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ABSTRACT 

A reversible grammar is usually understood as a 
computational or linguistic system that can be used 
both for analysis ~nd generation of the language it 
defines. For example, a directive 
pars_gen (Sent,For~n) would assign, depending upon 
the binding status Of its arguments, the representation 
in (Toronto,chased (Fido,John )) to the sentence Fido 
chased John in To~onto, or it would produce one of 
the several possib!e paraphrases of this sentence 
given its represen~tion. Building such bi-directional 
systems has long been considered critical for various 
natural language processing tasks, especially in 
machine translation. This paper presents a general 
computational method for automated inversion of a 
unification-based p~ser for natural language into an 
efficient generator. It clarifies and expands the 
results of earlier work on reversible grammars by this 
author and the others. A more powerful version of 
the grammar inversion algorithm is developed with a 
special emphasis being placed on the proper treat- 
ment of recursive ~rules. The grammar inversion 
algorithm described here is at the core of the 
Japanese-English :machine translation project 
currently under development at NYU. 

R E V E R S I B L E  G R A M M A R S  

A reversible grammar is usually understood as 
a computational or linguistic system that can be used 
both for analysis ~ d  generation of the language it 
defines. For : example, a directive 
pars_gen (Sent,Form) would assign, depending upon 
the binding status of its arguments, the representation 
in (Toronto, chased (Fido,John)) to the sentence Fido 
chased John in Toronto, or it would produce one of 
the several possibly paraphrases of this sentence 
given its representation. In the last several years, 
there have been a growing amount of research 
activity in reversibi¢ grammars for natural language, 
particularly in condecfion with machine translation 
work, and in natural language generation. Develop- 
ment of reversible 'grammar systems is considered 
desirable for variet), of reasons that include their 
immediate use in both parsing and generation, a 

reduction in the development and maintenance effort, 
soundness and completeness of linguistic coverage, 
as well as the match between their analysis and syn- 
thesis capabilities. These properties are important in 
any linguistic system, especially in machine transla- 
tion, and in various interactive natural language sys- 
tems where the direction of communication fre- 
quently changes. In this paper we are primarily 
interested in the computational aspects I of reversibil- 
ity that include bi-directional evaluation and dual 
compilation of computer grammars, inversion of 
parsers into efficient generators, and derivation of 
"generating-versions" of existing parsing algorithms. 
Some of the recent resea~h in this area is reported in 
(Calder et al., 1989; Dymetman and Isabelle, 1988; 
Dymetman et al., 1990; Estival, 1990; Hasida and 
Isizaki, 1987; Ishizaki, 1990; Shieber, 1988; Shieber 
et al., 1990; Strzalkowski, 1990a-c; Strzalkowski and 
Peng, 1990; van Noord, 1990; and Wedekind, 1988). 
Dymetman and Isabelle (1988) describe a top-down 
interpreter for definite clause grammars that statically 
reorders clause literals according to a hand-eoded 
specification, and further allows for dynamic selec- 
tion of AND goals 2 during execution, using the tech- 
nique known as the goal freezing (Colmerauer, 1982; 
Naish, 1986). Shieber et al. (1990) propose a mixed 
top-down/bottom-up interpretation, in which certain 
goals, namely those whose expansion is defined by 
the so-called "chain rules", 3 are not expanded during 
the top-down phase of the interpreter, but instead 
they are passed over until a nearest non-chain rule is 
reached. In the bottom-up phase the missing parts of 
the goal-expansion tree will be filled in by applying 

i For linguistic aspects of reversible grammars, see (Kay, 
1984; Landsbergen, 1987; Neuman, 1990; Steedman, 1987). 

2 Literals on the fight-hand side of a clause create AND 
goals; literals with the same predicate names on the left-hand sides 
of different clauses create OR goals. 

3 A chain rule is one where the main binding.carrying argu- 
ment (the "head") is passed unchanged from the left-hand side to 
the fight. For example, assert(P) --> 
subj(Pl),verb(P2),obj(PI,P2,P), is a chain rule with respect to the 
argument P. assuming that P is the 'head' argument. 
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the chain rules in a backward manner. This tech- 
nique, known as 'head-driven' evaluation, can be 
applied quite profitably to various grammar compila- 
tion tasks, including the inverse computation, but it 
requires that the underlying grammar is given in a 
form where the information about the semantic heads 
in nonterminals is made explicit. In addition, the pro- 
cedure, as described in (Shieber et al, 1990), makes 
no attempt to impose a proper ordering of  the "non- 
chain" goals, which may have an adverse effect on 
the generator efficiency. 4 

