
A relational approach to translation

Rémi Zajac

Project POLYGLOSS*

University of Stuttgart
IMS-CL /IfI-AIS, KeplerstraBe 17
7000 Stuttgart 1, West-Germany

zajac@is.informatik.uni-stuttgart.dbp.de

Abstract. In this paper, we show how the notion of "co-description" in
LFG used for specifying a translation correspondence in a declarative way
[Kaplan et al. 89] can be reformulated in a relational framework gaining
modularity and reversibility of grammars. We illustrate this approach with a
transfer example taken from [Kaplan et al. 89] using a logic formalism which
has feature terms as basic data structures. This formalism is based on term
rewriting and it integrates a powerful typing mechanism. In this formalism,
the integration of a reversible grammar for a "source" language, a reversible
contrastive grammar and a reversible grammar for a "target" language
produces a reversible machine translation system.

* Research reported in this paper is partly supported by the German Ministry of Research and Technology

(BMFT, Bundesminister für Forschung und Technologie) under grant n° 08 B31163. The views and conclusions

contained herein are those of the author and should not be interpreted as representing official policies.

235

0. Introduction

Unification-based grammar formalisms are now widely used for parsing, and to a
smaller extent, for generation. However, few proposals have been made for transfer (e.g.
[Kay 84, Isabelle & Macklovitch 86, Kudo & Nomura 86, Netter & Wedekind 86, Kaplan
et al. 89, Rupp 89, Zajac 89]). One of the problems is that unification grammars are usually
tied to a context-free component describing the constituent structure of one language and that
transfer is usually not specified at the constituent level. But then, there is no clear general
mechanism for relating two feature terms representing a higher level of linguistic description.

We describe a relational approach to transfer using a logic formalism called TFS [Emele
& Zajac 90b] whose basic data structures are feature terms. It is based on term rewriting and
it integrates a powerful typing mechanism following ideas from [Aït-Kaci 86]. This
approach is relational in the sense that the formalism allows to specify and compute relations
between classes of linguistic objects defined as feature types. As feature types define
constraints on admissible sets of feature terms, the interpreter computes the solution of a
feature type system by solving these constraints. Thus, grammars written in this formalism
are inherently reversible and can be used to compute one or the other element of a relation
using the same interpreter (see e.g. [Emele & Zajac 90a]). This computation depends only on
the form of the input and on an abstract ordering between feature type definitions (a
subsumption ordering). Moreover, the formalism features a multiple inheritance mechanism
that allows to modularize linguistic descriptions and to integrate them during computation.

We illustrate this approach by making a comparison with [Kaplan et al. 89] who use the
mechanism of "co-descriptions" in LFG to specify translation correspondences. We first
recall briefly the notion of co-description and introduce the syntax and an informal semantics
of TFS. We then take one example presented in [Kaplan et al. 89] and show how the
intuition underlying the notion of co-description can be formulated in TFS gaining modularity
in linguistic descriptions and reversibility of grammars.

As shown in [Emele 90, Emele & Zajac 90a], the TFS formalism can be used to describe
grammars which are reversible. We show that it is possible, using an appropriate
representation, to integrate in a very simple way modular descriptions of:

236

(1) a grammar describing a relation between a set of strings and a set of linguistic
structures for one language,

(2) another grammar of the same type for a second language and
(3) a transfer grammar describing a relation between the two sets of linguistic structures

into one single grammar defining a translation relation between the two sets of strings of the
two languages as a product of more elementary relations.

1. LFG co-descriptions

LFG [Kaplan & Bresnan 82] distinguishes two levels of linguistic description:
• a constituent structure (c-structure) that describes the linear and hierarchical

arrangement of phrases and subphrases (S, NP, VP,...) in a sentence as a tree.
• a functional structure (f-structure) that describes grammatical functions (subject,
object,...) in a sentence as a feature structure.

