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Abstract 

Most foreign names are transliterated into 
Chinese, Japanese or Korean with 
approximate phonetic equivalents. The 
transliteration is usually achieved through 
intermediate phonemic mapping. This 
paper presents a new framework that 
allows direct orthographical mapping 
(DOM) between two different languages, 
through a joint source-channel model, also 
called n-gram transliteration model (TM). 
With the n-gram TM model, we automate 
the orthographic alignment process to 
derive the aligned transliteration units from 
a bilingual dictionary. The n-gram TM 
under the DOM framework greatly reduces 
system development effort and provides a 
quantum leap in improvement in 
transliteration accuracy over that of other 
state-of-the-art machine learning 
algorithms. The modeling framework is 
validated through several experiments for 
English-Chinese language pair.  

1 Introduction 

In applications such as cross-lingual information 
retrieval (CLIR) and machine translation, there is 
an increasing need to translate out-of-vocabulary 
words from one language to another, especially 
from alphabet language to Chinese, Japanese or 
Korean.  Proper names of English, French, 
German, Russian, Spanish and Arabic origins 
constitute a good portion of out-of-vocabulary 
words. They are translated through transliteration, 
the method of translating into another language by 
preserving how words sound in their original 
languages. For writing foreign names in Chinese, 
transliteration always follows  the original 
romanization. Therefore, any foreign name will 
have only one Pinyin (romanization of Chinese) 
and thus in Chinese characters. 

In this paper, we focus on automatic Chinese 
transliteration of foreign alphabet names. Because 
some alphabet writing systems use various 
diacritical marks, we find it more practical to write 

names containing such diacriticals as they are 
rendered in English. Therefore, we refer all 
foreign-Chinese transliteration to English-Chinese 
transliteration, or E2C.  

Transliterating English names into Chinese is 
not straightforward. However, recalling the 
original from Chinese transliteration is even more 
challenging as the E2C transliteration may have 
lost some original phonemic evidences. The 
Chinese-English backward transliteration process 
is also called back-transliteration, or C2E (Knight 
& Graehl, 1998).  

In machine transliteration, the noisy channel 
model (NCM), based on a phoneme-based 
approach, has recently received considerable 
attention (Meng et al. 2001; Jung et al, 2000; Virga 
& Khudanpur, 2003; Knight & Graehl, 1998). In 
this paper we discuss the limitations of such an 
approach and address its problems by firstly 
proposing a paradigm that allows direct 
orthographic mapping (DOM), secondly further 
proposing a joint source-channel model as a 
realization of DOM. Two other machine learning 
techniques, NCM and ID3 (Quinlan, 1993) 
decision tree, also are implemented under DOM as 
reference to compare with the proposed n-gram 
TM. 

This paper is organized as follows: In section 2, 
we present the transliteration problems. In section 
3, a joint source-channel model is formulated. In 
section 4, several experiments are carried out to 
study different aspects of proposed algorithm. In 
section 5, we relate our algorithms to other 
reported work. Finally, we conclude the study with 
some discussions. 

2 Problems in transliteration 

Transliteration is a process that takes a character 
string in source language as input and generates a 
character string in the target language as output. 
The process can be seen conceptually as two levels 
of decoding: segmentation of the source string into 
transliteration units; and relating the source 
language transliteration units with units in the 
target language, by resolving different 
combinations of alignments and unit mappings. A 



unit could be a Chinese character or a monograph, 
a digraph or a trigraph and so on for English. 

2.1 Phoneme-based approach 

The problems of English-Chinese transliteration 
have been studied extensively in the paradigm of 
noisy channel model (NCM). For a given English 
name E as the observed channel output, one seeks 
a posteriori the most likely Chinese transliteration 
C that maximizes P(C|E). Applying Bayes rule, it 
means to find C to maximize 

 
P(E,C) = P(E | C)*P(C)                       (1) 

 
with equivalent effect. To do so, we are left with 
modeling two probability distributions: P(E|C), the 
probability of transliterating C to E through a noisy 
channel, which is also called transformation rules, 
and P(C), the probability distribution of source, 
which reflects what is considered good Chinese 
transliteration in general. Likewise, in C2E back-
transliteration, we would find E that maximizes 

 
P(E,C) = P(C | E)*P(E)                       (2) 

 
for a given Chinese name.  

