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In this paper, we describe a fast algorithm for 
aligning sentences with their translations in a 
bilingual corpus. Existing efficient algorithms ig- 
nore word identities and only consider sentence 
length (Brown el al., 1991b; Gale and Church, 
1991). Our algorithm constructs a simple statisti- 
cal word-to-word translation model on the fly dur- 
ing alignment. We find the alignment that  maxi- 
mizes the probability of generating the corpus with 
this translation model. We have achieved an error 
rate of approximately 0.4% on Canadian Hansard 
data, which is a significant improvement over pre- 
vious results. The algorithm is language indepen- 
dent. 

1 I n t r o d u c t i o n  

In this paper, we describe an algorithm for align- 
ing sentences with their translations in a bilingual 
corpus. Aligned bilingual corpora have proved 
useful in many tasks, including machine transla- 
tion (Brown e/ al., 1990; Sadler, 1989), sense dis- 
ambiguation (Brown el al., 1991a; Dagan el at., 
1991; Gale el al., 1992), and bilingual lexicogra- 
phy (Klavans and Tzoukermann, 1990; Warwick 
and Russell, 1990). 

The task is difficult because sentences frequently 
do not align one-to-one. Sometimes sentences 
align many-to-one, and often there are deletions in 
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as well as the aforementioned for checking the aligmnents 
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one of the supposedly parallel corpora of a bilin- 
gual corpus. These deletions can be substantial; 
in the Canadian Hansard corpus, there are many 
deletions of several thousand sentences and one 
deletion of over 90,000 sentences. 

Previous work includes (Brown el al., 1991b) 
and (Gale and Church, 1991). In Brown, align- 
ment is based solely on the number of words in 
each sentence; the actual identities of words are 
ignored. The general idea is that  the closer in 
length two sentences are, the more likely they 
align. To perform the search for the best align- 
ment, dynamic programming (Bellman, 1957) is 
used. Because dynamic programming requires 
time quadratic in the length of the text aligned, 
it is not practical to align a large corpus as a sin- 
gle unit. The computation required is drastically 
reduced if the bilingual corpus can be subdivided 
into smaller chunks. Brown uses anchors to per- 
form this subdivision. An anchor is a piece of text 
likely to be present at the same location in both 
of the parallel corpora of a bilingual corpus. Dy- 
namic programming is used to align anchors, and 
then dynamic programming is used again to align 
the text between anchors. 

The Gale algorithm is similar to the Brown al- 
gorithm except that  instead of basing alignment 
on the number of words in sentences, alignment is 
based on the number of characters in sentences. 
Dynamic programming is also used to search for 
the best alignment. Large corpora are assumed to 
be already subdivided into smaller chunks. 

While these algorithms have achieved remark- 
ably good performance, there is definite room for 
improvement. These algorithms are not robust 
with respect to non-literal translations and small 
deletions; they can easily misalign small passages 
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Mr. McInnis? M. McInnis? 

Yes. Oui. 

Mr. Saunders? M. Saunders? 

No. Non. 

Mr. Cossitt? M. Cossitt? 

Yes. Oui. 

: 

Figure 1: A Bilingual Corpus Fragment 

because they ignore word identities. For example, 
the type of passage depicted in Figure 1 occurs in 
the Hansard corpus. With length-based alignment 
algorithms, these passages may well be misaligned 
by an even number of sentences if one of the cor- 
pora contains a deletion. In addition, with length- 
based algorithms it is difficult to automatically re- 
cover from large deletions. In Brown, anchors are 
used to deal with this issue, but  the selection of 
anchors requires manual  inspection of the corpus 
to be aligned. Gale does not discuss this issue. 

Alignment algorithms that  use lexical informa- 
tion offer a potential  for higher accuracy. Previ- 
ous work includes (Kay, 1991) and (Catizone el 
al., 1989). However, to date lexically-based al- 
gorithms have not proved efficient enough to be 
suitable for large corpora. 