For example, the rule (1) has two equations (so-called "functional annotations"), one
associated with NP and the other with VP. The equation associated with NP, (↑SUBJ) = ↓,
says that the f-structure corresponding to the NP node denoted by I is equated to the value of
the feature SUBJ of the f-structure corresponding to the dominant node S, the l.h.s. of the
CF rule, denoted by ↑. The second equation ↑=↓ equates the f-structure corresponding to
the dominant node S to the structure corresponding to the VP node.

S → NP VP (1)
(↑SUBJ) = ↓. ↑=↓

As shown in Fig.l (after [Kaplan et al. 89]), these equations define a one-way
correspondence Φ between a set of c-structures (the tree on the left of Fig.l) and a set of
f-structures (the attribute-value matrix in the middle), by combining recursively
correspondences (Φ1 and Φ2) between partial c-structures and partial f-structures.

237

As discussed for example in [Kaplan 87, Halvorsen & Kaplan 88], the system of
correspondences can be extended to describe a more abstract level of linguistic description,
for example a semantic structure encoding predicate-arguments relations. This can be done by
using another correspondence σ from f-structures to s-structures, and one would add
semantic co-descriptions to CF rules and lexical entries using the function name σ, as shown
in (2).

fall : V, (↑PRED) = 'fall<(↑SUBJ)>' (2)
(σ↑PRED) = fall
(σ ↑ARG1) = σ(↑SUBJ).

This framework can be generalized to describe other levels of linguistic representation
(e.g. anaphoric and discourse structures). This idea is further extended in [Kaplan et al. 89]
to define a correspondence τ between f-structures of a source language and f-structures of a
target language by attaching τ co-descriptions to rules and lexical entries. The lexical entry for
fall with the French equivalent would then be written as in (3), where the attribute FN is used
to designate the function-name in the semantic form (i.e. 'fall<(TSUBJ)>'). This would
define a partial correspondence τ as shown in (Fig.2).

fall : V, (↑PRED) = 'fall<(↑SUBJ)>' (3)
(τ ↑PRED FN) = tomber
(τ ↑SUBJ) = i(↑SUBJ).

tomber: V, (↑PRED) = 'tomber<(↑SUBJ)>'.

238

Co-descriptions describe one-way correspondences from a source f-structure to a target
f-structure: technically Φ and τ are functions [Kaplan 87]. As it would be desirable to use the
same grammar for both parsing and generation, ways of inverting such functions have been
investigated (e.g. [Wedekind 86, Momma & Dorre 87]). From a linguistic point of view, it
would in fact be most convenient to think of these specifications as purely declarative
non-directed equations, i.e. as specifications of two-way correspondences or more precisely
as relations. And this is in fact the intuition which lies behind "co-descriptions".

2. TFS relations

We introduce briefly the syntax and an informal semantics of the TFS formalism.

The basic data structure of the formalism is a typed feature term: ordinary feature terms
can be extended to typed feature terms by associating a type symbol to a node in the directed
graph that represents the feature term. For some type symbols, a type definition is supplied
(by the grammar writer) which can be a disjunction of typed feature terms or a conjunction of
typed feature terms (or any expression built up from disjunctions and conjunctions). The
disjunction operator is noted "|", and the conjunction operator is noted "&". An inheritance
hierarchy of feature terms can be derived from a set of feature type definitions.

239

We write feature names in lowercase letters, type symbols in uppercase letters, and we
use symbols starting with "#", called tags, for denoting shared values. For example, the
feature term (Fig.3) is written in linear form as

S[subj:NP[agr:#l=AGR-VALUE[per:3RD, num:SING, gen:FEM]], (4)

pred:V[agr: #l]]

which is read "the feature term (4) is of type S and has two features, subj and pred. The
feature subj has as value a feature term of type NP ...".

The evaluation of a feature term amounts to type checking and type inference: the
interpreter checks whether a given feature term is consistent with respect to a set of feature
type definitions. A typed feature term is consistent if it unifies with the definition of its type,
and if each of its subterms is also consistent. Conjunctions and disjunctions are evaluated in
the usual way. The application of a feature type definition may recursively introduce
subterms that will also need to be evaluated. The semantics of the formalism which is
implemented in the interpreter guarantees that the solution computed by the interpreter is the
least fixed point of the set of definitions augmented by the initial term [Emele & Zajac 90b].