In eqn (1) and (2), P(C) and P(E) are usually 
estimated using n-gram language models (Jelinek, 
1991). Inspired by research results of grapheme-to-
phoneme research in speech synthesis literature, 
many have suggested phoneme-based approaches 
to resolving P(E|C) and P(C|E), which 
approximates the probability distribution by 
introducing a phonemic representation. In this way, 
we convert the names in the source language, say 
E, into an intermediate phonemic representation P, 
and then convert the phonemic representation into 
the target language, say Chinese C. In E2C 
transliteration, the phoneme-based approach can be 
formulated as P(C|E) = P(C|P)P(P|E) and 
conversely we have P(E|C) = P(E|P)P(P|C) for 
C2E back-transliteration.  

Several phoneme-based techniques have been 
proposed in the recent past for machine 
transliteration using transformation-based learning 
algorithm (Meng et al. 2001; Jung et al, 2000; 
Virga & Khudanpur, 2003) and using finite state 
transducer that implements transformation rules 
(Knight & Graehl, 1998), where both handcrafted 
and data-driven transformation rules have been 
studied.  

However, the phoneme-based approaches are 
limited by two major constraints, which could 
compromise transliterating precision, especially in 
English-Chinese transliteration: 

1) Latin-alphabet foreign names are of different 
origins. For instance, French has different phonic 

rules from those of English.  The phoneme-based 
approach requires derivation of proper phonemic 
representation for names of different origins. One 
may need to prepare multiple language-dependent 
grapheme-to-phoneme (G2P) conversion systems 
accordingly, and that is not easy to achieve (The 
Onomastica Consortium, 1995). For example, 
/Lafontant/ is transliterated into 拉丰唐(La-Feng-
Tang) while /Constant/ becomes 康斯坦特(Kang-
Si-Tan-Te) ， where syllable /-tant/ in the two 
names are transliterated differently depending on 
the names’ language of origin.  

2) Suppose that language dependent grapheme-
to-phoneme systems are attainable, obtaining 
Chinese orthography will need two further steps: a) 
conversion from generic phonemic representation 
to Chinese Pinyin; b) conversion from Pinyin to 
Chinese characters. Each step introduces a level of 
imprecision. Virga and Khudanpur (2003) reported 
8.3% absolute accuracy drops when converting 
from Pinyin to Chinese characters, due to 
homophone confusion. Unlike Japanese katakana 
or Korean alphabet, Chinese characters are more 
ideographic than phonetic. To arrive at an 
appropriate Chinese transliteration, one cannot rely 
solely on the intermediate phonemic representation.  

2.2 Useful orthographic context  

To illustrate the importance of contextual 
information in transliteration, let’s take name 
/Minahan/ as an example, the correct segmentation 
should be /Mi-na-han/, to be transliterated as 米-

纳-汉 (Pinyin: Mi-Na-Han).  
 

English /mi- -na- -han/ 
Chinese 米 纳 汉 

Pinyin Mi Nan Han 
 
However, a possible segmentation /Min-ah-an/ 

could lead to an undesirable syllabication of 明-

阿-安 (Pinyin: Min-A-An).  
 

English /min- -ah- -an/ 
Chinese 明 阿 安 

Pinyin Min A An 
 
According to the transliteration guidelines, a 

wise segmentation can be reached only after 
exploring the combination of the left and right 
context of transliteration units. From the 
computational point of view, this strongly suggests 
using a contextual n-gram as the knowledge base 
for the alignment decision.  

Another example will show us how one-to-many 
mappings could be resolved by context. Let’s take 
another name /Smith/ as an example. Although we 



can arrive at an obvious segmentation /s-mi-th/, 
there are three Chinese characters for each of /s-/, 
/-mi-/ and /-th/. Furthermore, /s-/ and /-th/ 
correspond to overlapping characters as well, as 
shown next. 

 
English /s- -mi- -th/ 
Chinese 1 史 米 斯 
Chinese 2 斯 密 史 
Chinese 3 思 麦 瑟 

 
A human translator will use transliteration rules 

between English syllable sequence  and Chinese 
character sequence to obtain the best mapping 史-
密-斯, as indicated in italic in the table above.  

To address the issues in transliteration, we 
propose a direct orthographic mapping (DOM) 
framework through a joint source-channel model 
by fully exploring orthographic contextual 
information, aiming at alleviating the imprecision 
introduced by the multiple-step phoneme-based 
approach.  

3 Joint source-channel model 

In view of the close coupling of the source and 
target transliteration units, we propose to estimate 
P(E,C) by a joint source-channel model, or n-gram 
transliteration model (TM). For K aligned 
transliteration units, we have 

 
)...,,...,(),( 2121 KK ccceeePCEP =  

   ),...,,,( 21 KcececeP ><><><= (3) 
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which provides an alternative to the phoneme-
based approach for resolving eqn. (1) and (2) by 
eliminating the intermediate phonemic 
representation. 