In this paper, we describe a fast algorithm 
for sentence alignment that  uses lexical informa- 
tion. The algorithm constructs a simple statistical 
word-to-word translation model on the fly during 
sentence alignment. We find the alignment that  
maximizes the probability of generating the corpus 
with this translation model. The search strategy 
used is dynamic programming with thresholding. 
Because of thresholding, the search is linear in the 
length of the corpus so that  a corpus need not be 
subdivided into smaller chunks. The search strat- 
egy is robust with respect to large deletions; lex- 
ical information allows us to confidently identify 
the beginning and end of deletions. 

2 T h e  A l i g n m e n t  M o d e l  

2 . 1  T h e  A l i g n m e n t  F r a m e w o r k  

We use an example to introduce our framework for 
alignment. Consider the bilingual corpus (E, ~') 
displayed in Figure 2. Assume that  we have con- 
structed a model for English-to-French transla- 

t ion, / .e . ,  for all E and Fp we have an estimate for 
P(Fp]E), the probability that  the English sentence 
E translates to the French passage Fp. Then, we 
can assign a probability to the English corpus E 
translating to the French corpus :T with a partic- 
ular alignment. For example, consider the align- 
ment .41 where sentence E1 corresponds to sen- 
tence F1 and sentence E2 corresponds to sentences 
F2 and F3. We get 

P(-~',.4~l,f:) = P(FIIE1)P(F~., FsIE2), 

assuming that  successive sentences translate inde- 
pendently of each other. This value should be rel- 
atively large, since F1 is a good translation of E1 
and (F2, F3) is a good translation of E2. Another 
possible alignment .42 is one where E1 maps to 
nothing and E2 maps to F1, F2, and F3. We get 

P(.F',.42]£) = P(elE1)P(F~, F2, F3IE2) 

This value should be fairly low, since the align- 
ment does not map the English sentences to their 
translations. Hence, if our translation model is 
accurate we will have 

P(~',`41I,~) >> P(.r,.421,f:) 

In general, the more sentences that  are mapped 
to their translations in an alignment .4, the higher 
the value of P(~, .AIE).  We can extend this idea 
to produce an alignment algorithm given a trans- 
lation model. In particular, we take the alignment 
of a corpus (~, ~ )  to be the alignment ,4 tha t  max- 
imizes P(~',`41E). The more accurate the transla- 
tion model, the more accurate the resulting align- 
ment will be. 

However, because the parameters are all of the 
form P(FplE ) where E is a sentence, the above 
framework is not amenable to the situation where 
a French sentence corresponds to no English sen- 
tences. Hence, we use a slightly different frame- 
work. We view a bilingual corpus as a sequence 
of sentence beads (Brown et al., 1991b), where a 
sentence bead corresponds to an irreducible group 
of sentences that  align with each other. For exam- 
ple, the correct alignment of the bilingual corpus 
in Figure 2 consists of the sentence bead [El; F1] 
followed by the sentence bead [E2; ];'2, F3]. We 
can represent an alignment `4 of a corpus as a se- 
quence of sentence beads ([Epl; Fpl], [Ep2; F~] , . . . ) ,  
where the E~ and F~ can be zero, one, or more 
sentences long. 

Under this paradigm, instead of expressing the 
translation model as a conditional distribution 
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English (£) 
El That is what the consumers 

are interested in and that 

is what the party is 

interested in. 

E2 Hon. members opposite scoff 

at the freeze suggested by 

this party; to them it is 

laughable. 

French (~)  
/'i Voil~ ce qui int6resse le 

consommateur et roll& ce 

que int6resse notre parti. 

F2 Les d6put6s d'en face se 

moquent du gel que a 

propos6 notre parti. 

F3 Pour eux, c'est une mesure 

risible. 