The grammar inversion method described in 
this paper transforms one set of PROLOG clauses 
(representing a parser, eg.) into another set of 
clauses (representing a generator) using an off-line 
compilation process. The generator is thus just 
another PROLOG program that has the property of 
being an inverse of the parser program, that is, it per- 
forms inverse computation. 5 A unification grammar 
is normally compiled into PROLOG tO o b t a i n  an exe- 
cutable program (usually a parser). Subsequently, the 
inversion process takes place at the PROLOG c o d e  

level, and is therefore independent of any specific 
grammar formalism used. The obtained inverted pro- 
gram has been demonstrated to be quite efficient, and 
we noted that the same technique can be applied to 
parser/generator optimization. Our method is also 
shown to deal adequately with recursive clauses that 
created problems in purely top-down compilation. 6 
The inter-clausal inversion procedure discussed here 
effects global changes in goal ordering by moving 
selected goals between clauses and even creating 
new clauses. The net effect is similar to that achieved 
in the head-driven evaluation, except that no explicit 
concept of 'head' or 'chain-rule' is used. The algo- 
rithm has been tested on a substantial coverage PRO- 
LOG grammar for English derived form the PRO- 
TEUS Parser Grammar (Grishman, 1986), and the 
Linguistic String Grammar for English (Sager, 
1981). 7 

* Some concern has also been voiced (Gardent and Plain- 
fosse, 1990) about the termination conditions of this algorithm. 

5 Some programs may in fact be multi-directional, and there- 
fore may have several ' inverses'  or 'modes ' .  

6 Shieber et al. (1990) have shown that some recursive 
clauses c.annot be executed using top.down evaluation thus 
motivating the use of a mixed top-down/bouom-up evaluation of 
their 'head.driven'  compilation. 

At present the grammar consists of 400+ productions. 

IN AND OUT ARGUMENTS IN LITERALS 

Literals in the grammar clauses can be marked 
for the "modes" in which they are used. When a 
literal is submitted to execution then those of its argu- 
ments which are bound at that time are called the "in" 
arguments. After the computation is complete, some 
of the previously unbound arguments may become 
bound; these are called the "out" arguments. For 
example, in concat([a,b],[c,d],Z), which is used for 
list concatenation, the first two arguments are "in", 
while the third is "out". The roles are reversed when 
concat is used for decomposition, as in 
concat(X,Y,[a,b,c,d]). In the literal 
subject(A1,A2,NUM,P), taken from an English gram- 
mar, AI and A2 are input and output strings of words, 
NUM is the number of the subject phrase, and P is 
the final translation. When the grammar is used for 
parsing, the "in" argument is A1; the "out" arguments 
are A2, NUM and P; when it is used for generation, 
the "in" argument is P; the "out" arguments are A1 
and NUM. In generation, A2 is neither "in" nor "out". 

"In" and "out" status of arguments in a PROLOG 
program can be computed statically at compile time. 
The general algorithm has been described in (StrTal- 
kowski, 1990c; Strzalkowski and Peng, 1990). 

ESSENTIAL ARGUMENTS: AN EXTENSION 

The notion of an essential argument in a PRO- 
LOG literal has been first introduced in (Strzalkowski, 
1989), and subsequently extended in (Strzalkowski, 
1990bc; Sttzalkowski and Peng, 1990). In short, X is 
an essential argument in a literal p (" .- X • -- ) if X is 
required to be "in" for a successful evaluation of this 
literal. By a successful evaluation of a literal we 
mean here the execution that is guaranteed to stop, 
and moreover, that will proceed along an optimal 
path. For instance, an evaluation of the goal 
mere (a,L), with an intention to find a list L of which 
a is a member, leads to a non-terminating execution 
unless L's value is known. Likewise, a request to 
generate a main verb in a sentence when the only 
information we have is its root form (or "logical 
form") may lead to repeated access to the lexicon 
until the "correct" surface form is chosen. Therefore, 
for a lexicon access goal, say 
acclex (Word,Feats,Root), it is reasonable to require 
that both Feats and Root are the essential arguments, 
in other words, that the set {Feat,Root} is a minimal 
set of essential arguments, or a MSEA, for acclex. 
The following procedure computes the set of active 
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MSEA's in a clause head literal, s 

PROCEDURE MSEAS(MS,MSEA,VP,i,OUT) 

[computing active MSEAs] 

Given a clause p ( X 1 , . "  ,X,) :-  r1(Xl, | ." .Xl.kt), 
• " ,  rs(X,.l ""Xs.~,),  where i_>1, we compute the 

set of active MSEAs in the head predicate p as fol- 
lows: 9 

(1) Start with MSEA = (~, 
VP = V A R ( { X i , ' ' '  ,X,}), i=1, and 
OUT = OUT0 = 0 .  The set of active MSEA's for 
p is returned in MS. 