Unlike the noisy-channel model, the joint 
source-channel model does not try to capture how 
source names can be mapped to target names, but 
rather how source and target names can be 
generated simultaneously. In other words, we 
estimate a joint probability model that can be 
easily marginalized in order to yield conditional 
probability models for both transliteration and 
back-transliteration. 

Suppose that we have an English name 
mxxx ...21=α  and a Chinese transliteration 

nyyy ...21=β where ix are letters and jy are 
Chinese characters. Oftentimes, the number of 
letters is different from the number of Chinese 

characters. A Chinese character may correspond to 
a letter substring in English or vice versa.  

 
mii xxxxxxx ...... 21321 ++  

 
 
 

nj yyyy ......21  

 
where there exists an alignment  γ  with 

 
>=<>< 111 ,, yxce  
>=<>< 2322 ,, yxxce  … 

 
and >=<>< nmK yxce ,, . A transliteration unit 
correspondence >< ce,  is called a transliteration 
pair. Then, the E2C transliteration can be 
formulated as 

 
),,(maxarg

,
γβαβ

γβ
P=  (4) 

 
and similarly the C2E back-transliteration as 

 
),,(maxarg

,
γβαα

γα
P=  (5) 

 
An n-gram transliteration model is defined as the 

conditional probability, or transliteration 
probability, of a transliteration pair kce >< ,  
depending on its immediate n predecessor pairs: 

 
      ),,(),( γβαPCEP =  
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3.1 Transliteration alignment 

A bilingual dictionary contains entries mapping 
English names to their respective Chinese 
transliterations. Like many other solutions in 
computational linguistics, it is possible to 
automatically analyze the bilingual dictionary to 
acquire knowledge in order to map new English 
names to Chinese and vice versa. Based on the 
transliteration formulation above, a transliteration 
model can be built with transliteration unit’s n-
gram statistics. To obtain the statistics, the 
bilingual dictionary needs to be aligned. The 
maximum likelihood approach, through EM 
algorithm (Dempster, 1977), allows us to infer 



such an alignment easily as described in the table 
below. 

 
 
 
 
 

 
 
 
 
 

 
 
The aligning process is different from that of 

transliteration given in eqn. (4) or (5) in that, here 
we have fixed bilingual entries, α and β . The 
aligning process is just to find the alignment 
segmentation γ between the two strings that 
maximizes the joint probability: 

),,(maxarg γβαγ
γ

P=   (7) 

A set of transliteration pairs that is derived from 
the aligning process forms a transliteration table, 
which is in turn used in the transliteration 
decoding.  As the decoder is bounded by this table, 
it is important to make sure that the training 
database covers as much as possible the potential 
transliteration patterns. Here are some examples of 
resulting alignment pairs. 

 
斯|s  尔|l 特|t 德|d 
克|k 布|b 格|g 尔|r  
尔|ll 克|c  罗|ro  里|ri  
曼|man  姆|m  普|p  德|de  
拉|ra  尔|le  阿|a  伯|ber  
拉|la  森|son  顿|ton  特|tt  
雷|re  科|co  奥|o  埃|e  
马|ma  利|ley  利|li  默|mer 

 
Knowing that the training data set will never be 

sufficient for every n-gram unit, different 
smoothing approaches are applied, for example, by 
using backoff or class-based models, which can be 
found in statistical language modeling literatures 
(Jelinek, 1991). 

3.2 DOM: n-gram TM vs. NCM 

Although in the literature, most noisy channel 
models (NCM) are studied under phoneme-based 
paradigm for machine transliteration, NCM can 
also be realized under direct orthographic mapping 
(DOM). Next, let’s look into a bigram case to see 
what n-gram TM and NCM present to us. For E2C 
conversion, re-writing eqn (1) and eqn (6) , we 
have 

∏
=

−≈
K

k
kkkk ccPcePP
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The formulation of eqn. (8) could be interpreted 

as a hidden Markov model with Chinese characters 
as its hidden states and English transliteration units 
as the observations (Rabiner, 1989). The number 
of parameters in the bigram TM is potentially 2T , 
while in the noisy channel model (NCM) it’s 

2CT + , where T  is the number of transliteration 
pairs and C is the number of Chinese 
transliteration units. In eqn. (9), the current 
transliteration depends on both Chinese and 
English transliteration history while in eqn. (8), it 
depends only on the previous Chinese unit. 

