
[Proceedings of a Workshop on Machine Translation, July 1990, UMIST]

Mel'čuk's Explanatory-Combinatorial

Dictionary and its relevance for

Machine Translation

Andy WAY

Department of Language and Linguistics

University of Essex

Wivenhoe Park

Colchester C04 3SQ, UK

July, 1990

Introduction

The intention of this paper is to introduce the reader to
the 'Explanatory Combinatorial Dictionary' (ECD), an essen-
tial component of Melchuk's 'Meaning-Text Model' (MTM),
which is a fully-fledged linguistic descriptive theory, and
furthermore to investigate the relevance of such a theory to
Machine Translation (MT).

There are four linguistic levels of description in the MTM :
semantics, syntax (with deep and surface levels), morphology
(also with a deep-surface distinction) and phonetics (or
orthographies, again with the same subdivisions). The pro-
cess of establishing correspondences between texts and mean-
ings has several stages : one 'translates' a meaning (i.e. a
semantic representation) from one level to another until one
of the texts expressing that meaning is found. Obviously, if
the MTM is to produce all the correct texts from a given
'translation' (and vice-versa), then enormous amounts of
specific information need to be included in the ECD.

It may seem a little extreme to have so many levels of
linguistic description, but by doing so one allows each
stage of the mapping process to be stated in a simple manner
whilst at the same time enabling a wider range of phenomena
to be covered by the system. The phonetics levels do not
play a great role in English (as they are related by rela-
tively trivial mappings). The semantic level is represented
by semantic nets (Melchuk & Polguere '87, p.262 ff), a wide-
ly used AI technique which permits the expression of default
inheritance, whilst the syntactic levels use dependency
trees.

Melchuk's system has been around for over 20 years now, and
takes some getting used to. In the MTT, the levels of
representation listed above are seen as an appendix to the
ECD, unlike most other approaches in computational linguis-
tics, which are generally syntax-oriented. The lexicon and
the grammar together form the MTT, with the lexicon at its
foundations. The grammatical levels express generalizations
over the lexicon as well as containing all the necessary
procedures for manipulating the data contained in the lexi-
con.

At first sight this dictionary is complex, but this is
necessarily so, for the primary aims of the dictionary are
to avoid circular definitions and to be fully comprehensive
and consistent in approach. Such a dictionary must include
all the semantic and combinatorial relationships of a given
word to other words in a particular language. This illus-
trates one of the main advantages of this type of diction-
ary, namely that parts of entries are linked with those of
others, so that relevant fields of information are connect-
ed. The major work of reference for this study was Melchuk's

- 1 -

"Dictionnaire explicatif et combinatoire du francais contem-
porain" (Melchuk et al '84).

The set of Lexical Functions (LF's) forms the basis of the
combinatory process. They do seem complicated at first, but
once one is familiar with their usage one appreciates the
expressive power inherent in them. For this reason it is
rather important that the major, more widely used LF's are
explained at this juncture so that the rest of the paper be-
comes a little more intelligible.

Lexical Functions

The LF's appear in a strict order, as they would in the dic-
tionary. The first group consists of the synonyms and anto-
nyms, together with the 'Gener', 'Conv' and 'Figur' func-
tions (which can be seen as quasi synonyms and antonyms),
followed by those functions incorporating syntactic deriva-
tions, and lastly the rest of the LF's. According to their
area of discourse, the LF's appear according to the follow-
ing convention : nouns, adjectives, adverbs and verbs. As a
general rule, more abstract LF's precede more concrete ones,
so that the LF 'S(i)' - typical nouns for actant (i.e. sur-
face syntactic argument) 'i', see (7) below - precedes
'Sing' (see (9) below) or 'Mult' (see (10) below), which are
more specific instances of the usage of a particular noun.

It should be pointed out that the term 'function' is used
rather loosely here, in that it does not coincide with the
mathematical description of a function. For instance, in
Melchuk's system the following is possible :-

A(l)(beard) = bearded
A(l)(beard) = hirsute

where it can be seen that the accepted notion of a unique
relationship between members of the domain and the range is
violated. Strictly speaking, therefore, the LF's are rela-
tions and not functions.

1. Syn, Syn(<), Syn(>), Syn(^) : synonyms and quasi-
synonyms, or inexact synonyms, where the arrows signify hav-
ing a narrower / wider / intersecting meaning than that of
f (X) .

e.g. Syn(aid) = help
Syn(<)(respect) = veneration
[a particular kind of 'respect']
Syn(>)(veneration) = respect
Syn(^)(demonstration) = exhibition
Syn(^)(demonstration) = protest

The last two examples show that 'demonstration' sometimes
means 'exhibition', and sometimes 'protest'.

- 2 -

2. Conv(ijkl) : converse relation to that of the key-word,
where the subscripts refer to the actants associated with
the key-word, i.e. Conv(312)(Key) means that the 3rd, 1st
and 2nd actants of the key-word become the 1st, 2nd and 3rd
actants respectively of Conv(Key).

e.g. Conv(3214)(sell) = buy

i.e. The shop sold a paper to me for 50p
3 2 1 4

=> 1 2 3 4
I bought a paper from the shop for 50p

3. Anti, Anti(<), Anti(>), Anti(^) : antonyms (see 1 for de-
tails) .

4. Gener : generic word whose combination with a syntactic
category derived from the key-word is synonymous with that
key-word.

e.g. Gener(republic) = [republican] state

5. Figur : figurative use of a word, where combined with the
key-word is synonymous with the key-word.

e.g. Figur(fog) = blanket [of fog]

6. Syntactic derivations : S(0), V(0), A(0), Adv(0), where
'syntactic derivation of a lexeme C(0)' means another lexeme
or syntagm having the same meaning as C(0) but being of a
different syntactic category.

e.g. S(0)(honest) = honesty
A(0)(school) = scholarly

 V(0) (loss) = lose
 Adv(0)(honest) = honestly

7. S(l), S(2), S(3) ... : typical noun for the 1st, 2nd, 3rd
... actant of the key-word.

e.g. S(l)(crime) = criminal
S(2)(crime) = victim
S(1)(buy) = buyer
S(2)(buy) = product
S(3)(buy) = seller
S(4)(buy) = price

8. S(instr), S(loc), S(med), S(mod), S(res) : typical nouns
for the instrument, location, medium, mode, result of the
key-word.