We assume in the following that we have a grammar written in TFS which defines a set
of well-formed lists of words, a set of well-formed syntactic structures, and a (binary)
relation G between those two sets, as described for example in [Emele & Zajac 90a]. For the
purpose of the exposition, let us also assume that the set of well-formed syntactic structures
is defined as f-structures in LFG. We are then interested in defining a relation between a set
of source f-structures and a set of target f-structures. We will take examples from French and
English: if necessary, we shall distinguish between features or types belonging to the
grammar of these languages by using a prefix ('f for French, 'e' for English).

240

A member of the translation relation TAU holding between a French f-structure and an
English f-structure as in Fig.4 will be encoded as a feature term with two features f-syn and
e-syn as in Fig.5, and written as follows:

[f-syn: [pred: TOMBER, (5)

 tense: PASSE,

 subj: [pred: BEBE,

 num: SG,

 spec: [def: +,

 pred: LE]]],

e-syn: [pred: FALL,

 tense: PAST,

 subj: [pred: BABY,

 num: SG,

 spec: [def: +,

 pred: THE]]]]

The translation relation TAU can then be decomposed in a modular way into different
sub-relations, including:

241

• a bilingual relational lexicon TAU-LEX
• a structural contrastive grammar TAU-STR
• a tense-mood-aspect contrastive grammar TAU-TMA
•

TAU is then defined as the product of these relations:

TAU = TAU-LEX & TAU-STR & TAU-TMA ...

Each of these modules can interact with each other: for example, the lexical relation can
impose constraints on the syntactic structure or on tense values, constraints stated as partial
descriptions (subterms of feature terms) which are combined (i.e. unified) during evaluation.
The evaluation mechanism allows to achieve both modularity of description and integration of
distributed constraints during evaluation.

3. An example

[Kaplan et al. 89] give an example where a time adjunct has to be translated by a verb
whose main semantic content is aspectual information:

The baby just fell ↔ Le bébé vient de tomber

They propose an LFG lexical entry for just, where just is analyzed as a predicate which
takes as an argument the VP it modifies :

just: ADV, (↑PRED) = 'just<(↑ARG)>' (6)
(τ ↑PRED FN) = venir
(τ ↑XCOMP) = τ(↑ARG).

The corresponding TFS definition (7) has to specify the full constraints for venir, which
in other contexts has the meaning "to come" (VENIR-1): in this context, venir is a
subject-control verb (VENIR-2). This definition also has to say that the arg of just
corresponds to the xcomp of venir : this is done by introducing a condition part under the
feature cond specifying that the relation TAU also holds between these two.

242

TAU-LEX-JUST = (7)

[e-syn: [pred: JUST,

arg: #e-arg],

f-syn: [pred: VENIR-2,

xcomp: #f-xc=[compl: DE,

 tense: INF],

cond: TAU[e-syn: #e-arg, f-syn: #f-xc]] .

Additional lexical definitions for this example are :

TAU-LEX-FALL = (8)

[e-syn: [pred: FALL,

 subj: #e-subj],

f-syn: [pred: TOMBER,

 subj: #f-subj],

cond: TAU[e-syn: #e-subj, f-syn: #f-subj]].

TAU-LEX-BABY = (9)

[e-syn: [pred: BABY,

f-syn: [pred: BEBE]].

The relation TAU is decomposed into a product of several modules which are applied
simultaneously, and one of them is the lexical relation TAU-LEX, defined as a disjunction of
bilingual lexical entries:

TAU-LEX = TAU-LEX-JUST | TAU-LEX-FALL | TAU-LEX-BABY | ...