Figure 2: A Bilingual Corpus 

P(FpIE ) we express the translation m o d e l  as  a 
distribution P([Ep; Fp]) over sentence beads. The 
alignment problem becomes discovering the align- 
ment  A tha t  maximizes the joint distribution 
P(£,2" , .A) .  Assuming that  successive sentence 
beads are generated independently, we get 

L 

P(C, Yr, A) = p(L) H P([E~;F~]) 
k=l  

where A t. 1 = ( [ E ~ , F ; ] , . . . ,  [EL; F L ] ) i s  consistent 
with g and ~" and where p(L) is the probabili ty 
tha t  a corpus contains L sentence beads. 

2 . 2  T h e  B a s i c  T r a n s l a t i o n  M o d e l  

For our translation model, we desire the simplest 
model that  incorporates lexical information effec- 
tively. We describe our model in terms of a series 
of increasingly complex models. In this section, 
we only consider the generation of sentence beads 
containing a single English sentence E = el " " e n  
and single French sentence F = f l " " f m .  As a 
s tar t ing point, consider a model that  assumes that  
all individual words are independent. We take 

n 

P([E;  F]) = p(n)p(m) H p(ei) f i  p(fj) 
i=l j = l  

where p(n) is the probabil i ty that  an English sen- 
tence is n words long, p(m) is the probabili ty that  
a French sentence is m words long, p(ei) is the fre- 
quency of the word ei in English, and p(fj) is the 
frequency of the word f j  in French. 

To capture the dependence between individual 
English words and individual French words, we 
generate English and French words in pairs in 
addition to singly. For two words e and f that  
are mutual  translations, instead of having the two 
terms p(e) and p(f) in the above equation we 

would like a single te rm p(e, f) tha t  is substan- 
tially larger than p(e)p(f). To this end, we intro- 
duce the concept of a word bead. A word bead is 
either a single English word, a single French word, 
or a single English word and a single French word. 
We refer to these as 1:0, 0:1, and 1:1 word beads, 
respectively. Instead of generating a pair of sen- 
tences word by word, we generate sentences bead 
by bead, using the h l  word beads to capture the 
dependence between English and French words. 

As a first cut, consider the following "model":  

P* (B) = p(l) H p(bi) 
i=1 

where B = {bl, . . . ,  bl} is a multiset  of word beads, 
p(l) is the probabil i ty tha t  an English sentence 
and a French sentence contain l word beads, and 
p(bi) denotes the frequency of the word bead bi. 
This simple model captures lexical dependencies 
between English and French sentences. 

However, this "model" does not satisfy the con- 
straint that  ~ B  P*(B) = 1; because beddings B 
are unordered multisets,  the sum is substantial ly 
less than one. To force this model to sum to one, 
we simply normalize by a constant so that  we re- 
tain the qualitative aspects of the model. We take 

l p(t) "b" 
P(B) = -  I I  p [  i )  N, Z 

While a beading B describes an unordered mul- 
tiset of English and French words, sentences are 
in actuality ordered sequences of words. We need 
to model word ordering, and ideally the probabil-  
ity of a sentence bead should depend on the or- 
dering of its component  words. For example,  the 
sentence John ate Fido should have a higher prob- 
ability of aligning with the sentence Jean a mang4 
Fido than with the sentence Fido a mang4 Jean. 
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However, modeling word order under translation 
is notoriously difficult (Brown et al., 1993), and it 
is unclear how much improvement  in accuracy a 
good model of word order would provide. Hence, 
we model word order using a uniform distribution; 
we take 

I 

P ( [ E ; F ] , B ) -  p(l) Hp(bi) 
Nin!m! i=1 

which gives us 

p([E;F])= E p(l) ,(s) 
N,n!m! H p(b,) 

B i=1  

where B ranges over beadings consistent with 
[E; F] and l(B) denotes the number  of beads in 
B. Recall tha t  n is the length of the English sen- 
tence and m is the length of the French sentence. 

2.3 The  C o m p l e t e  Translation 
M o d e l  

In this section, we extend the translation model 
to other types of sentence beads. For simplicity, 
we only consider sentence beads consisting of one 
English sentence, one French sentence, one En- 
glish sentence and one French sentence, two En- 
glish sentences and one French sentence, and one 
English sentence and two French sentences. We 
refer to these as 1:0, 0:1, 1:1, 2:1, and 1:2 sentence 
beads, respectively. 