- 3 -

e.g. S(instr)(paint) = brush
S(med)(paint) = paint
S(res)(paint) = picture

9. Sing : a 'part' of a 'whole'.

e.g. Sing(fleet) = ship
Sing(flock) = sheep

10. Mult : converse of Sing.

e.g. Mult(ship) = fleet

11. A(l), A(2) ... : typical attribute for the 1st, 2nd ac-
tant of the key-word.

e.g. A(l)(beard) = bearded
A(2)(consider) = in question

i.e. the attribute to describe a person with a beard is
'bearded', where that person is the first actant of 'beard'.
The second example illustrates the synonomy of the two
phrases : "If you consider the author" and "The author in
question", where 'author' is the second actant in both
cases.

12. Able(l), Able(2) ... : function describing 'being capa-
ble of

e.g. Able1(fear) = the frightened (person)
Able2(fear) = the frightener

i.e. 'the frightened (person)' is capable of experiencing
fear, whereas 'the frightener' is capable of inducing fear.

13. Magn : modifiers which added to the key-word intensify
the meaning of the key-word.

e.g. Magn(memory) = excellent, prodigious, stunning,
elephantine

It is normally the case that only salient values are listed
under a particular lexical function for the lexeme in ques-
tion. For this reason, the reader may have grounds for
disputing the presence of 'excellent' and 'stunning' here.
However, the LF 'Magn' can take a list of values increasing
in strength from left to right, and the principal justifica-
tion for their inclusion in this instance is to illustrate

- 4 -

this feature, i.e. 'excellent' is the lowest degree of
'Magn(memory)' here, whilst 'elephantine' (or perhaps
'elephant-like' or 'of an elephant') is the most forceful
modifier of 'memory' in the list. Note that 'photographic',
although being perhaps the most salient modifier of
'memory', is too specific to be included under this LF.
Perhaps it could be inserted under the LF 'Sing'.

14. Bon : modifier expressing justification of one's being
in the state of the key-word.

e.g. Bon(anger) = righteous

15. Pos(l), Pos(2) ... : positive evaluation characterising
the actants of the key-word.

e.g. Pos(2)(opinion) = favourable

16. Oper(l), Oper(2) ... : semantically empty verb, taking
1st, 2nd key-word C(0) as its main object complement (CO).

e.g. Oper(1)(attention) = pay
Oper(2)(attention) = attract

By 'semantically empty', I mean semantically empty when used
with the key-word mentioned with it. Hence 'pay' is semanti-
cally empty when used with 'attention', but not with 'bill'.

17. Func(0), Func(l) ... : semantically empty verb, taking
C(0) as its GS and, if C(0) has actants, then lst/2nd ...
actant of C(0) as its main CO.

e.g. Func(0)(wind) = blow
Func(1)(help) = come, provide

 Func(2) (list) = contain, consist [of sthg]

18. Incep, Cont, Fin : Start, Continuation & End of the si-
tuation portrayed by the key-word.

e.g. IncepOper(1)(shape) = take
ContOper(l)(influence) = lose
FinFunc(0)(doubt) = evaporate

The second example here is one of Melchuk's, but perhaps it
is not sufficiently descriptive. The following,

ContLiquOper(1)(influence) = lose

illustrates the decline in 'influence' inherent in the verb
'lose', which is not portrayed in the original (for more de-
tails of the LF 'Liqu', see (19) below).

- 5 -

N.B. Fin(P) = Incep(~P)
Cont(P) = not(Fin(P)) = not(Incep(~P))

19. Caus, Liqu, Perm : Cause, Bring an end to, Permit the
situation portrayed by the key-word.

e.g. CausOper(l)(tears) = reduce [sb to ~~]
CausFunc(0)(problem) = pose
LiquFunc(0)(crowd) = disperse

N.B. Liqu(P) = Caus(~P)
Perm(P) = not(Liqu(P)) = not(Caus(~P))

As seen in the last two classes of LF, the functions combine
easily with each other.

20. Degrad : verb portraying the fact that the situation ex-
emplified by the key-word is becoming worse.

e.g. Degrad(milk) = turn, curdle
Degrad(cabbage) = go to seed

21. Excess : verb expressing the fact that the key-word is
functioning excessively.

e.g. Excess(heart) = palpitate

There are many other functions, but these exemplifications
serve to illustrate the sort of concepts which can be coped
with by the LF's.

A further point to note is that it seems possible that gen-
eralizations can be expressed over regularities in the for-
mation of collocations for members of semantically homogene-
ous classes of lexemes , as (18) and (19) above, where cer-
tain LF's are grouped together. Heid (Heid '89, p6) states
that such LF's are 'explicitly linked to one another', while
Heid and Raab (Heid & Raab '89, p.133) give a table of such
LF's, which is used for the description of collocations. As
well as those functions already shown to be linked, they in-
clude [Magn, Pos, Ver] (meaning '(high) degree'), [Able,
Qual] ('ability'), and [Mult, Sing] ('count <-> mass'). An
advantage of grouping LF's together is that it may be possi-
ble to express generalizations over collocation formation
for members of a particular group. Heid and Raab give the
example of nouns which express information about computers,
with semantic classes '*I-NOUNS(g)*' and '*I-NOUNS(fr)*' for
German and French respectively as in :-

- 6 -

I-NOUNS(g) = {Datei, Information,
Nachrichten, Verzeichnis}

I-NOUNS(fr) = {fichier, information,
messages, repertoire}

LiquFunc(0) (*I-NOUNS(g)*) = loeschen
LiquFunc(0) (*I-NOUNS(fr)*) = supprimer

which says that one can use 'loeschen' in German and
'supprimer' in French to describe any of the nouns belonging
to the set of '*I-NOUNS*' for the language in question,
which saves one having to enter the fact in the lexicon for
each individual noun belonging to that class.