(2) For i = l , ' " , s ,  let MR i be the set of active 
MSEA's of r i, and let MRUi = {ml.j I j = l  . . .  ri} 
be obtained from MR i by replacing all variables 
by their corresponding actual arguments of ri. 

(3) Compute the set MPi = {I.q.j I j = l  - - .  ri}l , where 
IXi.j = (VAR (mi.j) - OUTi-l.k), where OUTi_t.6 is 
the set of all :'out" arguments in literals r~ to 
r i - l .  

(4) For each l.tij in MPi where l ~ . s  do the follow- 
ing: 

(a) if l.tid = O then: 

(i) compuie set OUTj of "out" arguments of 
ri; 

(ii) compute OUTij := OUTj u OUTi-l.t; 

(iii) call 
MSEAS (MSi. j,|.[i_l .k, VP,i + 1, OUTi.j); 

(b) otherwise, if ~i.j ~ (~ then find all distinct 
minimal size sets vt c VP such that when- 
ever the arguments in vt are "in", then the 
arguments ida I.ti,j are "out". If such vt 's exist, 
then for eve W vt do: 

(i) assumeiv, is "in" in p; 

(ii) compute the set OUTi.h of "out" argu- 
ments in all literals from r I to ri; 

(iii) call 
MSEAS,(MSi.h ,I.ti_1.t t.A,,, VP,i + l,OUTi.h ); 

(c) otherwise, if no such v, exist, MSij := ¢~. 

(5) Compute MS :=: t,...) MSij; 
j=l..r 

' Active MSEA's are those existing with a given definition 
of a predicate. Other, non-active MSEA's can be activated when 
• h e  clauses making up thi~ definition are altered in some way. The 
procedure can be straightforwardly augmented to compute all 
MSEAs (Strzalkowski, 1990c). 

9 For i=l the sets of essential arguments are selected so as to 
minimize the number of possible solutions to 1. 

(6) For MSEAS (MS,MSEA,VP,s+I,OUT), i.e., for 
i = s + l , d o M S  := {MSEA}. 

As a simple example consider the following clause: 

sent(P) :- vp(N,P),np(N). 

Assuming that MSEA'S for vp and np are {P} and 
{N}, respectively, and that N is "out" in vp, we can 
easily compute that {P} is the MSEA in sent. To see it, 
we note that MRU1 for vp is { {P} } and, therefore, 
that I.q.l = {P}. Next, we note that MRU2 for np is 
{ {N}}, and since OUTi.1 from vp is {N}, we obtain 
that l.t2.1 = ~ ,  and subsequently that {P} is the only 
MSEA in sent. 

The procedure presented above is sufficient in 
many cases, but it cannot properly handle certain 
types of recursive definitions. Consider, for example, 
the problem of assigning the set of MSEA's to 
mem(Elem,List), where mem (list membership) is 
defined as follows: 

mem (Elem, [First IList ]) :-  
mere (Elem,List). 

mem (Elem, [Elem I List ]). 

The MSEAS procedure assigns MS=[ {Elem},{List} }, 
we note however, that the first argument of mem can- 
not alone control the recursion in the first clause 
since the right-hand side (rhs) literal would repeat- 
edly unify with the clause head, thus causing infinite 
recursion. This consideration excludes {Elem} from 
the list of possible MSEAs for mere. In (Strzalkowski, 
1989) we introduced the directed relation always 
unifiable among terms, which was informally charac- 
terized as follows. A term X is always unifiable with 
term Y if they unify regardless of any bindings that 
may occur in X, providing that variables in X and Y 
are standardized apart, and that Y remains unchanged. 
According to this definition any term is always 
unifiable with a variable, while the opposite is not 
necessarily Irue. For example, the variable X is not 
always unifiable with the functional term f(Y) 
because binding X with g(Z) will make these two 
terms non-unifiable. This relation can be formally 
characterized as follows: given two terms X and Y we 
say that Y is always unifiable with X (and write X_<Y) 
iff the unification of X and Y yields Y, where the vari- 
ables occurring in X and Y have been standardized 
apart. 1° Since _< describes a partial order among 
terms, we can talk of its transitive closure _<*. Now 
we can augment the MSEAS procedure with the fol- 
lowing two steps (to be placed between steps (2) and 

,0 So defined, the relation always uni~ble becomes an in- 
verse of another relation: less instantiat~d, hence the particular 
direction of S sign. 
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(3)) that would exclude certain MSEAs from re.cur- 
sive clauses. 