TAU[e-syn: [pred: JUST, (10)

arg: [pred: FALL,

 tense: PAST,

 subj: [pred: BABY,

 num: SG,

 spec: [def:+,

 pred: THE]]]]]

243

Assume that we give the structure (10) as input to the interpreter. The interpreter checks
if one of the disjuncts of TAU-LEX can be unified with the term and succeeds with the
definition of TAU-LEX-JUST introducing by unification the other part of the relation f-syn
(the predicate and the partial xcomp structure), and a condition which also has to be checked,
namely that the relation TAU holds between the e-syn: arg and the f-syn: xcomp (11).

TAU[e-syn: [pred: JUST, (11)

 arg: #e-arg=[pred: FALL,

 tense: PAST,

 subj: #e-subj=[pred: BABY,

 num: SG,

 spec: [def:+,

 pred: THE]]]],

f-syn: [pred: VENIR-2,

 xcomp: #f-xcomp=[compl: DE,

 tense: INF]],

cond: TAU[e-syn: #e-arg,

 f-syn: #f-xcomp]]

This last condition is evaluated in the same manner, and for the lexical part, the definition
of TAU-LEX-FALL is applied successfully, introducing TOMBER as the head of the
f-syn:xcomp and an empty attribute for the subject, and again a condition cond: cond that
Specifies that the f-syn: xcomp: subj corresponds to the e-syn: arg: subj in (12).

TAU[e-syn: [pred: JUST, (12)
arg: #e-arg=[pred: FALL,

 tense: PAST,
 subj: #e-subj=[pred: BABY,

 num: SG,
 spec: [def: +,

 pred: THE]]]],
f-syn: [pred: VENIR-2,
xcomp: #f-xcomp=[pred: TOMBER,
 compl: DE,
 tense: INF,
 subj: #f-subj]],
cond: TAU-LEX-FALL[e-syn: #e-arg,

f-syn: #f-xcomp,
cond: TAU[e-syn: #e-subj,
 f-syn: #f-subj]]

244

This last condition is also evaluated in the same manner, and for the lexical part, the
definition of TAU-LEX-BABY is applied, introducing the subject of the infinitive clause. The
final result of the evaluation is then (13), and it would be the same if one started evaluating
with the f-syn part only (the conditions in (13) are left out).

[e-syn: [pred: JUST, (13)

 arg: [pred: FALL,

 tense: PAST,

 subj: [pred: BABY,

 num: SG,

 spec: [def:+,

 pred: THE]]]],

f-syn: [pred: VENIR-2,

 tense: PRESENT,

 xcomp: [pred: TOMBER,

 compl: DE,

 tense: INF,

 subj: [pred: BEBE,

 num: SG,

 spec: [def: +]]]]]

The syntactic module TAU-STR is responsible for the translation of definiteness and
number, and the tense module (TAU-TMA) for the translation of the tense of the clause (which
interact here with the lexico-syntactic structure). All these modules are in fact applied
simultaneously as TAU is defined as the product TAU-LEX & TAU-STR & TAU-TMA: the
constraint defined by TAU is the conjunction of the constraints defined by TAU-LEX, TAU-STR
and TAU-TMA.

Because the definitions for the translation correspondence given above are purely
contrastive, the syntactic structure produced for French is underspecified: in order to generate
the complete syntactic structure, constraints belonging to the French grammar should be
applied to introduce for example the subject of VENIR-2 (a subject-control verb), to specify
the gender of BEBE, and to introduce the definite article: these constraints are not (and should
not be) part of the translation correspondence proper.

245

4. Discussion

After a brief remark about a suitable linguistic level for transfer, we discuss the problem of
modularity vs. integration of descriptive levels from a descriptive and a computational point
of view: modularity of descriptions (e.g. separate grammars for analysis, transfer and
generation) usually implies separate successive corresponding computational processes; on
the other hand, integrated processing usually implies to have one integrated description of the
computation, like "co-descriptions" for integrating parsing and transfer. Thus, modularity of
descriptions seems incompatible with integrated computation. Finally, we discuss the
problem of reversibility, which is basically a functional concept, i.e. how to compute the
inverse of a function (which is in the general case not a function).