Lexical entries

Having explained the LF's, we are now in a position to
describe a lexical entry. This serves as a complete descrip-
tion of a lexeme, and has the following structure :-

(i) Introduction
(a) key-word
(b) morphological information *
(c) syntactic information *

(ii) Semantics
(d) propositional form
(e) definition
(f) connotations

(iii) Syntactic combinations
(g) regime
(h) restrictions on the regime
(j) examples illustrating the regime and

 any restrictions on it
(k) syntactic modifications of the key-word

(iv) Lexical combinations
(1) lexical functions
(m) examples illustrating the usage (both

its meaning and possible combinations)
of the key-word

(v) Phraseology

[* Of course, these two areas should not form part of the
introduction. The first of them ought to constitute an in-
dependent morphological area, whereas the second belongs as
part of the syntactic area (iii). However, Melchuk decides
to include them in the introduction for the time being owing

- 7 -

to lexicographic tradition and the fact that at present, of
the levels of grammatical representation in the MTT, these
two areas are the least developed.]

Of the above, only (a), (b), (e) and (m) must be complete in
all lexical descriptions. The others may in principle remain
empty.

(g) Regime

The regime is a table where the number of columns
corresponds to the number of semantic variables in the de-
finition (i.e. the number of semantic actants of the lex-
eme), and the number of lines corresponds to the maximum
number of possible realisations of these actants at surface
level, as in (Melchuk et al '84, p.21) :-

HAINE, nom, fem.
1. ... Haine de X pour Y = ...

Regime
1 = X 2 = Y

1. de N 1. de N
2. PossPron 2. contre N
3. A 3. pour N

4. envers N
5. vis-a-vis de N

1. entre Npl < Nl et N2 >

This is the regime for the French word 'haine' (= 'hatred').
We see that it is the key-word ((a), and appears in capital
letters. The relevant morphological information (b) accom-
panies this. Any necessary syntactic information (c) would
also appear at this point), and its combination with two
variants of its actants appears directly beneath it (i.e.
The propositional form (d) - this would be accompanied by a
definition (e), and followed by any connotations (f)). We
then have the regime itself (g), where the possible first
actants are listed under X, with the possible realizations
of the 2nd actant occurring under Y, as in :-

La haine de Pierre(X) pour Marie(Y)
Ma haine(X) contre Marie(Y)
Une haine acharnee(X) envers Marie(Y)

One point to note here is that this particular type of con-
struction is rare in French, which prefers a construction
with a past-participle or a relative rather than two PP's,
as in :-

- 8 -

La haine eprouvee par Pierre pour Marie
La haine que Pierre eprouve pour Marie

Note also that the construction with two 'de' PP's would
probably be ruled out here (or at least marked as stylisti-
cally poor).

The 'entre' PP spans both columns, indicating that it can
unify either with X or Y. [Note that here we have a plural
NP, consisting of two (of course, more are possible) con-
catenated NP's.] The rest of the entry's information fol-
lows.

Translating using the ECD

Melchuk (1988,pp 99-101) illustrates how a French speaker
knowing no Russian is able to translate a sentence from
French to Russian using the ECD (from Iordanskaja and
Arbatchewsky-Jumarie '82). The sentence involved is the fol-
lowing : -

(Fr)
Les Anglais avaient une grande admiration pour son talent.
=^=
The English had a great admiration for his talent

The literal Russian translation is, as one would expect,
completely ungrammatical, but by using the ECD one is able
to find the required equivalent :-

(Russ)
Anglicane ispytyvali glubokoe vosxiscenie pered ego talantom
=^=
English experienced profound admiration before his talent

There are five steps involved in this operation :

(1) Find the Russian equivalent of 'admiration' in a bil-
ingual index, namely 'vosxiscenie'.

(2) Understand that 'grande' is a value of a particular Lex-
ical Function ('Magn(admiration)'), and that 'avoir' is an
LF of a different kind ('Oper1(admiration)').

(3) Look up 'Magn(vosxiscenie)' and 'Oper1(vosxiscenie)' in
the Russian ECD, and select the appropriate equivalent where
alternatives exist, i.e. 'grande' is the lowest degree of
Magn for French, so one would select 'glubokoe' as a modif-
ier of 'vosxiscenie', as this is the lowest degree of Magn
for Russian, rather than 'bezmernoe'. By the same token one
would not choose 'byt' as the value of Oper1 as this does
not allow any modifier with 'vosxiscenie', and as we have

- 9 -

just seen one exists ('glubokoe'). Note again that as
salient values only are inserted under an LF for a particu-
lar lexeme, 'grande' would not appear as a value for
'Magn(admiration)', but would be inherited from a default
value elsewhere in the dictionary, probably from a list of
generic values for the set of LF's.

(4) Understand that 'pour' (with 'admiration') is a surface
marker of the second syntactic argument (actant).

(5) Look up the corresponding marker in the pattern for
Oper1 for Russian, 'ispytyvat'; it is 'pered'.

In this way it is possible to build the required target
translation of the source input without too many problems.
Nevertheless it is sometimes the case that a particular ex-
pression cannot be translated by following the sort of
structured pattern above. For instance it might arise that
an LF in one language is undefined (or disallowed) in anoth-
er. Consider the following :-

(Fr) Son admiration pour ce pays durait toujours
=^= His admiration for this country lasted forever

where 'ContFunc(admiration) = durer'. However, there is no
ContFunc LF for 'vosxiscenie', so one would have to invoke a
paraphrase for the translation. ContFunc is equivalent to
'notFinFunc' (see (18) and (19) for other equivalents), and
there is indeed a value for 'FinFunc(vosxiscenie)', this be-
ing 'proxodit', so we can translate the French 'durer' (N.B.
with 'admiration' only, of course) as 'proxodit' plus nega-
tion, thus :-

(Russ) Ego vosxiscenie etoj stranoj ne proxodilo
=^= His admiration for this country did not pass

One important point to consider is how one might organize
the search space. For instance, how does one know which
functions to apply at the outset ? Does one begin by looking
for related verbs first ? This would seem a sensible ap-
proach to start with, especially as the deep syntactic
representations are organized in dependency terms. However,
in the example cited here, it would be fairly fruitless to
start looking for translations of 'avoir'. Melchuk says
nothing on this matter.