(2A) 
If r i = p then for every mi, u E MRUi if for every 
argument Yt ~ mi.,,, where Yt is the l-th argument 
in ri, and Xi is the l-th argument in p, we have 
that Xt_<* Yi then remove mi, u from MRU i. 

(2B) 
For every set mi, uj = mi. u u { Zi. j }, where Zi,j is 
the j-th argument in r~ such that it is not already 
in mi.u and it is not the case that YiS'Zid,  where 
Yj is a j-th argument in p, if mi.ui ts not a super- 
set of any other mi, t remaining in MRUi, then 
add mi, ui to MRU1.  

In order for the MSEAS procedure to retain its practi- 
cal significance we need to restrict the closure of <_ to 
be defined only on certain special sets of terms that 
we call ordered series. H It turns out that this res- 
tricted relation is entirely sufficient in the task of 
grammar inversion, if we assume that the original 
grammar is itself well-defined. 

DEFINITION 1 (argument series) 
Let  p ( .  • • Yo " • • ) : -  r l ,  • • • ,rn be a clause, and 
ril, " " • ,rid be an ordered subset of the literals on the 
right-hand side of this clause. Let ri~,t be either a 
literal to the right of rlk or the head literal p. The 
ordered set of terms < Y o , X i , Y l ,  " ' "  ,Xk,Yk,Xk+l > is 
an argument series iff the following conditions are 
met: 

(1) Xk+~ is an argument in ri~+~; 

(2) for every i=1 " . - k ,  Xi is different from any Xj 
for j <i; 

(3) for every j = l  " . -  k, X i and Yi are arguments to 
%, that is, r l j ( . . . X i , Y j . . .  ), such that if Xj is 

"in" then Yj is "out" 12; and 

(4) for every j = 0 . . - k ,  either Xj+i=Y j or 
X j+ 1 = f  (Yj) or Yj=f (X j+l), where f (X) denotes a 
term containing a subterm X. 

Note that this definition already ensures that 
the argument series obtained between X0 and Xk+t is 
the shortest one. As an example, consider the follow- 
ing clauses: 

u A similar concept of  g u i d e - s t r u c t u r e  is introduced in 
(Dymetman et al., 1990), however the ordered series is less restric- 
tive and covers a larger class of recursive programs. 

12 yj may be partially "out"; see (Strzalkowski, 1990c) for 
the definition of delayed "out" status. 

vp(X) :- np(X,Y),vp(Y). 
np f f  (x),x). 

Assuming that the argument X in the literal vp (X) on 
the left-hand side (lhs) of the first clause is "in", we 
can easily check that <X,X,Y ,Y> constitutes an argu- 
ment series between arguments of vp in the first 
clause. 

DEFINITION 2 (weakly ordered series) 13 
An argument series < Y o , X 1 , Y 1 , . . .  ,Xk,YkX~+i> in 
the clause P : - r l  . . . r ,  is weakly ordered iff 
Yo_<*Xk+l [or Xk+l_<'Y0], where _<* is a closure of <_ 
defined as follows: 

(1) for every i=1 . - .  k, such that r i j ( " "  X j , Y i " "  ) 
there exists a clause 
r i j ( " "  ,X,Y, . - " ) : - s l ,  • "" , s , ,  where X and Y 
unify with X; and Y./, respectively, such that 
X_<*Y [or Y_<*:(]; 

(2) for every i=O. .  "k, Xi+l=Yi or Xi+l=f(Yi)  [or 
ri=f  (Xi+l)]. 

Looking back at the definition of mem (Elem,List) we 
note that the first (recursive) clause contains two 
ordered series. The first series, <Elem,Elem >, is not 
ordered (or we may say it is ordered weakly in both 
directions), and therefore Elem on the left-hand side 
of the clause will always unify with Elem on the 
right, thus causing non-terminating recursion. The 
other series, <[First IList],List>, is ordered in such 
a way that [First IList] will not be always unifiable 
with List, and thus the recursion is guaranteed to ter- 
minate. This leaves {List} as the only acceptable 
MSEA f o r  mem. 

Consider now the following new example: 

vp(X)  : -  np (X ,Y ) , vp (Y ) .  
vp(X) :- v(X). 
np (x,f (x)). 