The adequate linguistic level for transfer

As we have seen in the previous example with the translation of just, the syntactic level of
representation is not always suitable for expressing translation correspondences as simple as
possible: in fact, one can argue that the representation chosen for just is more semantically
than syntactically motivated. This raises the question of the suitable level of linguistic
representation for expressing simple translation correspondences. This kind of example is not
an isolated phenomenon, and for unrelated families of languages (e.g. English/Japanese), the
problem becomes more severe. However, if one chooses a more abstract level of
representation (e.g. a semantic level describing predicate-arguments relations), the problem is
simplified and expressing correspondences between two languages belonging to unrelated
families is not out of hand [Nagao & Tsujii 86, Zajac 89].

Modular descriptions vs. integrated descriptions

Using the co-description mechanism, pieces of information belonging to different strata of
linguistic description are mixed together in a single place: c-structure, f-structure, and target
f-structure. However, even if source and target grammars are independently motivated, it
seems difficult to characterize the co-description approach as transfer based (as pointed out
by [Kaplan et al. 89]), since the grammar of the source language and the contrastive
descriptions are tightly integrated. In fact, there is only one grammar which merges what is
traditionally divided into source language grammar and contrastive transfer grammar [Yngve
57], and there is only one lexicon, both for analysis and transfer. Such an integration makes

246

any change or adaptation of the grammar difficult. Furthermore, for changing the target
language or adding another one, the only feasible solution would be to remove transfer
information for the first language and extract the source grammar, and add co-descriptions
for the second language. Thus, using the co-description approach, the modularity that could
theoretically be achieved is lost in the actual implementation.

The TFS formalism encourages a modular approach to programming by providing
means of specifying interface structures (in the sense used in object-oriented programming,
i.e. specifications of what is the output of a module and the input of another - see for
example [Vauquois 84]), and relations between these different structures. Assume that one
would like to define

• a relation Ge between a set of lists of words We and a set of syntactic structures Se for

English : Ge is included in We x Se

• a relation Gf between the set Sf and a set of lists of words Wf for French : Gf is included

in Sf x Wf

• and a relation Tef between the set of syntactic structures Se and the set of target syntactic

structures Sf: Tef is included in Se x Sf

• and then a translation relation in We x Se x Sf x Wf defined as the product of the three

relations Ge, Tef, and Gf.

The sets Se and Sf representing the valid structures of source and target language are
defined in TFS as feature types. Once well-formedness conditions on these structures are
defined, the relations Ge, Tef, and Gf can be defined independently of each other. An
element of the product of these relations is encoded in a single feature term with four features
: e-string for the English string, e-syn for the English structure, f-syn for the French
structure and f-string for the French string, corresponding to the four arguments of the
relation in We x Se x Sf x Wf respectively. If ENG defines the relation between the set of
English strings and the set of English structures, FR the relation between the set of French
strings and the set of French structures, and TAU the relation between the sets of English and
French structures (that includes the lexicon, syntactic structures, semantic structures, etc.),
we write ENG-FR = ENG & TAU & FR to define the translation system between English
and French. A feature term like (14) is a member of this relation.

247

It is clear that for adding another language one would have to define the valid linguistic
structures for that language and develop a grammar for it, and contrastive grammars (i.e.
other TAU relations) independently from the rest. The same modular approach can also be
used to develop a monolingual grammar, specifying well-formedness conditions for different
levels of linguistic description (e.g. configurational, syntactic, semantic, etc.) and the
relations between these levels.