What are the prospects for doing MT with this approach ?

On the face of it, it seems as though the process of produc-
ing an MT system using the ECD is just a question of imple-
menting the technique outlined above. However, the idea of
approaching MT problems via language generation is a rela-
tively new one (in NLP as a whole, in fact, generation is a

- 10 -

recent preoccupation after years of neglect post-Schank).
Previously the accent has been put on language understanding
(i.e. analysis and transfer) with the result that the syn-
thesis component has had to take a back seat.

The language understanding problem is so great that most if
not all MT systems around today impose some restrictions on
the domain of input, so that smaller dictionaries and gram-
mars can be used. Other approaches permit only 'doctored'
input, i.e. texts without ambiguities or problematic struc-
tures. These attempts at simplifying the understanding prob-
lem have led certain people to consider doing away complete-
ly with automated text-translation in favour of automatic
composition, where both source and target languages have a
common representation of content.

The first of three systems which attempt to use this ap-
proach is DIOGENES (Nirenburg et al '88), which is influ-
enced by the MTT mainly in its organization of the lexicon,
and which uses blackboard architecture as its control struc-
ture. The basic idea behind this approach is that a group of
independent, knowledgeable 'experts' cooperate in solving a
problem on a 'blackboard' (or blackboards), and they commun-
icate only via the blackboard (a multi-level 'working-
memory'). The processing in DIOGENES is concentrated in the
'knowledge sources' which are triggered by the state of the
various blackboards, which contain both the input to genera-
tion and all intermediate and final results of the opera-
tion.

The second is the GOSSIP system (Kittredge et al '88), con-
taining a direct implementation of the MTT for sentence gen-
eration with a domain-oriented planner (i.e. the planner
restricts the lexicon by deriving the intended content of
the text, thus reducing the search-space). One of the criti-
cisms which the authors of GOSSIP level at previous similar
approaches (e.g. the TAUM-METEO prototype for translating
weather forecasts from French to English, Isabelle '84) is
that they are too restricted in their domain of application,
yet the GOSSIP system deals only with computer operating
systems (note that DIOGENES was also used in this domain).
Nevertheless, they make the interesting point that the MTT's
semantic level deals only with the meaning of single sen-
tences, so "any attempt to add text planning or rhetorical
principles of text organisation is really external to the
theory" (Kittredge et al '88, p.9).

Thirdly, Boyer and Lapalme (Boyer and Lapalme '85) set up a
system to generate all the sentences which have the 'mean-
ing' described by a given network, by using a dictionary and
tree transformation rules. The system, based on the MTT, is
implemented in PROLOG, which is especially suited to produc-
ing multiple solutions owing to its backtracking facility.
The system uses most of the facets of the MTT as expounded

- 11 -

by Melchuk and Polguere (Melchuk and Polguere '87), in that
semantic representations are translated to morphological
representations via syntactic representations, as in the
predicate (adapted from Boyer & Lapalme '85, p.181) :-

mtt(Sem_Rep,Text):-
sem_comp(Sem_Rep,D_Synt_Rep),
deep_synt_comp (D_Synt_Rep, S_Synt_Rep),
surf_synt_comp (S_Synt_Rep,D_Morph_Comp) ,
deep_morph_comp(D_Morph_Comp,Text).

Semantic networks are represented as follows (op cit,
p.182):-

MOVE

 1/ 2/ \3 \4
 1 / / \ \
 many -—> sale y z 20

which is a representation of the predicate 'move(x,y,z,w)',
meaning that 'x' moved up 'w' units (w=20 here) from 'y' un-
its to 'z' units (i.e. 'Sales increased by 20 units'). The
integers seen in the network are labels used later in the
process of building a D_Synt_Rep. This deep syntactic
representation is formed by pruning the network into con-
nected pieces, searching the lexicon for a tree correspond-
ing to each of these pieces and then gluing these trees to-
gether. Tree 'surgery' is then performed using tree unifica-
tion to form the deep syntactic representations. Once these
representations have been formed, lexical rules such as
'syn(shoot,fire).' (i.e. the synonymy rule) can apply to
build other synonymous deep structures. Another such rule is
that representing the LF 'S(0)', namely
's0(increase1,increase2).', which indicates that the noun
corresponding to the verb 'increase1' is 'increase2'. Exam-
ples of the 'Oper1' rule are :-

oper1(increase2, show).
oper1(analysis,perform).

Melchuk believes that the ECD would "facilitate the general
task of computational linguistics (CL) by dividing it into
two more or less autonomous subtasks: a linguistic and a
computational one" (Melchuk & Polguere '87, p.261), as borne
out by the work just described on GOSSIP. The MTM,
meanwhile, seeks either to produce the greatest possible
number of synonomous utterances for a given semantic
representation, or to reduce a number of such utterances to
their semantic invariant, depending on whether one is doing
analysis or generation. In this way it can be seen that the
paraphrasing rules, of which there are about sixty, are re-
versible, viz (op cit, p.272) :-

C0(v) <=> Oper1 (S0 (C0)) + S0 (C0)

- 12 -

where C0 stands for the head lexeme ('v' indicates that it
is a verb here) and S0 for the deverbal noun derived from
C0. Such a rule can be seen at work in the following
example:-

The crowd received [C0] Gorbachev well <=> The crowd gave
[Oper1 (S0 (C0))] Gorbachev a good reception [S0(C0)].

where 'C0 = receive', 'S0(receive) = reception', and
'Oper1(reception) = give'. If we substitute these values
into the rule above, we see that "receive <=> give + recep-
tion", indicating the synonomy (or, more precisely, the
derivation of synonomous sentences from the same deep syn-
tactic structure) between the verb 'receive' and the phrase
'give a reception'.