Note that the series <X,X,Y ,Y> in the first clause is 
ordered so that X_<*Y. In other words, Y in vp on the 
rhs is always unifiable with X on the lhs. This means 
that a non-terminating recursion will result if we 
attempt to execute the first clause top-down. On the 
other hand, it may be noted that since the series is 
ordered in one direction only, that is, we don't  have 
Y_<*X, we could invert it so as to obtain Y_<*X, but not 
X_<*Y. To accomplish this, it is enough to swap the 
arguments in the clause defining np, thus redirecting 
the recursion. The revised program is guaranteed to 

,3 A series can also be strongly ordered in a given direction, 
if it is weakly ordered in that direction and it is not weakly ordered 
in the opposite direction. 
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terminate, providing that vp's argument is bound, 
which may be achieved by further reordering of 
goals.t4 ! 

The ordered Series relation is crucial in detect- 
ing and removing!of non-terminating left-recursive 
rules of the grammar. The first of the following two 
algorithms finds if an argument series is ordered in a 
specified directio n, without performing a partial 
evaluation of goals~ The second algorithm shows how 
a directed series can be inverted. 

ALGORITHM l (finding if Yo_<'Xk+~ (weakly)) 
Given an: argument series 
<Y0,Xl ,Y1, " '"  ,X~,YkX~+1 > do the following: 

(1) Find if for every i = 0 . . ,  k, either Xi+l=Yi or 
Xi+l=f(Yi); if the answer is negative, return NO 
and quit. 

(2) For every i=1 • • • k, find a clause 
ri~(" " . X , Y .  " ' : ) : - s l ,  " " , s in  such that Xj and 
Yj unify with X and Y, respectively, and there is a 
leading series ~.X • • • Y> such that X_<*Y. Return 
NO if no such clause is found, and quit. 

(3) In the special i case when k=0, i.e., p has no 
right-hand side, Yo_<°X~ if either Yo=X~ or 
Xl=f(Yo) .  If this is not the ease return NO, and 
quit. 

(4) Otherwise, return YES. 

When ALGoRrrHM i returns a YES, it has generated 
an ordered path (i.e,, the series with all the necessary 
subseries) between X 0 and Xk+l to prove it. If this 
path is ordered in one direction only, that is, there 
exists at least one pair of adjacent elements Xi and Yj 
within this path such that either Xi=f(Yj) or 
Yj=f(Xi), but not Xi=Yj, then we say that the path is 
properly ordered. :In addition, if we force ALGO- 
RITHM I tO generate all the paths for a given series, 
and they all turn out to be properly ordered, then we 
will say that the series itself is properly ordered. We 
can attempt to invert a properly ordered path, but not 
the one which is only improperly ordered, i.e., in 
both directions. Therefore, for a series to be inverti- 
ble all its paths must be properly ordered, though not 
necessarily in the sahae direction) s 

ALGORITHM 2 (inverting properly ordered series) 
Given a clause p ! - r l , - . . , r , ,  and an argument 

14 Reordering of goals may be required to make sure that ap- 
propnate essenual arguments are bound. 

ts Recursion defi~ed with respect to improperly ordered 
series is oonsidered ill-formed. 

series <Yo,X1,Y1, ' ' ' ,Xk ,YkX,+i> such that it is 
properly (weakly) ordered as X0_<'Xk+l [or 
Xk+l_<'X0], invert it as follows: 

(1) For each %(-- . ,Xj ,Yj ,  " ' )  appearing on the 
rhs of the clause, find all clauses 
rlj(. . . ,X,Y, . . .  ) :- s l ,  "'" ,sin such that X and 
Y unify with X/and Yj, respectively, and there is 
a proper ordering X_<*Y [or Y_<*X]. 

(2) Recursively invert the series <X . .  • Y>; for the 
special case where m =0, that is, rij clause has no 
rhs, exchange places of X and Y. 

(3) For every pair of Yi and Xi+t (i=O.." k), if either 
Yi=f(Xi+l) or Xi+l=f(Yi), where f is fully 
instantiated, exchange Yi with Xi+l, and do noth- 
ing otherwise. 

We now return to the MSEAS procedure and add a 
new step (2C), that will follow the two steps (2A) 
and (2B) discussed earlier. The option in (2C) is used 
when the expansion of a MSEA rejected in step (2A) 
has failed in (2B). In an earlier formulation of this 
procedure an empty MSEA was returned, indicating 
an non-executable clause. In step (2C) we attempt to 
rescue those clauses in which the recursion is based 
on invertible weakly ordered series. 

