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Abstract 

We describe a method for identifying subsentential phrasal translation examples in sentence- 
aligned parallel corpora, using only a probabilistic translation lexicon for the language pair. Our 
method differs from previous approaches in that (1) it is founded on a formal basis, making use 
of an inversion transduction grammar (ITG) formalism that we recently developed for bilingual 
language modeling, and (2) it requires no language-specific monolingual grammars for the source 
and target languages. Instead, we devise a generic, language-independent constituent-matching 
ITG with inherent expressiveness properties that correspond to a desirable level of matching 
flexibility. Bilingual parsing, in conjunction with a stochastic version of the ITG formalism, 
performs the phrasal translation extraction. 
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1    Introduction 

Phrasal translation examples at the subsentential level are an essential resource for many MT 
and MAT architectures. This requirement is becoming increasingly direct for the example-based 
machine translation paradigm (Nagao 1984), whose translation flexibility is strongly restricted 
if the examples are only at the sentential level. It can now be assumed that a parallel bilingual 
corpus may be aligned to the sentence level with reasonable accuracy (Kay & Röscheisen 1988; 
Catizone et al. 1989; Gale & Church 1991; Brown et al. 1991; Chen 1993), even for languages 
as disparate as Chinese and English (Wu 1994). Algorithms for subsentential alignment have 
been developed as well at granularities of the character (Church 1993), word (Dagan et al. 1993; 
Fung & Church 1994; Fung & McKeown 1994), collocation (Smadja 1992), and specially- 
segmented (Kupiec 1993) levels. However, the identification of subsentential, nested, phrasal 
translations within the parallel texts remains a non-trivial problem, due to the added complexity 
of dealing with constituent structure. Manual phrasal matching is feasible only for small corpora, 
either for toy-prototype testing or for narrowly-restricted applications. 

Automatic approaches to identification of subsentential translation units have largely followed 
what we might call a “parse-parse-match” procedure. Each half of the parallel corpus is first parsed 
individually using a monolingual grammar. Subsequently, the constituents of each sentence-pair 
are matched according to some heuristic procedure. A number of recent proposals can be 
cast in this framework (Sadler & Vendelmans 1990; Kaji et al. 1992; Matsumoto et al. 1993; 
Cranias et al. 1994; Grishman 1994). 

The “parse-parse-match” procedure is susceptible to three weaknesses: 

• Appropriate, robust, monolingual grammars may not be available. This condition is par- 
ticularly relevant for many non-Western-European languages such as Chinese. A grammar 
for this purpose must be robust since it must still identify constituents for the subsequent 
matching process even for unanticipated or ill-formed input sentences. 

• The grammars may be incompatible across languages. The best-matching constituent types 
between the two languages may not include the same core arguments. While grammatical 
differences can make this problem unavoidable, there is often a degree of arbitrariness in a 
grammar's chosen set of syntactic categories, particularly if the grammar is designed to be 
robust. The mismatch can be exacerbated when the monolingual grammars are designed 
independently, or under different theoretical considerations. 
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• Selection between multiple possible arrangements may be arbitrary. By an “arrangement” 
between any given pair of sentences from the parallel corpus, we mean a set of matchings 
between the constituents of the sentences. The problem is that in some cases, a constituent 
in one sentence may have several potential matches in the other, and the matching heuristic 
may be unable to discriminate between the options. 

In this paper we describe a new approach that attacks the weaknesses of the “parse-parse- 
match” procedure by using (1) only a translation lexicon with no language-specific grammar, (2) 
a bilingual rather than monolingual formalism, and (3) a probabilistic formulation for resolving 
the choice between candidate arrangements. Unlike the earlier approaches, our method operates 
in a single stage, simultaneously choosing the constituents of each sentence and the matchings 
between them. 

In the sections that follow, we begin by briefly defining the inversion transduction grammar 
formalism. We then raise several desiderata on the expressiveness of any formalism for con- 
stituent matching, and discuss how the characteristics of the inversion transduction formalism are 
particularly suited to address these criteria. A specific grammar is then developed, and related 
issues are discussed. Note that all the examples in this paper are for English and Chinese, but the 
methods proposed are not dependent on this choice of languages. 

2   Inversion Transduction Grammars 

In Wu (1995) we define an inversion transduction grammar (ITG) formalism for bilingual 
language modeling, i.e., modeling of two languages (referred to as L1 and L2) simultaneously. 
The description here is necessarily brief; for further details the reader is referred to Wu (1995). 