Although the rules of the MTT should be fully reversible, to
have such a facility using PROLOG would be problematic,
since PROLOG gives the same solution as often as there are
ways to prove it, and due to the combinatorial explosions
which follow if no control is taken over the backtracking
procedure (by the use of 'cuts', which are reversability
killers), Boyer and Lapalme only concern themselves with
text generation (note also that by their very nature one's
MT system incorporating such rules comes with a built-in
monolingual paraphraser at no extra cost).

The authors were not primarily interested in the morphologi-
cal component, and so reduced the process to a set of ad hoc
procedures to cope with it. As for the surface syntactic
element (i.e. getting the finished text), the PROLOG program
executes a depth-first search to find the possible consti-
tuents of a sentence, and when these are found the first le-
gal ordering of these constituents is kept as the final
text. All other possibilities are then killed.

If we look at the MT systems available, most of them use a
flat, declarative representation to encode lexical informa-
tion. These lexical entries are by and large independent
propositions in that they generally make no reference to
other entries. As Melchuk says (Melchuk & Polguere '87, p.
273), "The structure of typical computational lexica is not
relational: they are ... sequences of entries". He calls
such an approach 'non-structuring', not meaning that these
methods are without structure, but rather to emphasize the
insufficiency of the structuring that they do use.

One advantage of the 'non-structuring' approach is that it
is relatively simple to load up a mini-lexicon sufficient
for a sub-domain that one might be working on, i.e. they are
easily manipulable. In order to analyse or generate a text
with such a system, one needs only to deal with the words
present in the relevant text, and computationally this is
very practical, as we all know that the greater the size of

- 13 -

the lexicon, so the slower one's system becomes (although
whether the correlation is linear or exponential is unk-
nown). Nevertheless, a non-structured lexicon prevents a
system from performing high-level linguistic tasks, such as
looking for alternative translations and making subtle
stylistic choices.

The ECD, on the other hand, is rigorously but consistently
structured, with the consequence that, as far as its meaning
and coocurrence are concerned, a lexeme is specified in
terms of other lexemes. One advantage of this type of dic-
tionary is that it is possible to paraphrase a deep syntac-
tic representation by means of the lexical functions of cer-
tain lexemes. Another is that the lexicalisation of a seman-
tic representation follows naturally from the fact that a
semantic item used for labelling a node is the actual sense
of a word, i.e. a lexeme, which itself is fully character-
ized by a hierarchical set of properties, one of which is
the presence of this lexeme in the definition of others, as
well as the participation of other lexemes in its own defin-
ition. Thus by examining the semantic nodes together with
their properties, one should be able to successfully analyse
semantic representations in a given language by the process
of lexicalisation.

It should be added at this point that these semantic
representations exclude any reference to real-world
knowledge, but represent the linguistic information. There-
fore a fully-fledged linguistic description would need a
link (namely the 'Reality-Meaning Model' in this system)
between the real world and the semantics. Melchuk justifies
this approach (op cit p.268) with a reference to MT. He says
that the only common denominator of two texts in different
languages is the state of affairs referred to, and not a se-
mantic representation of either text. Thus these semantic
representations would not be able to serve as an interlingua
per se, as they reflect the characteristics of the particu-
lar language in question. They might, however, be used as a
stepping stone towards an interlingua, as there can be no
doubt that they bring the source and target languages closer
together.

An objection to using the ECD is that the information encod-
ed in such a lexicon is far too complicated for most compu-
tational applications. If we look at a couple of tradition-
al problems for MT, we see that they just fall away entirely
owing to the general set-up of the ECD. One of these is the
notion of 'support verb'. This is taken care of by the Lexi-
cal Function 'Oper1', as in :-

Oper1(Question) = ask (Eng)
Oper1(Question) = poser (Fr)
Oper1(Pregunta) = hacer (Sp)
Oper1(Frage) = stellen (Ger)

- 14 -

Another problem case for syntax-based MT systems is that of
anaphora resolution, e.g. "Twelve Conservative members of
the club returned votes but three of them were spoiled".
However, this problem would be simplified greatly in a
Melchuk-style dictionary (although strictly speaking, lexi-
cons need not (and most cannot) say anything about this
phenomenon - it is just that an ECD helps to decipher such
ambiguities) by the LF 'AntiVer', as 'vote' would have an
entry under this LF whereas 'member' would not, i.e.
'AntiVer(vote) = spoil'.

Besides, why should it be the case that most CL lexicons are
at present incomplete, inconsistent and suffer from a lack
of detail ? None of these criticisms could be levelled at
the ECD, after all. Such a dictionary could be employed in
many areas of CL research. Perhaps the greatest advantage
the ECD has over present CL lexicons is that it is reusable.
All too often CL dictionaries (and this applies to knowledge
representation as a whole), are written specifically for the
job in hand, with the consequence that they constantly need
to be revised or still worse completely rewritten if one's
research changes tack even slightly. Surely a description of
linguistic phenomena which is formulated in a consistent and
exhaustive manner according to a particular theory is of im-
mense value to CL applications if only because of its reusa-
bility. As we have found to our cost, the writing of a
Melchuk-style entry is a non-trivial task, and one entry
(for 'lose' and 'loss') took two of us about three weeks to
complete, but this is merely a problem of manpower, and
should not be used as a criticism of the general approach.
In any case, the relationship between the time taken to
write an ECD entry and that taken to write a normal diction-
ary entry may show the Melchuk approach to be preferable,
when one considers the respective amount of information con-
tained in the two entries. Indeed, as Melchuk says (op cit,
p.274), "...the rigorous description of even one lexeme in a
precise and formal framework appears as an improvement, in
itself, on what has been achieved in this domain".

