cond:(cat = n . $slot - > subj. textfeat + > markedtheme)
prefs:(initial))

Figure 8. A Placement Rule for Fronted NP Complements

one might determine that "that house" was a marked theme. In general, however, the process of finding a set of
consistent conditions which together could have determined an ordering is a very difficult one. This area requires
considerable additional work, and will probably require some modification of rule structure.

7.2 Ordering Within Zones

In generation, the allocation of movable constituents to zones is followed by ordering those constituents within the
zones. In this section we describe a possible approach to the latter process. While it should be adequate for many
purposes, it has some limitations which are discussed further on.

porder.end. vdep.comp (weight :4,
right:($large = true) /* e.g., heavy np shift */

porder.end.vdep.vdep (weight:3, right:($domain > loc),
left.:(domain ¬ > loc)) /* final locatives */

porder.end.vdep.vdep (weight:2.5, left:(textfeat ¬ > focus),
right:(tcxtfeat > focus))

porder.end.comp.adjunct (weight:2)
porder.end.vdep.vdep (weight: 1.5, rules:roleprec) /* semantic role based
ordering */

Figure 9. Preferential Ordering Rules

Some simplified preferential ordering rules for "end" zones (right of verb) are illustrated in Figure 9. In the first
rule, the rule tag, i.e., "porder.end.vdep.comp" specifies the rule type, the zone ("end"), and left and right slots
("vdep" - the superordinate slot "verb dependent," "comp" - complement). The body of the rule places applica-
bility conditions on the left and right slot fillers, and gives a weight, which should specify the relative importance of
the rule. In the last rule of the example, a separately coded rule "roleprec" (role precedence) is referenced. This
would be supplied with default arguments (the head and the two dependents being compared), and in this case
check whether the dependents are in a sequence consistent with the "systemic" ordering of dependent roles for the
language, as discussed by Hajicova (1989).

These rules can be applied in order of decreasing weight, to avoid (significant) conflicting orderings. Before each
rule is applied, the already established pairwise orderings within the zone are analysed to determine whether they
imply a narrowing of areas of indecision to some nested subzones. This would be true if one or more constituents
have been found which are totally ordered relative to each other and to the zone boundaries, thus establishing some
subzone boundaries, and extant pairwise orderings place all other constituents within one of those subzones. This
information is obtained via graph analysis algorithms similar to those widely used for program flow analysis in
compilers (Hecht and Ullman 1975).

After this analysis, the next most important preferential rule is then applied, but only to pairs which: (a) lie in the
same subzone, and (b) have not yet been ordered relative to each other. The new relationships established are again
analyzed to find smaller subzones. This analysis can result in some contradictory orderings, but these can be diag-
nosed and the conflict removed. When no further rules apply, remaining partial orders are converted to absolute
ones, arbitrarily.

While this method should obtain acceptable orderings, it is not really satisfactory. For one thing, the rules are
stated independently and some placement decisions may impinge on others. More generally, the sequentiality is
suspect. A preferable approach would take into account multiple weighted considerations, and find an ordering
which best satisfies all of them. Further work is needed in this area.

The same could be said for the use of these preferential ordering rules in parsing. As discussed in connection with
zone placement rules, the basic approach to be taken is to find a consistent subset of the rules which together
"explain" the placements, and, in so doing, determine some important topic/focus aspects of the sentence.

155

Before completing the discussion of relative ordering, it should be mentioned that a need has been found for strict
adjacency as well as precedence rules, at least for handling focus adjuncts ("only," "just").

8. Directions for Further Work
In the preceding sections we have identified a number of directions for further work relating to ordering, in con-
nection with obtaining "optimal" orderings by generation, and with using preferential ordering rules during analysis
for disambiguation and textual feature identification. In addition, many aspects of Slot Grammar beyond the basic
ones discussed here must be analyzed for bi-directional use, such as provisions for coordination. Also, issues such
as pronominalization, tense/aspect mapping, and quantifier scoping, which do not have an explicit counterpart in
Slot Grammar (although there has been Slot Grammar related work in these areas) should be examined in the SSG
context.

One other major aspect not yet discussed should be addressed: the selection of alternative basic clause structures
based on textual considerations, including, for example, decisions with respect to clefting, and subject raising ("John
seems"). These require additions to the mechanisms so far discussed, as they imply changes to the distribution of
material among complements.

This subject has been treated extensively by Johnson (1988a, 1988b), and it should be possible to adapt the mech-
anisms described to the current framework. A partial approach is to link lexicon subentries for such alternatives
(e.g., for "seems"), with one subentry identified as canonical (i.e., to be used at the transfer interface), and with the
other subentries containing mappings to/from the canonical form.