An ITG is a context-free grammar that generates output on two separate streams, together 
with a matching that associates the corresponding tokens and constituents of each stream. The 
formalism also differs from standard context-free grammars in that the concatenation operation, 
which is implicit in any production rule's right-hand side, is replaced with two kinds of concatena- 
tion with either straight or inverted orientation. Thus, the following are two distinct productions 
in an ITG: 

C    →    [AB] 
C    →    〈AB〉 
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Consider each nonterminal symbol to stand for a pair of matched strings, so that for example 
(A1, A2) denotes the string-pair generated by A. The operator [] performs the “usual” pairwise 
concatenation so that [AB] yields the string-pair (C1,C2) where C1 = A1B1 and C2 = A2B2. 
But the operator 〈〉 concatenates constituents on output stream 1 while reversing them on stream 
2, so that C1 = A1B1 but C2 = B2A2. The inverted concatenation operator permits the extra 
flexibility needed to accommodate many kinds of word-order variation between source and target 
languages. Since inversion is permitted at any level of rule expansion, a derivation may intermix 
productions of either orientation within the parse tree. More on the ordering flexibility will be 
said later. 

There are also lexical productions of the form: 

A    →    x/y 

where x and y are symbols of languages L1 and L2, respectively. Either or both x and y may 
take the special value ∈ denoting an empty string, allowing a symbol of either language to have 
no counterpart in the other language by being matched to an empty string. We call x/∈ an 
L1-singleton and ∈/y an L2-singleton. 

Parsing, in the context of ITGs, means to take as input a sentence-pair rather than a sentence, 
and to output a parse tree that imposes a shared hierarchical structuring on both sentences. For 
example, Figure 1 shows a parse tree for an English-Chinese sentence translation. The English 
is read in the usual depth-first left-to-right order, but for the Chinese, a horizontal line means the 
right subtree is traversed before the left, so that the following sentence pair is generated: 
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We prove in Wu (1995) the following convenient theorem, which indicates that any ITG can be 
converted to a normal form, where all productions are either lexical productions or binary-fanout 
productions: 

Theorem 1 For any inversion transduction grammar G, there exists an equivalent inversion 
transduction grammar G' in which every production takes one of the following forms: 

S    →    ∈/∈ A    →    x/∈ A    →    [B C] 
A    →    x/y A   →    ∈/y A   →    〈BC〉 

We assume that ITGs are in this normal form for the remainder of this paper. 

 

Figure 1: Inversion transducer parse tree. 
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3    Expressiveness Characteristics 

Crossing Constraints We now turn to the first expressiveness desideratum for a matching for- 
malism, namely crossing constraints, which prohibit arrangements where the matchings between 
subtrees cross each another, unless the subtrees’ immediate parent constituents are also matched 
to each other. For example, given the constituent matchings depicted as solid lines in Figure 2, 
the dotted-line matchings corresponding to potential lexical translations would be ruled illegal. 
This constraint is important for computational reasons, to avoid exponential bilingual matching 
times. Note that a crossing constraint is implicit in most “parse-parse-match” approaches (Kaji 
et al. 1992; Cranias et al. 1994; Grishman 1994). Dependency-oriented versions of the constraint 
are found in Sadler & Vendelmans (1990); Matsumoto et al. (1993). 

ITGs inherently implement a crossing constraint. The version of the crossing constraint as 
enforced by ITGs is actually even stronger. This is because even within a single constituent, the 
immediate subtrees are only permitted to cross in exact inverted order. As we shall argue below, 
this restriction reduces matching flexibility in a desirable fashion. 

Fanout Constraints The second expressiveness desideratum for a matching formalism is to 
somehow limit the fanout of each constituent, which dictates the span over which matchings may 
cross. As the number of subtrees of a L1-constituent grows, the number of possible matchings 
to subtrees of the corresponding L2-constituent grows combinatorially, with corresponding time 
complexity growth on the matching process. Moreover, if constituents can immediately dominate 
too many tokens of the sentences, the crossing constraint loses effectiveness. We therefore seek 
to balance matching flexibility against constituent fanout, regardless of the formalism. 

Recasting this issue in terms of the general class of context-free transduction grammars, 
the number of possible subtree matchings for a single constituent grows combinatorially with 
the number of symbols on a production's right-hand side. However, it turns out that the ITG 
restriction of allowing only matchings with straight or inverted orientation effectively cuts the 
combinatorial growth, while still maintaining flexibility where needed. 