- 15 -

REFERENCES

1, Boyer, M. & G. Lapalme : "Generating Sentences from Se-
mantic Networks" in "Natural Language Understanding and Log-
ic Programming"; ed. Dahl, V. & P. Saint-Dizier; North Hol-
land, Amsterdam, 1985.

2, Cruse, D.A. : "Lexical Semantics"; CUP, Cambridge, 1986.

3, Heid, U. : "Lexikalische Funktionen zur Beschreibung von
Kollokationen - Notizen, Materialsammlung"; Internal Paper,
Universitaet Stuttgart, 1989.

4, Heid, U. & S. Raab : "Collocations in Multilingual Gen-
eration" in : "Fourth Conference of the European Chapter of
the ACL" (Proceedings); UMIST, Manchester, 1989.

5, Iordanskaja, L. & N. Arbatchewsky-Jumarie : "Lexicograph-
ic Applications of Lexical Functions : Two Sample Lexical
Entries from an Explanatory Combinatorial Dictionary"; BLS8,
Berkeley, 1982.

6, Isabelle, P. : "Machine Translation at the TAUM group";
paper presented at The ISSCO "Tutorial on Machine Transla-
tion", 1984.

7, Kittredge, R. et al : "Multi-Lingual Text Generation and
the Meaning-Text Theory" in : "Second International Confer-
ence on Theoretical and Methodological Issues in Machine
Translation of Natural Languages" (Proceedings); Pittsburgh,
1988.

8, Melchuk, I.A. et al. : "Dictionnaire explicatif et com-
binatoire du francais contemporain"; Les Presses de
l'Universtite de Montreal, Montreal, 1984.

9, Melchuk, I.A. : "Dependency Syntax"; Suny, New York,
1988.

10, Melchuk, I.A. & A. Polguere : "A Formal Lexicon in the
Meaning-Text Theory (or How to Do Lexica with Words)"; Com-
putational Linguistics 13, ACL, Morristown NJ, 1987.

11, Melchuk, I.A. & A.K. Zholkovsky : "Explanatory Combina-
torial Dictionary of Modern Russian"; Wiener Slawistischer
Almanach, Sonderband 14, Vienna, 1984.

12, Nirenburg, S. et al : "Lexical Realization in Natural
Language Generation" in : "Second International Conference
on Theoretical and Methodological Issues in Machine Transla-
tion of Natural Languages" (Proceedings); Pittsburgh, 1988.

13, Sinclair, J. (ed.) : "COBUILD English Language Diction-
ary"; Collins, London, 1987.

- 16 -

14, Zubizarretta, M.L. : "Levels of Representation in the
Lexicon and in the Syntax"; Foris, Dordrecht, 1987.

- 17 -

'Explanatory Combinatorial Dictionary' (ECD), an essential component
of Melchuk's 'Meaning-Text Model' (MTM),

1) Levels of description in the MTM :
semantics,
syntax (with deep and surface levels),
morphology (also with a deep-surface distinction)
phonetics (or orthographies, again with the same subdivisions).

2) Lexical Functions

1. Syn, Syn(<), Syn(>), Syn(^) : synonyms and quasi-synonyms, or inexact
synonyms, where the arrows signify having a narrower / wider /
intersecting meaning than that of f(X).

e.g. Syn (aid) = help
Syn(<) (respect) = veneration [a particular kind of

'respect']
Syn(>)(veneration) = respect
Syn(^)(demonstration) = exhibition
Syn(^)(demonstration) - protest

The last two examples show that 'demonstration' sometimes means
'exhibition', and sometimes 'protest'.

2. Conv(ijkl) : converse relation to that of the key-word, where the
subscripts refer to the actants associated with the key-word,
i.e. Conv(312)(Key) means that the 3rd, 1st and 2nd actants of the
key-word become the 1st, 2nd and 3rd actants respectively of Conv(Key).

e.g. Conv(3214)(sell) - buy

i.e. The shop sold a paper to me for 50p
3 2 1 4

=> 1 2 3 4
 I bought a paper from the shop for 5Op

3. Anti, Anti(<), Anti(>), Anti(^) : antonyms (see 1 for details).

4. Gener : generic word whose combination with a syntactic category
derived from the key-word is synonymous with that key-word.

e.g. Gener(republic) = [republican] state

5. Figur : figurative use of a word, where combined with the key-word
is synonymous with the key-word.

e.g. Figur(fog) = blanket [of fog]

6. Syntactic derivations : S(0), V(0), A(0), Adv(0), where
'syntactic derivation of a lexeme C(0)' means another lexeme or
syntagm having the same meaning as C(0) but being of a different
syntactic category.

e.g. S(0)(honest) = honesty
 A(0)(school) = scholarly
 V(0)(loss) = lose
Adv(0)(honest) = honestly

7. S(l), S(2), S(3) ... : typical noun for the 1st, 2nd, 3rd ...
actant of the key-word.

e.g. S(l)(crime) = criminal
S(2)(crime) = victim
S(l)(buy) = buyer
S(2)(buy) = product
S(3)(buy) = seller
S(4)(buy) = price

8. S(instr), S(loc), S(med), S(mod), S(res) : typical nouns for the
instrument, location, medium, mode, result of the key-word.

e.g. S(instr)(paint) = brush
 S(med)(paint) = paint
 S(res)(paint) = picture

9. Sing : a 'part' of a 'whole'.

e.g. Sing(fleet) = ship
Sing(flock) = sheep

10. Mult : converse of Sing.

e.g. Mult(ship) = fleet

11. A(l), A(2) ... : typical attribute for the 1st, 2nd actant of the
key-word.

e.g. A(l)(beard) = bearded
A(2)(consider) = in question

i.e. the attribute to describe a person with a beard is 'bearded',
where that person is the first actant of 'beard'. The second example
illustrates the synonomy of the two phrases : "If you consider the
author" and "The author in question", where 'author' is the second
actant in both cases.