For 1:1 sentence beads, we take 

t(B) 
P( [E;  F]) = P1:1 E P1:1(/) H p(bi) 

NLHn!ml 
B i=1  

where B ranges over beadings consistent with 
[E;F]  and where Pz:I is the probabil i ty of gen- 
erating a 1:1 sentence bead. 

To model 1:0 sentence beads, we use a similar 
equation except tha t  we only use 1:0 word beads, 
and we do not need to sum over beadings since 
there is only one word beading consistent with a 
1:0 sentence bead. We take 

I 

P([E])  = Pl-o Pz:0(/) HP(ei) 
• N l , l : 0 n !  i=1 

Notice that  n = I. We use an analogous equation 
for 0:1 sentence beads. 

For 2:1 sentence beads, we take 

z(s) 
P 2 : l  ( / )  H p(bi) Pr([E1, E2; F]) = P~:I E Nl 2:lnl !n2!m! 

B ' i=1  

where the sum ranges over beadings B consistent 
with the sentence bead. We use an analogous 
equation for 1:2 sentence beads. 

3 Implementa t ion  

Due to space limitations, we cannot describe the 
implementat ion in full detail. We present its most  
significant characteristics in this section; for a 
more complete discussion please refer to (Chen, 
1993). 

3 . 1  P a r a m e t e r i z a t i o n  

We chose to model sentence length using a Poisson 
distribution, i.e., we took 

At1:0 
Pl:0(/) - l! e ~1:0 

for some Al:0, and analogously for the other types 
of sentence beads. At first, we tried to es t imate  
each A parameter  independently, but  we found 
that  after training one or two A would be unnat-  
urally small or large in order to specifically model 
very short or very long sentences. To prevent this 
phenomenon, we tied the A values for the different 
types of sentence beads together. We took 

A1:1 A2: l  AI:2 
A l : 0 = A 0 : l - - - ~ - - -  3 - 3 (1) 

To model the parameters  p(L) representing the 
probabil i ty that  the bilingual corpus is L sen- 
tence beads in length, we assumed a uniform 
distribution, z This allows us to ignore this term, 
since length will not influence the probabil i ty  of 
an alignment.  We felt this was reasonable becattse 
it is unclear what  a priori information we have on 
the length of a corpus. 

In modeling the frequency of word beads, notice 
that  there are five distinct distributions we need 
to model: the distribution of 1:0 word beads in 1:0 
sentence beads, the distribution of 0:1 word beads 
in 0:1 sentence beads, and the distribution of all 
word beads in 1:1, 2:1, and 1:2 sentence beads. To 
reduce the number  of independent parameters  we 
need to est imate,  we tied these distributions to- 
gether. We assumed tha t  the distribution of word 
beads in 1:1, 2:1, and 1:2 sentence beads are iden- 
tical. We took the distribution of word beads in 

1 To  b e  p r e c i s e ,  we a s s u m e d  a u n i f o r m  d i s t r i b u t i o n  o v e r  
s o m e  a r b i t r a r i l y  l a r g e  f in i te  r a n g e ,  as  o n e  c a n n o t  h a v e  a 

u n i f o r m  d i s t r i b u t i o n  o v e r  a c o u n t a b l y  i n f i n i t e  se t .  
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1:0 and 0:1 sentence beads to be identical as well 
except restricted to the relevant subset of word 
beads and normalized appropriately,  i.e., we took 

pb(e) for e E Be pc(e) : pb(e') 

and 

Pb(f) for f E By 
P:(f) = ~'~.:'eB, Pb(f') 

where Pe refers to the distribution of word beads 
in 1:0 sentence beads, pf  refers to the distribu- 
tion of word beads in 0:1 sentence beads, pb refers 
to the distribution of word beads in 1:1, 2:1, and 
1:2 sentence beads, and Be and B I refer to the 
sets of 1:0 and 0:1 word beads in the vocabulary, 
respectively. 