ENG-FR[e-string: <the baby just fell>, (14)
e-syn: [pred: JUST,
 phon: <just>
 arg: [pred: FALL,

 tense: PAST,
 phon: <fell>,
 subj: [pred: BABY,
 phon: <baby>
 num: SG,
 spec: [def:+,

 pred: THE,
 phon: <the>]]]],
f-syn: [pred: VENIR-2,
 tense: PRESENT,
 phon: <vient>
 subj: #f-subj=[pred: BEBE,
 phon: <bébé>
 num: SG,
 gen: MASC
 spec: [pred: LE,
 def: +,
 phon: <le>]],
 xcomp: [pred: TOMBER,
 phon: <tomber>
 compl: DE,
 tense: INF,
 subj: #f-subj]],
f-string: <le bébé vient de tomber>]

Separate processing vs. integrated processing

The conventional view of transfer-based machine translation, as proposed by [Yngve 57], is
to have three different processes communicating only through the data structure for
translating from English to French:

We → Se || Se → Sf || Sf → W f

248

Using LFG co-descriptions which describe one-way correspondences from the source
f-structure to the target f-structure (Φ and τ are functions [Kaplan 87]), the first two steps are
integrated:

We → Se → Sf || Sf → Wf

As pointed out by [Kaplan et al. 89], one big advantage of the co-description mechanism
is that all interactions between different strata (c-structure, f-structure and target f-structures),
even those not described explicitly, come into play during parsing, where all equations are
solved simultaneously. This allows one to reject a potential solution as soon as there is an
incoherence stemming from any of these levels, for example an incoherence stemming from
the transfer will be already detected during parsing. This advantage follows directly from the
co-description approach, where pieces of information belonging to different strata of
linguistic description are mixed together in a single place.

Using TFS, it is possible to integrate all components during processing gaining the
computational advantages of the "co-descriptive" mechanism (all constraints stemming
from
all levels are solved simultaneously) without loosing the benefits of modularity. When a
relation is defined as a product of relations (like ENG-FR = ENG & TAU & FR in
We x Se x Sf x Wf), all elementary relations are combined during computation, and

applied simultaneously onto the same structure. This follows from the general evaluation
strategy used by the interpreter of the formalism which uses an ordering of rewriting
depending only on the form of the input and an abstract ordering on feature type definitions
(a subsumption ordering). For example, starting from a string and computing the
corresponding elements of ENG-FR, the interpreter will apply constraints from ENG, TAU
and FR simultaneously, building up the whole structure (like e.g. (14)) by unifying subterms
of the initial structure with the feature type definitions of ENG, TAU and FR.

Reversibility

Inverting a grammar is a nontrivial task. All the approaches that try to use the same grammar
both for parsing and generation have two different compilers, one for generating code for a
parser and the other for generating code for a generator. In the LFG framework, as in
[Momma & Dörre 87] for example, there are LFG grammars that cannot be automatically

249

inverted, and additional constraints usually have to be hard-coded (in PROLOG) such that the
generation process does not overgenerate [Kohl et al. 89]. Even in the most declarative
approaches currently used, the linguist has to include special control annotations as in
[Dymetman & Isabelle 88] or to specify a "leading attribute" (e.g. string for analysis and
semantic_head for generation) as in [Shieber et al. 89], where these annotations and attributes
are used as directives for compiling an analysis or a generation program.

The problem of inverting a whole machine translation system seems even more complex.
[Dymetman & Isabelle 88] do not seem to address this problem. It is not possible to invert an
LFG grammar that uses co-descriptions for specifying transfer, at least in the current state of
the implementations; even if it were possible, it would require to add source co-descriptions
to the target grammar and to the dictionary. The only work known to the author is [van
Noord 89] who proposes a reversible architecture for MT based on ideas from [Shieber et al.
89] extended to transfer, where the transfer part is coded in the grammar in a way similar to
LFG "co-descriptions". One could imagine that the reversible machine translation system
would then be the chaining of three different programs, the parser, the transfer grammar and
the generator, that would be produced by a compiler using different "leading attributes" to
compile the correct PROLOG code for each of the programs.