(2C) 
Find an argument Y~ ~ mi.u, a t-th argument of r i, 
such that Xt_<" Yt, where Xt is the t-th argument in 
the head literal p and the series <Xt " '"  Yt> is 
properly ordered. If no such Yt is found, augment 
mi,u with additional arguments; quit if no further 
progress is possible) 6 Invert the series with 
ALGORITHM 2, obtaining a strong.ly ordered series 
< X ' t " "  Y't> such that Y't_< X't.  Replace Yi 
with Y't in rni,u and add the resulting set to 
MRU~. 

At this point we may consider a specific linguistic 
example involving a generalized left-recursive pro- 
duction based on a properly ordered series) 7 

[1] sent (V1, V 3,Sem ) :- 
np(V1,V2,Ssem), 
vp (V2, V3,[Ssem ],Sem). 

[2] vp (V1, V3,Args, Vsem) :- 
vp (V1, V2, [Csem I Args ], Vsera), 
np( V2, V3, Csem). 

Is As  in step (2B) we have to maintain the minimality of 
m~... 

i~ This example is loosely based on the grammar described 
in (Shieber et al., 1990). 
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[3] vp (V1, V2,Args, Vsem) :- 
v (VI, V2,Args, Vsem). 

[41 v (V1, V2, [Obj, Subj ],chased (Subj, Obj)) :- 
chased (VI, V2). 

[5] chased ([chased IX ],X). 
[6] np ([john I X ],X,john ). 
[71 np ([fido IX ],X,fido ). 

We concentrate here on the clause [2], and note that 
there are three argument series between the vp 
literals: <V1,VI>, <Args, [Csem IArgs]>, and 
<Vsem,Vsem >, of which only the second one is 
invertible. We also note that in clause [3], the collec- 
tion of MSEAs for vp include {V1} and {Vsem}, 
where V1 represents the surface suing, and Vsem its 
"semantics". When we use this grammar for genera- 
tion, {V1} is eliminated in step (2A) of the MSEAS 
procedure, while {Vsem}, is rescued in step (2C), 
where it is augmented with Args which belongs to the 
invertible series. We obtain a new set {Args',Vsem}, 
which, if we decide to use it, will also alter the clause 
[2] as shown below, is 

[2a] vp(V1,V3,[Csem IArgs],Vsem) :- 
vp (V1, V2,Args, Vsem),np (V2, V3, Csem). 

This altered clause can be used in the generator code, 
but we still have to solve the problem of having the 
[Csem IArgs] bound, in addition to Vsem. 19 It must 
be noted that we can no longer meaningfully use the 
former "in" status (if there was one) of this argument 
position, once the series it heads has been inverted. 
We shall return to this problem shortly. 

INTRA-CLAUSAL INVERSION 

The following general rule is adopted for an 
effective execution of logic programs: never expand 
a goal before at least one of its active MSFEAs is "in". 
This simple principle can be easily violated when a 
program written to perform in a given direction is 
used to run "backwards", or for that matter, in any 
other direction. In particular, a parser frequently can- 
not be used as a generator without violating the 
MSEA-binding rule. This problem is particularly 
acute within a fixed-order evaluation strategy, such 
as that of PROLOG. The most unpleasant consequence 
of disregarding the above rule is that the program 
may go into an infinite loop and have to be aborted, 
which happens surprisingly often for non-trivial size 

Is In our inversion algorithm we would not alter the clause 
until we find that the MSEA needs to be used. 

19 Vsem is expected to be "in" during generation, since it car- 
ties the "semantics" of vp, that is, provides the input to the genera- 
tor. 

programs. Even if this does not happen, the program 
performance can be seriously hampered by excessive 
guessing and backtracking. Therefore, in order to 
run a parser in the reverse, we must rearrange the 
order in which its goals are expanded. This can be 
achieved in the following three steps: 

PROCEDURE INVERSE 

(1) Compute "in" and "out" status of arguments for 
the reversed computation. If the top-level goal 
parse (String,Sem) is used to invoke a generator, 
then Sere is initially "in", while String is 
expected to have "out" status. 

(2) Compute sets of all (active and non-active) 
MSEAs for predicates used in the program. 

(3) For each goal, if none of its MSEAs is "in" then 
move this goal to a new position with respect to 
other goals in such a way that at least one of its 
MSEAs is "in". If this "in" MSEA is not an active 
one, recursively invert clauses defining the 
goal's predicate so as to make the MSEA become 
active. 