But the full decision-making process is a combinatorial one, in that these basic decisions can interact with decisions
about the expression of individual complements, and about ordering, to produce many different textual effects. An
important design question relates to the amount of anticipation to be attempted, i.e., whether the rules governing
these first-stage decisions should try to anticipate related considerations, or whether several possibilities should be
explored, together with some method of ranking the results. A somewhat tantalizing possibility is to exploit the
bi-directionality of the grammar by parsing alternative generation results and measuring the closeness of the textual
features obtained to those of the input.

9. Concluding Remarks
We have outlined parts of an adaptation of Slot Grammar for bi-directional use. The major adjustments relate to
mappings between surface and transfer input/output forms, and to provisions for ordering based on preference rules.
The adaptation is incomplete and insufficiently tested. Nevertheless, it may serve to illustrate the potential of Slot
Grammar, and of head-driven grammars in general, for bi-directionality and to suggest possibilities for further work
in this area.

10. References

1. Bresnan, J., "The Passive in Lexical Theory," in J. Bresnan, ed., The Mental Representation of Grammatical
Relations, MIT Press (1982)

2. Buseman S., C. Hauenschild, "A Constructive View of GPSG or How to Make It Work," Proc COLlNG 88,
77-82

3. Caraceni, R., O. Stock, "Reversing a Lexically Based Parser for Generation," Applied Artificial Intelligence,
vol. 2, # 2 (1988) 149-74

4. Dymetman M., P. Isabelle, "Reversible Logic Grammars for Machine Translation," Proc 2nd Int'l Conf on
Theoretical and Methodological Issues in the Machine Translation of Natural Languages (1988)

5. Gazdar, G., E. Klein, G. Pullum, I. Sag., Generalized Phrase Structure Grammar, Basil Blackwell (1985)
6. Hajicova E. "A Dependency-Based Parser for Topic and Focus," Proc. Intn'I Workshop on Parsing Technolo-

gies (1989) 448-457
7. Hecht, M.S., and J.D. Ullman, "A Simple Algorithm for Global Data Flow Analysis Programs," SIAM J.

Computing, Vol 4 No 4, (1975)
8. Jacobsen, S., Adverbial Positions in English, AB Studentbok, Stockholm, 1964
9. Johnson, D. "The Design of Post-Analysis in the JETS Japanese/English Machine Translation System,"

Proc. Intn'l Conf on Fifth Generation Computer Systems vol. 3 (1988a) 1150-1158

156

10. Johnson, D. "Genie: a Transportable English Generator for Machine Translation." IBM Tokyo Research
Laboratory Report TR87-1023 (1988b)

11. Kasper, R. T. "An Experimental Parser for Systemic Grammars," Proc COLING 88, 309-312
12. Kartunnen L., "Radical Lexicalism," CSLI Report CSLI-86-68 (1986) Proc COLING 88, 359-364
13. McCord, M.C., "Slot Grammars," Computational Linguistics, vol 6, 31-43 (1980)
14. McCord, M.C. "A New Version of Slot Grammar," IBM Research Report RC 14506 (1989a)
15. McCord, M.C. "A New Version of the Machine Translation System LMT," IBM Research Report RC 14710

(1989b), to appear in Proc. Internationa/ Scientific Symposium on Natural Language and Logic, Springer
Lecture Notes in Computer Science

16. Mel'cuk, I., A. Polguere. "A Formal Lexicon in Meaning-Text Theory (or How to Do Lexica with Words),"
Computational Linguistics, Vol 13, Nos 3-4, July-Dec 1987

17. Newman, P. "Combinatorial Disambiguation," Proc. ACL Conf. on Applied NLP (1988)
18. Newman, P. "Towards Convenient Bi-Directional Grammar Formalisms," To appear in Proc. COLING 90
19. Pollard, C. and I. Sag, Information-Rased Syntax and Semantics, Center for the Study of Language and Infor-

mation, Stanford, 1987
20. Quirk, R., S. Greenbaum, G. Leech, J. Svartnik, A Grammar of Contemporary English Longman (1972)
21. Sgall, P, E. Hajicova, J. Panevova, The. Meaning of the Sentence in its Semantic and Pragmatic Aspects, Reidel

(1986)
22. Shieber, S. An Introduction to Unification Rased Approaches to Grammar CSLI (1986)
23. Wesche, B., I. Renz, "Word Order and Focus Projection," LILOG Report 13 (1987)

157