12. Able(l), Able(2) ... : function describing 'being capable of ...'

e.g. Able1(fear) = the frightened (person)
Able2(fear) = the frightener

i.e. 'the frightened (person)' is capable of experiencing fear,
whereas 'the frightener' is capable of inducing fear.

13. Magn : modifiers which added to the key-word intensify the meaning
of the key-word.

e.g. Magn(memory) = excellent, prodigious, stunning,
elephantine

14. Bon : modifier expressing justification of one's being in the
state of the key-word.

e.g. Bon(anger) - righteous

15. Pos(l), Pos(2) ... : positive evaluation characterising the
actants of the key-word.

e.g. Pos(2)(opinion) = favourable

16. Oper(l), Oper(2) ... : semantically empty verb, taking 1st, 2nd
... actants of situation C(0) as its grammatical subject (GS) and the
key-word C(0) as its main object complement (CO).

e.g. Oper(1)(attention) = pay
Oper(2)(attention) = attract

By 'Semantically empty', I mean semantically empty when used with the
key-word mentioned with it. Hence 'pay' is semantically empty when
used with 'attention', but not with 'bill'.

17. Func(0), Func(l) ... : semantically empty verb, taking C(0) as its
GS and, if C(0) has actants, then lst/2nd ... actant of C(0) as its
main C0.

e.g. Func(0)(wind) = blow
Func(1)(help) = come, provide
Func(2)(list) = contain, consist [of sthg]

18. Incep, Cont, Fin : Start, Continuation & End of the situation
portrayed by the key-word.

e.g. IncepOper(l)(shape) = take
ContOper(1) (influence) = lose
FinFunc(0)(doubt) = evaporate

The second example here is one of Melchuk's, but perhaps it is not
sufficiently descriptive. The following,

ContLiquOper(1)(influence) = lose

illustrates the decline in 'influence' inherent in the verb 'lose',
which is not portrayed in the original (for more details of the LF
'Liqu', see (19) below).

N.B. Fin(P) = Incep(~P)
Cont(P) = not(Fin(P)) = not(Incep(~P))

19. Caus, Liqu, Perm : Cause, Bring an end to, Permit the situation
portrayed by the key-word.

e.g. CausOper(1)(tears) = reduce [sb to ~~]
CausFunc(0)(problem) = pose
LiquFunc(0) (crowd) = disperse

N.B. Liqu(P) = Caus(~P)
Perm(P) = not(Liqu(P)) = not(Caus(~P))

As seen in the last two classes of LF, the functions combine easily
with each other.

20. Degrad : verb portraying the fact that the situation exemplified
by the key-word is becoming worse.

e.g. Degrad(milk) = turn, curdle
Degrad(cabbage) = go to seed

21. Excess : verb expressing the fact that the key-word is functioning
excessively.

e.g. Excess(heart) = palpitate

3) Generalizations can be expressed over regularities in the formation
of collocations for members of semantically homogeneous classes of
lexemes.

Advantages of this ?

Heid and Raab (Heid & Raab '89, p.133) give the example of nouns which
express information about computers, with semantic classes
'*I-NOUNS(g)*' and '*I-NOUNS(fr)*' for German and French respectively.

I-NOUNS(g) = {Datei, Information, Nachrichten, Verzeichnis}

I-NOUNS(fr) = {fichier, information, messages, repertoire}

LiquFunc(0) (*I-NOUNS(g)*) = loeschen

LiquFunc(0) (*I-NOUNS(fr)*) = supprimer

which says that one can use 'loeschen' in German and 'supprimer' in
French to describe any of the nouns belonging to the set of
'*I-NOUNS*' for the language in question, which saves one having to
enter the fact in the lexicon for each individual noun belonging to
that class.

4) Lexical entries

HAINE, nom, fem.
1. ... Haine de X pour Y = ...

Regime
1 = X 2 = Y

1. de N 1. de N
2. PossPron 2. contre N
3. A 3. pour N

4. envers N
5. vis-a-vis de N

1. entre Npl <,N1 et N2 >

5) Translating using the BCD

Melchuk (1988,pp 99-101) (from Iordanskaja and Arbatchewsky-Jumarie
'82) shows how a French speaker knowing no Russian can translate from
Fr > Russ. The sentence involved is the following :-

5a. (Fr) Les Anglais avaient une grande admiration pour son talent,
[lit - The English had a great admiration for his talent]

5b. (Russ) Anglicane ispytyvali glubokoe vosxiscenie pered ego talantom.
[lit - English experienced profound admiration before his talent]

There are five steps involved in this operation.

(1) Look up 'admiration' in a bilingual index, = 'vosxiscenie'.

(2) Magn(admiration) = grande

Oper1(admiration)= avoir

(3) (a) Look up 'Magn(vosxiscenie)' and 'Oper1(vosxiscenie)' in the
Russian BCD,

(b)(i) select the appropriate equivalent where alternatives exist,
i.e. 'grande' is the lowest degree of Magn for French, so select
'glubokoe' as a modifier of 'vosxiscenie'

(ii) do not choose 'byt' as the value of Oper1 as this does not
allow any modifier with 'vosxiscenie', and as we have just seen one
exists ('glubokoe').

(4) Understand that 'pour' (with 'admiration') is a surface marker of
the second syntactic argument (actant).

(5) Look up the corresponding marker in the pattern for Oper1 for
Russian, 'ispytyvat'; it is 'pared'.

Now a more problematic case.

5c. (Fr) Son admiration pour ce pays durait toujours
[= His admiration for this country lasted forever]

Problem : 'ContFunc(admiration) = durer'. But there is no 'ContFunc'
LF for 'vosxiscenie', therefore invoke a paraphrase for the translation.