In a basic formulation of the inversion algorithm the 
movement of goals in step (3) is confined to be 
within the fight-hand sides of  program clauses, that 
is, goals cannot be moved between clauses. The 
inversion process proceeds top-down, starting with 
the top-level clause, for example parse (String,Sere) 
• - sent(String,[],Sere). The restricted movement 
inversion algorithm INVERSE has been documented in 
detail in (Strzalkowski, 1990ac). It is demonstrated 
here on the following clause taken from a parser pro- 
gram, and which recognizes yes-no questions: 

yesnoq (A1,A4,P) :- 
verb (A1,A2,Num,P2), 
subject (A2,A3,Num,P1), 
object (A3,A4,P I,P2,P). 

When rewriting this clause for generation, we would 
place object first (it has P "in", and A3, P1, P2 "out"), 
then subject (it has the essential PI "in", and A2 and 
Num "out"), and finally verb (its MSEA is either 
{A1} or {Num,P2}, the latter being completely "in" 
now). The net effect is the following generator 
clause: 2o 

yesnoq (A1,A4,P) :- 
object (A3,A4,P I,P2,P), 
subject (A2,A3,Num,P1), 
verb (A1,A2,Num,P2). 

INVERSE works satisfactorily for most grammars, but 
it cannot properly handle certain types of clauses 

20 Note that the surface linguistic string is not generated 
from the left to the tight. 
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where no definite ordering of goals can be achieved 
even after redefinition of goal predicates. This can 
happen when two or more literals wait for one 
another to have bindings delivered to some of their 
essential argument. The extended MSEAS procedure 
is used to define a general inversion procedure INTER- 
CLAUSAL tO be discussed next. 

INTER-CLAUSA'L INVERSION 
Consider again the example given at the end of 

the section on essential arguments. After applying 
MSEAS procedure we find that the only way to save 
MSEA {Args, Vsera} is to invert the series 
~.Args,[Csem IArgs]> between vp literals. This 
alters the affected, clause [2] as shown below (we 
show also other clauses that will be affected at a later 
stage): 2] 

[1] sent(Sen) :- 
np (Ssem), W ([Ssem ],Sem). 

[2] vp([Csem IArg: ],Vsem) :- 
vp (Args, VSem ),np (Csem ). 

[3] vp (Args, Vsem)':- 
v (Args, Vs(m). 

In order to use the second clause for generation, we 
now require [CsemlArgs] to be "in" at the head literal 
vp. This, however, is not the case since the only input 
we receive for generation is the binding to Sera in 
clause [1], and subsequently, Vsem in [2], for exam- 
ple, ?-sent (chased (Fido,John)). Therefore the code 
still cannot be executed. Moreover, we note that 
clause [1] is now deadlocked, since neither vp nor np 
can be executed first. 22 At this point the only remain- 
ing option is to usel interclausal ordering in an effort 
to inverse [1]. We move v from the rhs of [3] to [1], 
while np travels from [1] to [3]. The following new 
code is obtained (the second argument in the new vp" 
can be dropped, and the new MSEA for vp" is 
{Args} ): 2a 

7 
aZ The string variables VI,  V2, etc. are dropped for clarity. 

22 Them are situations when a clause would not appear 
deadlocked but still require expansion, for example if we replace 
[11 by sent(Sem,Ssern) :-Ivp(Ssern,Sem), with Ssem bound in sent. 
This clause is equivalent to sent(Sera,Ssem) :- 

. . . 

Vsem=Ssern,vp(Vsem,Sem), but since the series m 121 has been in- 
verted we can no longerlmeaningfull y evaluate the ths fiterals in 
the given order. In fact we need to evaluate vp first which cannot be 
done until Vsem is bound. 

An alternative is:to leave Ill  intact (except for goal order- 
ing) and add an "interface" clause that would relate the old vp to 
the new vp'. In such case the procedure would generate an addi- 
tional argument for vp t ih order to remm the final value of Ar&s 
which needs to be passed to np. 

[1'1 sent(Sere) :- 
v (Args, Sera),vp'(Args). 

[2'] vp"([Csem IArgs ]) :- 
vp'(Args),np (Csem). 

[3'] vp'([Ssem ]) :-  
np ( Ssem ). 

This code is executable provided that Sere is bound in 
sent. Since Args is "out" in v, the recursion in [2'] is 
well defined at last. The effect of the interclausal 
ordering is achieved by adopting the tNTERCLAUSAL 
procedure described below. The procedure is 
invoked when a deadlocked clause has been 
identified by INVERSE, that is, a clause in which the 
right-hand side literals cannot be completely ordered. 