3 . 2  E v a l u a t i n g  t h e  P r o b a b i l i t y  o f  a 

S e n t e n c e  B e a d  

The probabil i ty of generating a 0:1 or 1:0 sentence 
bead can be calculated efficiently using the equa- 
tion given in Section 2.3. To evaluate the proba- 
bilities of the other sentence beads requires a sum 
over an exponential  number  of word beadings. We 
make the gross approximat ion that  this sum is 
roughly equal to the m a x i m u m  term in the sum. 
For example,  with 1:1 sentence beads we have 

Z(B) 

P ( [ E ; F ] )  = p x : l E  Pa:I(/) Hp(bi) Nz,Hn!m! B i=1 

,~ p l l m a x {  P l : I ( / )  I(B) 
: B N ~ m !  Hp(bi)} 

i=l 

Even with this approximation,  the calculation 
of P( [E;  F]) is still intractable since it requires a 
search for the most  probable beading. We use a 
greedy heuristic to perform this search; we are not 
guaranteed to find the most  probable beading. We 
begin with every word in its own bead. We then 
find the 0:1 bead and 1:0 bead that ,  when replaced 
with a 1:1 word bead, results in the greatest in- 
crease in probability. We repeat  this process until 
we can no longer find a 0:1 and 1:0 bead pair that  
when replaced would increase the probabil i ty of 
the beading. 

3.3 P a r a m e t e r  E s t i m a t i o n  

We est imate parameters  by using a variation of the 
Viterbi version of the expectation-maximization 

(EM) algorithm (Dempster  et al., 1977). The  
Viterbi version is used to reduce computa t iona l  
complexity. We use an incremental variat ion of the 
algorithm to reduce the number  of passes through 
the corpus required. 

In the EM algorithm, an expectation phase, 
where counts on the corpus are taken using the 
current est imates of the parameters ,  is al ternated 
with a maximization phase, where parameters  are 
re-estimated based on the counts just  taken. Im- 
proved parameters  lead to improved counts which 
lead to even more accurate parameters .  In the in- 
cremental version of the EM algori thm we use, in- 
stead of re-est imating parameters  after each com- 
plete pass through the corpus, we re-est imate pa- 
rameters after each sentence. By re-est imating pa- 
rameters continually as we take counts on the cor- 
pus, we can align later sections of the corpus more 
reliably based on alignments of earlier sections. 
We can align a corpus with only a single pass, si- 
multaneously producing al ignments and updat ing 
the model as we proceed. 

More specifically, we initialize parameters  by 
taking counts on a small body of previously 
aligned data.  To est imate word bead frequencies, 
we maintain a count c(b) for each word bead that  
records the number  of t imes the word bead b oc- 
curs in the most  probable word beading of a sen- 
tence bead. We take 

c(b) 
pb(b) - Eb, c(V) 

We initialize the counts c(b) to 1 for 0:1 and 1:0 
word beads, so tha t  these beads can occur in bead- 
ings with nonzero probability. To enable 1:1 word 
beads to occur in beadings with nonzero probabil-  
ity, we initialize their counts to a small value when- 
ever we see the corresponding 0:1 and 1:0 word 
beads occur in the most  probable word beading of 
a sentence bead. 

To est imate the sentence length parameters  ,~, 
we divide the number  of word beads in the most  
probable beading of the initial training da ta  by 
the total  number  of sentences. This gives us an 
est imate for hi:0, and the other ~ parameters  can 
be calculated using equation (1). 

We have found that  one hundred sentence pairs 
are sufficient to train the model to a state where it 
can align adequately. At this point, we can process 
unaligned text and use the alignments we produce 
to further train the model. We update  parameters  
based on the newly aligned text in the same way 
that  we update  parameters  based on the initial 
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training data. 2 

To align a corpus in a single pass the model 
must be fairly accurate before starting or else the 
beginning of the corpus will be poorly aligned. 
Hence, after bootstrapping the model on one hun- 
dred sentence pairs, we train the algorithm on a 
chunk of the unaligned target bilingual corpus, 
typically 20,000 sentence pairs, before making one 
pass through the entire corpus to produce the ac- 
tual alignment. 