Using TFS relations, there is no inverse to compute: the concept of inverting a one-way
correspondence (i.e. computing the inverse of a function) is not relevant in a truly relational
framework. Actually, the user does not have access to any control mechanism: there is
nothing like control annotations or "leading attributes"; thus the linguist is freed from taking
care of the control. The interpreter applies the same evaluation mechanism using the same set
of definitions whatever the input is, and the actual order of computation of the relation
depends only on the form of the input and on a subsumption ordering between feature type
definitions: the compiled form of a grammar is exactly the same for any kind of input (and
this also simplifies a lot of the system developer's task since there is only one compiler for
the system!).

In fact, parsing and generation are special cases of the evaluation of an input structure,
where the input structure given to the interpreter is either a string (for parsing) or a linguistic
structure (for generation). The same applies for "inverting" a machine translation system: the
input can be a string of one or the other of the languages. It is in fact possible to specify any
of the elements of a relation and compute all the others which are compatible. For example,

250

starting from an element of Sf it is possible to compute the whole product thus generating the
strings for both We and Wf. the formalism allows one to start evaluation from a partially
specified input structure, thus generating all possible members of the relation which are
compatible with the input. It can also be run for checking if two given strings are in the
translation relation, for example.

It is clear that the behavior of the system is considerably different from traditional
procedural systems, and even from PROLOG based systems, where the order of application
of clauses is specified by the user: in TFS, the user does not have any control on the order of
evaluation, and this order will depend on the input and on a subsumption ordering between
type definitions. However, given the simple and intuitive semantics of the formalism [Emele
& Zajac 90b], the behavior is still very simple to follow, as it is apparent when the grammar
writer uses the tracing facilities to debug a grammar. We argue that the computational
behavior of a TFS grammar is more understandable than the same grammar written in a
procedural language, where unexpected behavior often results from the nonmonotonic kind
of processing, essentially due to complex deletions, the transformation of structures and the
ordering of those steps. The only source of bugs that is left is incoherent definitions, and this
source exists in any kind of system.

As already noted by [Dymetman & Isabelle 88], to be able to reverse grammars is very
useful for debugging, as some omissions which can go unnoticed for one way (usually
analysis) become apparent running the grammar the other way (overgeneration). We hope
that this feature will also prove useful for contrastive grammars.

Conclusion

We argue that using a general purpose constraint-based formalism that integrates concepts
from logic programming, object-oriented programming, knowledge representation and
functional unification grammars, it is possible to build a whole machine translation system
that has interesting properties:

(1) The machine translation system is modular: the feature type system allows one to define
relations between independently specified structures and also to define relations as a product
of more elementary relations.

251

(2) The processing is integrated: all constraints from all sources are integrated during
evaluation and apply simultaneously to determine a complete description of a solution.

(3) The translation system is defined as a relation between sets of strings (and sets of
linguistic structures): one can compute any element of a relation starting from any other
element. Thus "reversibility" is an inherent feature of the system.

Such an approach has also practical advantages: the linguist has to know only one
formalism and one computer environment to write any of the modules; the programmers have
to develop a system for only one formalism: that means only one compiler, one tracing
facility, etc.

The TFS system has been implemented in Common-Lisp by Martin Emele and the author
and has been tested on Symbolics, TI Explorer, VAX and Allegro Common-Lisp. Sample
grammars are documented in [Emele 88, Zajac 89, Emele & Zajac 90a].

Acknowledgments. The TFS system implemented at the IMS is based on the experience
gained in a previous implementation of a similar system carried out by Martin Emele and the
author at ATR, Kyoto, as a part of a visiting research program [Emele & Zajac 89]. We
would like to thank Dr. Akira Kurematsu, president of ATR Interpreting Telephony Research
Laboratories, for making our stay possible, and Mr. Teruaki Aizawa, head of the Natural
Language Understanding Department, for his constant support. This paper has benefited
from many comments from our colleagues at the IMS, University of Stuttgart.