PROCEDURE INTERCLAUSAL(DLC) 

[Inter-clausal inversion] 

(1) Convert the deadlocked clause into a special 
canonical form in which the clause consists 
exclusively of two types of literals: the 
unification goals in the form X=Y where X is a 
variable and Y is a term, and the remaining 
literals whose arguments are only variables (i.e., 
no constants or functional terms are allowed). 
Any unification goals derived from the head 
literal are placed at the front of the rhs. In addi- 
tion, if p ( . . .  X . - .  ) is a recursive goal on the 
rhs of the clause, such that X is an "in" variable 
unifiable with the head of an inverted series in 
the definition of p, then replace X by a new vari- 
able X1 and insert a unification goal XI=X. The 
clause in [1] above is transformed into the fol- 
lowing form: 

[1] sent(Sem) :- 
np ( Ssem ), 
A rgs = [Ssem ], 
vp (Args, Sem ). 

(2) Select one or more non-unification goals, starting 
with the "semantic-head" goal (if any), for static 
expansion. The "semantic-head" goal is the one 
that shares an essential argument with the literal 
at the head of the clause. Recursive clauses in 
the definitions of goal predicates should never be 
used for expansion. In the example at hand, vp 
can be expanded with [3]. 

(3) Convert the clauses to be used for goal expan- 
sion into the canonical form. In our example [3] 
needs no conversion. 

(4) Expand deadlocked goals by replacing them with 
appropriately aliased fight-hand sides of the 
clauses selected for expansion. In effect we per- 
form a partial evaluation of these goals. Expand- 
ing vp in [1] with [3] yields the following new 
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clause: 

[la] sent (Sere):- 
np ( Ssem ), 
Args =[Ssem ], 
v (Args,Sem). 

(5) Find an executable order of the goals in the 
expanded clause. If not possible, expand more 
goals by recursively invoking INTFERCLAUSAL, 
until the clause can he ordered or no further 
expansion is possible. In our example [la] can 
be ordered as follows: 

[lb] sent (Sem ) :- 
v(Args,Sem), 
Args=[Ssem ], 
np (Ssem). 

(6) Break the expanded clause back into two (or 
more) "original" clauses in such a way that: (a) 
the resulting clauses are executable, and (b) the 
clause which has been expanded is made as gen- 
eral as possible by moving as many unification 
goals as possible out to the clause(s) used in 
expansion. In our example v(Args, Sem) has to 
remain in [lb], but the remainer of the rhs can be 
moved to the new vp" clause. We obtain the fol- 
lowing clauses (note that clause [2] has thus far 
remained unchanged throughout this process): 

lib] sent (Sem) :- 
v (Args,Sem), 
vp'(Args,_). 

[2b] vp'([Csem IArgs],Sem) :- 
vp'(Args,Sem), 
np ( Csem ). 

[3b] vp'(Args,_) :- 
Args =[Ssem ], 
np ( S sem ). 

(7) Finally, simplify the clauses and return to the 
standard form by removing unification goals. 
Remove superfluous arguments in literals. The 
result are the clauses [1'] to [3'] above. 

CONCLUSIONS 

We described a general method for inversion 
of logic grammars that transforms a parser into an 
efficient generator using an off-line compilation pro- 
cess that manipulates parser's clauses. The resulting 
"inverted-parser" generator behaves as if it was 
"parsing" a structured representation translating it 
into a well-formed linguistic string. The augmented 
grammar compilation procedure presented here is 
already quite general: it appears to subsume both the 
static compilation procedure of Strzalkowski (1990c), 
and the head-driven grammar evaluation technique of 

Shieber et al. (1990). 

The process of grammar inversion is logically 
divided into two stages: (a) computing the collections 
of minimal sets of essential arguments (MSEAs) in 
predicates, and (b) rearranging the order of goals in 
the grammar so that at least one active MSEA is "in" 
in every literal when its expansion is attempted. The 
first stage also includes computing the "in" and "out" 
arguments. In the second stage, the goal inversion 
process is initialized by the procedure INVERSE, 
which recursively reorders goals on the right-hand 
sides of clauses to meet the MSEA-binding require- 
ment. Deadlocked clauses which cannot be ordered 
with INVERSE are passed for the interclausal ordering 
with the procedure I/qTERCLAUSAL. Special treatment 
is provided for recursive goals defined with respect to 
properly ordered series of arguments. Whenever 
necessary, the direction of recursion is inverted 
allowing for "backward" computation of these goals. 
This provision eliminates an additional step of gram- 
mar normalization. 

In this paper we described the main principles 
of grammar inversion and discussed some of the cen- 
tral procedures, but we have mostly abstracted from 
implementation level considerations. A substantial 
part of the grammar inversion procedure has been 
implemented, including the computation of minimal 
sets of essential arguments, and is used in a 
Japanese-English machine translation system. 24 
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