To see how ITGs maintain needed flexibility, consider Figure 3, which shows all 24 possible 
complete matchings between two constituents of length four each. Nearly all of these—22 out 
of 24—can be  generated  by  an  ITG  as  shown  by  the parse trees (whose nonterminal labels are 
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Figure 2: The crossing constraint (see text). 

omitted).1 The only two matchings that cannot be generated are very distorted transpositions 
that we might call “inside-out” matchings. We have been unable to find real examples of con- 
stituent arguments undergoing “inside-out” transposition between language pairs. The remaining 
22 matchings, on the other hand, are representative of real word-order transpositions between 

1 As discussed later, in many cases more than one parse tree can generate the same subconstituent matching. The 
trees shown are the canonical parses, as generated by the grammar of Figure 8. 
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Figure 3: The 24 complete matchings of length four, with ITG parses for 22. 

language pairs. 
On the other hand, to see how ITGs cut combinatorial growth, consider the table in Figure 4, 

which compares growth in the number of legal complete matchings on a pair of subconstituent 
sequences. The third column shows the number of all possible complete matchings between 
two constituents with a fanout of f subconstituents each (therefore this is also the behavior for 
unconstrained context-free transduction grammars). Compare this against the second column, 
which shows the number of complete matchings that can be accepted by an ITG between a pair 
of length-f sequences of subconstituents. The fourth column shows the proportion of matchings 
that ITGs can accept.   Flexibility  is  nearly  total  for  sequences  of up to f ≤ 4 subconstituents, 

361 



 

Figure 4: Growth in number of legal complete subconstituent matchings for context-free trans- 
duction grammars with fanout f, versus ITGs on a pair of subconstituent sequences of length f 
each. 

with a rapid drop thereafter corresponding to the elimination of undesirably tangled (i.e., non- 
compositional) matchings. 

Figure 5 shows the same numbers over all possible matchings, both complete and partial; 
in other words, for the more realistic case where some subconstituents are permitted to remain 
unmatched as singletons. The same desirable behavior is exhibited. The expressiveness of ITGs 
thus appears inherently suited to the degree of flexibility versus constraints needed for constituent 
matching. 
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Figure 5: Growth in number of all legal subconstituent matchings (complete or partial) for context- 
free transduction grammars with fanout f, versus ITGs on a pair of subconstituent sequences of 
length f each. 

4    Constituent Matching with a Generic ITG 

Because,the expressiveness of ITGs constrains the space of possible matchings so appropriately, 
the possibility arises that the information supplied by a word-translation lexicon alone may be 
adequately discriminating to match constituents, without language-specific monolingual gram- 
mars for the source and target languages. That is, assuming that some algorithm for (bilingual) 
parsing is available, constituent matching with ITGs can be performed by devising a generic, 
language-independent grammar.    As  a  first  pass,  a  simple ITG of this kind is shown in Figure 6, 
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employing only one nonterminal category. The first two productions are sufficient to generate all 
possible matchings of ITG expressiveness (this follows from the normal form theorem). The re- 
maining productions are all lexical. Productions of the A → ui /vj form list all word translations 
found in the translation lexicon, and the others list all potential singletons without corresponding 
translations. Thus, a parser with this grammar can build a bilingual parse tree for any possible 
ITG matching on a pair of input sentences. 

There are two broad problems with ambiguity in the simple approach. The first problem is 
illustrated by Figure 7; there is no justification for preferring either (a) or (b) over the other. In 
general the problem is that both the straight and inverted concatenation operations are associative. 
That is, [A[AA]] and [[AA]A] generate the same two output strings, which are also generated 
by [AAA]; and similarly with 〈A〈AA〉〉 and 〈〈A A〉 A〉, which can also be generated by 〈A A A〉. 
Thus the parse shown in (c) is preferable to either (a) or (b) since it does not make an unjustifiable 
commitment either way. However, (c) is not permitted in normal form. We could add longer 
productions to the grammar, but this would unnecessarily complicate things and slow down 
parsing. 

Instead, we employ a more complicated but better constrained grammar as shown in Figure 8, 
designed to produce only canonical tail-recursive parses. We differentiate type A and B con- 
stituents, representing subtrees whose roots have straight and inverted orientation, respectively. 
Under this grammar, a series of nested constituents with the same orientation will always have 
a left-heavy derivation. The guarantee that parsing will produce a tail-recursive tree facilitates 
easily identification of those nesting levels that are associative (and therefore arbitrary), so that 
those levels can be “flattened” by a post-processing stage after parsing into non-normal form 
trees like the one in Figure 7(c). 