Solution : ContFunc is equivalent to 'notFinFunc' (see (18) and (19)
for other equivalents), and 'FinFunc(vosxiscenie) = proxodit',
==> translate 'durer' (N.B. with 'admiration' only, of course)
as 'proxodit' plus negation, thus :-

5d. (Russ) Ego vosxiscenie etoj stranoj ne proxodilo
[lit - His admiration for this country did not pass]

6. What are the prospects for doing MT with this approach ?

6a. DIOGENES (Nirenburg et al '88),
— influenced by the MTT mainly in its organization of the lexicon
— uses blackboard architecture as its control structure.

6b. GOSSIP (Kittredge et al '88),
— contains a direct implementation of the MTT for sentence generation
— has a domain-oriented planner, which reduces the search-space.

6c. Boyer and Lapalme (Boyer and Lapalme '85)
— generates all the sentences having the 'meaning' described by a
network, using a dictionary and tree transformation rules.
— implemented in PROLOG
— semantic networks are represented as follows :

MOVE

 l/ 2/ \3 \4
 1 / / \ \
 many -—> sale y z 20

— representation of the predicate 'move(x,y,z,w)', i.e. 'x' moved up
'w' units (w=20 here) from 'y' units to 'z' units (= 'Sales increased
by 20 units').

— Lexical Rules
e.g. syn(shoot,fire).

s0(increase1,increase2).
oper1(increase2,show).

oper1(analysis,perform).
Paraphrasing Rules (about 60), are reversible

e.g. C0 (v) <=> Oper1 (S0 (C0)) + S0 (C0)

where C0 stands for the head lexeme ('v' - verb) and S0 for the
deverbal noun derived from C0.

Example ?
The crowd received [C0] Gorbachov well

<==>

The crowd gave [Oper1 (S0 (C0))] Gorbachov a good reception [S0(C0)].

i.e. 'C0 = receive',
'S0(receive) = reception',
'Oper1(reception) = give'.

By substitution of these values into the rule above, i.e. "receive <->
give + reception", indicating the synonomy between the verb 'receive'
and the phrase 'give a reception'.

Lexical Design in NT systems

Advantages of the 'non-structuring' approach :
— simple to load up a mini-lexicon sufficient for a sub-domain, i.e.
they are easily manipulable
— to analyse or generate a text with such a system, only have to deal
with the words present in the text. Computationally this is very
practical.

Disadvantages :
— system is prevented from performing high-level linguistic tasks,
such as looking for alternative translations and making subtle
stylistic choices.

Advantages of the ECD :
— rigorously but consistently structured
— possible to paraphrase a deep syntactic representation by means of
the lexical functions
— the lexicalisation of a semantic representation follows naturally
from the fact that a semantic item used for labelling a node is the
actual sense of a word, i.e. a lexeme

NB, Melchuk (op cit p.268) : "The only common denominator of two texts
in different languages is the state of affairs referred to, and not a
semantic representation of either text."

Disadvantages of the ECD :
— it is claimed that the information encoded in it is far too
complicated for most computational applications.

But if we look at a couple of traditional problems for NT, we see that
they just fall away entirely owing to the general set-up of the ECD.

(i) Support Verbs

Oper1(Question) = ask (Eng)
Oper1(Question) = poser (Fr)
Oper1(Pregunta) = hacer (Sp)
Oper1(Frage) = stellen (Ger)

(ii) Anaphora Resolution

e.g. "Twelve Conservative members of the club returned votes but three
of them were spoiled".

AntiVer(vote) = spoiled

REFERENCES

1, Boyer, M. & G. Lapalme : "Generating Sentences from Semantic
Networks" in "Natural Language Understanding and Logic Programming";
ed. Dahl, V. & P. Saint-Dizier; North Holland, Amsterdam, 1985.

2, Cruse, D.A. : "Lexical Semantics"; CUP, Cambridge, 1986.

3, Heid, U. : "Lexikalische Funktionen zur Beschreibung von
Kollokationen - Notizen, Materialsammlung"; Internal Paper,
Universitaet Stuttgart, 1989.

4, Heid, U. & S. Raab : "Collocations in Multilingual Generation"
in : "Fourth Conference of the European Chapter of the ACL"
(Proceedings); UMIST, Manchester, 1989.

5, Iordanskaja, L. & N. Arbatchewsky-Jumarie : "Lexicographic
Applications of Lexical Functions : Two Sample Lexical Entries from an
Explanatory Combinatorial Dictionary"; BLS8, Berkeley, 1982.

6, Isabelle, P. : "Machine Translation at the TAUM group"; paper
presented at The ISSCO "Tutorial on Machine Translation", 1984.

7, Kittredge, R. et al : "Multi-Lingual Text Generation and the
Meaning-Text Theory" in : "Second International Conference on
Theoretical and Methodological Issues in Machine Translation of
Natural Languages" (Proceedings); Pittsburgh, 1988.

8, Melchuk, I.A. et al. : "Dictionnaire explicatif et combinatoire du
francais contemperain"; Les Presses de l'Universite de Montreal,
Montreal, 1984.

9, Melchuk, I.A. : "Dependency Syntax"; Suny, New York, 1988.

10, Melchuk, I.A. & A. Polguere : "A Formal Lexicon in the
Meaning-Text Theory (or How to Do Lexica with Words)"; Computational
Linguistics 13, ACL, Morristown NJ, 1987.

11, Melchuk, I.A. & A.K. Zholkovsky : "Explanatory Combinatorial
Dictionary of Modern Russian"; Wiener Slawistischer Almanach,
Sonderband 14, Vienna, 1984.

12, Nirenburg, S. et al : "Lexical Realization in Natural Language
Generation" in : "Second International Conference on Theoretical and
Methodological Issues in Machine Translation of Natural Languages"
(Proceedings); Pittsburgh, 1988.

13, Sinclair, J. (ed.) : "COBUILD English Language Dictionary";
Collins, London, 1987.

14, Zubizarretta, M.L. : "Levels of Representation in the Lexicon and
in the Syntax"; Foris, Dordrecht, 1987.