3 . 4  S e a r c h  

It is natural  to use dynamic programming to 
search for the best alignment; one can find the 
most probable of an exponential number of align- 
ments using quadratic time and memory. Align- 
ment can be viewed as a "shortest distance" prob- 
lem, where the "distance" associated with a sen- 
tence bead is the negative logarithm of its proba- 
bility. The probabili ty of an alignment is inversely 
related to the sum of the distances associated with 
its component sentence beads. 

Given the size of existing bilingual corpora and 
the computat ion necessary to evaluate the proba- 
bility of a sentence bead, a quadratic algorithm is 
still too profligate. However, most alignments are 
one-to-one, so we can reap great benefits through 
intelligent thresholding. By considering only a 
subset of all possible alignments, we reduce the 
computat ion to a linear one. 

Dynamic programming consists of incrementally 
finding the best alignment of longer and longer 
prefixes of the bilingual corpus. We prune all 
alignment prefixes that  have a substantially lower 
probability than the most probable alignment pre- 
fix of the same length. 

2 In theory, one canno t  decide whe the r  a par t icu lar  sen- 
tence bead  belongs  to the bes t  a l ignment  of a corpus  un- 
til the whole corpus  has  been  processed.  In  practice,  some 
par t ia l  a l ignments  will have much  higher  probabil i t ies  t h a n  
all o the r  ahgnmen t s ,  and  it is desirable to t ra in  on these 
par t ia l  a l ignments  to aid in aligning later  sections of the 
corpus.  To decide when it is reasonably  safe to t ra in  on a 
pa r t i cu la r  sentence bead,  we take advantage  of the thresh-  
olding descr ibed in Section 3.4, where improbab le  par t ia l  
a l ignments  are discarded. At a given poin t  in t ime in align- 
ing a corpus,  all und iscarded  par t ia l  a l ignments  will have 
some sentence beads  in common.  W h e n  a sentence bead  is 
c o m m o n  to all active par t ia l  a l ignments ,  we consider it to 
he  safe to t ra in  on. 

3 . 5  D e l e t i o n  I d e n t i f i c a t i o n  

Deletions are automatically handled within the 
standard dynamic programming framework. How- 
ever, because of thresholding, we must handle 
large deletions using a separate mechanism. 

Because lexical information is used, correct 
alignments receive vastly greater probabilities 
than incorrect alignments. Consequently, thresh- 
olding is generally very aggressive and our search 
beam in the dynamic programming array is nar- 
row. However, when there is a large deletion in 
one of the parallel corpora, consistent lexical cor- 
respondences disappear so no one alignment has 
a much higher probability than the others and 
our search beam becomes wide. When the search 
beam reaches a certain width, we take this to in- 
dicate the beginning of a deletion. 

To identify the end of a deletion, we search lin- 
early through both corpora simultaneously. All 
occurrences of words whose frequency is below a 
certain value are recorded in a hash table. When- 
ever we notice the occurrence of a rare word in 
one corpus and its translation in the other, we 
take this as a candidate location for the end of the 
deletion. For each candidate location, we exam- 
ine the forty sentences following the occurrence of 
the rare word in each of the two parallel corpora. 
We use dynamic programming to find the prob- 
ability of the best alignment of these two blocks 
of sentences. If this probability is sufficiently high 
we take the candidate location to be the end of 
the deletion. Because it is extremely unlikely that  
there are two very similar sets of forty sentences 
in a corpus, this deletion identification algorithm 
is robust. In addition, because we key off of rare 
words in considering ending points, deletion iden- 
tification requires t ime linear in the length of the 
deletion. 