A  →  [A A] 
A  →  〈A A〉 

                                    A  →    ui/vj          for all i, j: lexical translations 
A  →    ui/∈        for all i: L1-only vocabulary 
A  →   ∈/vj             for all j: L2-only vocabulary 

Figure 6: A simple constituent-matching ITG. 
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Figure 7:Alternative ITG parse trees for the same matching. 

A   →     [A B] 
A   →     [B B] 
A   →     [CB] 
A   →     [AC] 
A   →     [BC] 
B   →     〈A A〉 
B   →     〈B A〉 
B   →     〈C A〉 
B   →     〈A C〉 
B   →     〈B C〉 
C   →     ui/vj           for all i,j: lexical translations 
C   →     ui/∈           for all i: L1-only vocabulary 
C   →     ∈/vj           for all j: L2-only vocabulary 

Figure 8: A canonical-form constituent-matching ITG. 
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The ITG framework suggests a probabilistic formalization of this optimization problem. A 
stochastic inversion transduction grammar is an ITG where a probability is associated with each 
production, subject to the constraint that 

 
of the two languages, and N is the number of nonterminal categories. Under the stochastic 
formulation, the parser's objective is to find the maximum-likelihood parse for a sentence pair. 
A general algorithm for this is given in Wu (1995). 

We place probabilities on the grammar as shown in Figure 9. The bij distribution encodes the 
English-Chinese translation lexicon with degrees of probability on each potential word translation. 
A small e-constant can be chosen for the probabilities bi∈ and b∈i, so that the optimal matching 
resorts to these productions only when it is otherwise impossible to match the singletons. The 
result is that the maximum-likelihood parser selects the parse tree that best meets the combined 
lexical translation preferences, as expressed by the bij probabilities. 

5    Discussion 

An experiment was carried out using a lexicon that was automatically learned from the HKUST 
English-Chinese Parallel Bilingual Corpus via statistical sentence alignment (Wu 1994) and 
statistical Chinese word and collocation extraction (Fung & Wu 1994; Wu & Fung 1994), 
followed by an EM word-translation learning procedure (Wu & Xia 1994). The latter stage gives 
us the bij probabilities directly. The translation lexicon contained approximately 6,500 English 
words and 5,500 Chinese words, and was not manually corrected for this experiment, having 
about 86% translation accuracy. 

Approximately 2,000 sentence-pairs with both English and Chinese lengths of 30 words or 
less were then extracted from our corpus and (bilingually) parsed. Several additional criteria 
were used to filter out unsuitable sentence-pairs. If the lengths of the pair of sentences differed 
by more than a 2:1 ratio, the pair was rejected; such a difference usually arises as the result of an 
earlier error in automatic sentence alignment. Sentences containing more than one word absent 
from the translation lexicon were also rejected;  the  bracketing  method  is  not  intended  to  be robust 
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Figure 9: A stochastic constituent-matching ITG. 

against lexicon inadequacies. We also rejected sentence pairs with fewer than two matching 
words, since this gives the bracketing algorithm no discriminative leverage; such pairs accounted 
for less than 2% of the input data. Examples of the parsing output are shown in Figure 10. 

The raw phrasal translations suggested by the parse output were then filtered to remove those 
pairs containing more than 50% singletons, since such pairs are likely to be poor translation 
examples. Examples that occurred more than once in the corpus were also filtered out, since 
repetitive sequences in our corpus tend to be non-grammatical markup. This yielded approxi- 
mately 2,800 filtered phrasal translations, some examples of which are shown in Figure 11. A 
random sample of the phrasal translation pairs was then drawn, giving a precision estimate of 
81.5%. 

Although this already represents a useful level of accuracy, it does not in our opinion reflect 
the full potential of the formalism. Inspection revealed that performance was greatly hampered by 
our noisy translation lexicon which was automatically learned; it could be manually post-edited to 
reduce errors. Commercial online translation lexicons could also be employed if available. 
Higher precision could also be achieved without great effort by engineering a small number of 

367 



 

368 



 
Figure 11: Examples of extracted phrasal translations. 

6    Conclusion 

We have described a method for extracting phrasal translation examples that replaces the con- 
ventional “parse-parse-match” approach with a single integrated procedure. The expressiveness 
constraints inherent in the ITG formalism are used to constrain the space of possible match- 
ings, such that a word-translation lexicon alone supplies sufficient additional discriminating 
information to match constituents with surprisingly useful accuracy—without language-specific 
monolingual grammars for the source and target languages. Procedures of this kind are partic- 
ularly effective for acquiring knowledge resources on languages less exhaustively studied than 
English. 
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