References

Hassan Aït-Kaci. 1984. A Lattice Theoretic Approach to Computation Based on a
Calculus of Partially Ordered Type Structures. Ph.D. Dissertation, University of
Pennsylvania.
Hassan Aït-Kaci. 1986. An Algebraic Semantics Approach to the Effective Resolution of
Type Equations. Theoretical Computer Science 45, 293-351.
Marc Dymetman and Pierre Isabelle. 1988. Reversible logic grammars for machine
translation. 2nd International Conference on Theoretical and Methodological Issues in
Machine Translation of Natural Languages.

252

Martin Emele. 1988. A typed feature structure based approach to generation. Proceedings
of the WGNLC of the IECE, Oita University, Japan.
Martin Emele and Rémi Zajac. 1989. Multiple Inheritance in RETIF. ATR Technical
Report TR-I-0114, ATR Interpreting Telephony Laboratories, Kyoto.
Martin Emele and Rémi Zajac. 1990a. Typed Unification Grammars. 23th International
Conference on Computational Linguistics, COLING-90, Helsinki.
Martin Emele and Rémi Zajac. 1990b. A Fixed-Point Semantics for Feature Type
Systems. 2nd International Workshop on Conditional and Typed Rewriting Systems,
CTRS-90, Montreal.
Per-Kristian Halvorsen and Ronald Kaplan. 1988. Projections and semantic
description. International Conference on Fifth Generation Computer Systems, Tokyo.
Pierre Isabelle and Elliot Macklovitch. 1986. Transfer and MT Modularity. 11th
International Conference on Computational Linguistics, COLJNG-86, Bonn.
Ronald M. Kaplan. 1987. Three seductions of computational psycholinguistics. In Pete
Whitelock et al. (eds.). Linguistic theory and computer applications. Academic Press,
London.
Ronald M. Kaplan and Joan Bresnan. 1982. Lexical Functional Grammar: a formal
system for grammatical representation. In Joan Bresnan (ed.), The mental representation of
grammatical relations. MIT Press.
Ronald M. Kaplan, Klaus Netter, Jürgen Wedekind and Annie Zaenen. 1989.
Translations by structural correspondences. 4th European ACL Conference, Manchester.
Martin Kay. 1984. Functional Unification Grammars: a formalism for machine translation.
10th International Conference on Computational Linguistics, COLING-84, Stanford.
Dieter Kohl, Agnes Plainfossé, Mike Reape and Claire Gardent. 1989. Text
generation from semantic representation. ESPRIT Project 393 ACORD, ACORD Deliverable
T2.10.
Stephan Momma and Jochen Dörre. 1987. Generation from f-structures. In Ewan
Klein and Johan van Benthem (eds.), Categories, Polymorphism and Unification, Centre for
Cognitive Science, University of Edinburgh.
Ikuo Kudo and Hirosato Nomura. 1986. Lexical-Functional Transfer: A Transfer
Framework in a Machine Translation System based on LFG. 11th International Conference
on Computational Linguistics, COLING-86, Bonn.
Makoto Nagao and Jun-ichi Tsujii. 1986. The transfer phase of the MU machine
translation project. 11th International Conference on Computational Linguistics,
COLING-86, Bonn.

253

Klaus Netter and Jürgen Wedekind. 1986. An LFG-based approach to machine
translation. Proc. of the IAI-MT86, Saarbrücken.
Gertjan van Noord. 1989. Reversible unification based machine translation. Submitted to
COLING-90.
C.J. Rupp. 1989. Situation semantics and machine translation. 4th European ACL
Conference, Manchester.
Stuart S. Shieber, Gertjan van Noord, Robert Moore and Fernando C.N.
Pereira. 1989. A semantic-head-driven generation algorithm for unification-based
formalisms. 27th Annual meeting of the ACL, Vancouver.
Bernard Vauquois. 1984. The organization of an automated translation system for
multilingual translation at GETA. IBM Europe Institute on Natural Language Processing,
Davos.
Victor Yngve. 1957. A framework for syntactic translation. Mechanical Translation, 4/3.
Rémi Zajac. 1989. A transfer model using a typed feature structure rewriting system with
inheritance. 27th Annual meeting of the ACL, Vancouver.

254