4 R e s u l t s  

Using this algorithm, we have aligned three large 
English/French corpora. We have aligned a cor- 
pus of 3,000,000 sentences (of both English and 
French) of the Canadian Hansards, a corpus of 
1,000,000 sentences of newer Hansard proceedings, 
and a corpus of 2,000,000 sentences of proceed- 
ings from the European Economic Community.  In 
each case, we first boots t rapped the translation 
model by training on 100 previously aligned sen- 
tence pairs. We then trained the model further on 
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20,000 sentences of the target corpus. Note that  
these 20,000 sentences were not previously aligned. 

Because of the very low error rates involved, in- 
stead of direct sampling we decided to estimate 
the error of the old Hansard corpus through com- 
parison with the alignment found by Brown of the 
same corpus. We manually inspected over 500 lo- 
cations where the two alignments differed to esti- 
mate  our error rate on the alignments disagreed 
upon. Taking the error rate of the Brown align- 
ment to be 0.6%, we estimated the overall error 
rate of our alignment to be 0.4%. 

In addition, in the Brown alignment approxi- 
mately 10% of the corpus was discarded because 
of indications that  it would be difficult to align. 
Their  error rate of 0.6% holds on the remaining 
sentences. Our error rate of 0.4% holds on the 
entire corpus. Gale reports an approximate error 
rate of 2% on a different body of Hansard data 
with no discarding, and an error rate of 0.4% if 
20% of the sentences can be discarded. 

Hence, with our algorithm we can achieve at 
least as high accuracy as the Brown and Gale algo- 
ri thms without discarding any data. This is espe- 
cially significant since, presumably, the sentences 
discarded by the Brown and Gale algorithms are 
those sentences most difficult to align. 

In addition, the errors made by our algorithm 
are generally of a fairly trivial nature. We ran- 
domly sampled 300 alignments from the newer 
Hansard corpus. The two errors we found are 
displayed in Figures 3 and 4. In the first error, 
E1 was aligned with F1 and E2 was aligned with 
/'2. The correct alignment maps E1 and E2 to F1 
and F2 to nothing. In the second error, E1 was 
aligned with F1 and F2 was aligned to nothing. 
Both of these errors could have been avoided with 
improved sentence boundary detection. Because 
length-based alignment algorithms ignore lexical 
information, their errors can be of a more spec- 
tacular nature. 

The rate of alignment ranged from 2,000 to 
5,000 sentences of both English and French per 
hour on an IBM RS/6000 530H workstation. The 
alignment algorithm lends itself well to paralleliza- 
tion; we can use the deletion identification mecha- 
nism to automatically identify locations where we 
can subdivide a bilingual corpus. While it required 
on the order of 500 machine-hours to align the 
newer Hansard corpus, it took only 1.5 days of 
real t ime to complete the job on fifteen machines. 

5 D i s c u s s i o n  

We have described an accurate, robust, and fast 
algorithm for sentence alignment. The algori thm 
can handle large deletions in text, it is language 
independent, and it is parallelizable. It requires 
a minimum of human intervention; for each lan- 
guage pair 100 sentences need to be aligned by 
hand to bootstrap the translation model. 

The use of lexical information requires a great 
computational cost. Even with numerous approxi- 
mations, this algorithm is tens of times slower than 
the Brown and Gale algorithms. This is acceptable 
given that  alignment is a one-time cost and given 
available computing power. It is unclear, though, 
how much further it is worthwhile to proceed. 

The natural next step in sentence alignment is 
to account for word ordering in the translation 
model, e.g., the models described in (Brown et 
al., 1993) could be used. However, substantially 
greater computing power is required before these 
approaches can become practical, and there is not 
much room for further improvements in accuracy. 
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E1 If there is some evidence 

that it ... and I will see 

that it does. 

E2 \SCM{} Translation \ECM{} 

El 

F1 Si on peut prouver que elle 
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Language = French \ECM{} 

F2 \SCM{} Paragraph \ECM{} 

Figure 3: An Alignment Error 
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therefor : second 

anniversary of. 
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