As 22 CTT +>> , an n-gram TM gives a finer 
description than that of NCM. The actual size of 
models largely depends on the availability of 
training data. In Table 1, one can get an idea of 
how they unfold in a real scenario. With 
adequately sufficient training data, n-gram TM is 
expected to outperform NCM in the decoding. A 
perplexity study in section 4.1 will look at the 
model from another perspective. 

4 The experiments1 

We use a database from the bilingual dictionary 
“Chinese Transliteration of Foreign Personal 
Names” which was edited by Xinhua News 
Agency and was considered the de facto standard 
of personal name transliteration in today’s Chinese 
press. The database includes a collection of 37,694 
unique English entries and their official Chinese 
transliteration. The listing includes personal names 
of English, French, Spanish, German, Arabic, 
Russian and many other origins. 

The database is initially randomly distributed 
into 13 subsets. In the open test, one subset is 
withheld for testing while the remaining 12 subsets 
are used as the training materials. This process is 
repeated 13 times to yield an average result, which 
is called the 13-fold open test. After experiments, 
we found that each of the 13-fold open tests gave 
consistent error rates with less than 1% deviation. 
Therefore, for simplicity, we randomly select one 
of the 13 subsets, which consists of 2896 entries, 
as the standard open test set to report results. In the 
close test, all data entries are used for training and 
testing.  

                                                      
1 demo at http://nlp.i2r.a-star.edu.sg/demo.htm 

The Expectation-Maximization algorithm 
1. Bootstrap initial random alignment 
2. Expectation: Update n-gram statistics to 

estimate probability distribution 
3. Maximization: Apply the n-gram TM to 

obtain new alignment 
4. Go to step 2 until the alignment converges 
5. Derive a list transliteration units from final 
       alignment as transliteration table 



4.1 Modeling 

The alignment of transliteration units is done 
fully automatically along with the n-gram TM 
training process. To model the boundary effects, 
we introduce two extra units <s> and </s> for start 
and end of each name in both languages. The EM 
iteration converges at 8th round when no further 
alignment changes are reported. Next are some 
statistics as a result of the model training: 
 
# close set bilingual entries (full data)  37,694 
# unique Chinese transliteration (close) 28,632 
# training entries for open test 34,777 
# test entries for open test 2,896 
# unique transliteration pairs  T 5,640 
# total transliteration pairs TW  119,364

# unique English units E 3,683 
# unique Chinese units C 374 
# bigram TM ),|,( 1−><>< kk ceceP  38,655 

# NCM Chinese bigram )|( 1−kk ccP  12,742 

Table 1. Modeling statistics 

The most common metric for evaluating an n-
gram model is the probability that the model 
assigns to test data, or perplexity (Jelinek, 1991). 
For a test set W composed of V names, where each 
name has been aligned into a sequence of 
transliteration pair tokens, we can calculate the 
probability of test set 

∏
=

=
V

v
vvvPWp

1

),,()( γβα by applying the n-gram 

models to the token sequence. The cross-entropy 
)(WH p  of a model on data W is defined as 

)(log1)( 2 Wp
W

WH
T

p −=  where TW is the total 

number of aligned transliteration pair tokens in the 
data W. The perplexity )(WPPp of a model is the 
reciprocal of the average probability assigned by 
the model to each aligned pair in the test set W 
as )(2)( WH

p
pWPP = . 

Clearly, lower perplexity means that the model 
describes better the data. It is easy to understand 
that closed test always gives lower perplexity than 
open test.  

 
 
 
 
 
 

 TM 
open  

NCM 
open 

TM 
closed 

NCM 
closed 

1-gram 670 729 655 716 
2-gram 324 512 151 210 
3-gram 306 487 68 127 

Table 2. Perplexity study of bilingual database 

We have the perplexity reported in Table 2 on 
the aligned bilingual dictionary, a database of 
119,364 aligned tokens. The NCM perplexity is 
computed using n-gram equivalents of eqn. (8) for 
E2C transliteration, while TM perplexity is based 
on those of eqn (9) which applies to both E2C and 
C2E. It is shown that TM consistently gives lower 
perplexity than NCM in open and closed tests. We 
have good reason to expect TM to provide better 
transliteration results which we expect to be 
confirmed later in the experiments. 

The Viterbi algorithm produces the best 
sequence by maximizing the overall probability, 

),,( γβαP . In CLIR or multilingual corpus 
alignment (Virga and Khudanpur, 2003), N-best 
results will be very helpful to increase chances of 
correct hits. In this paper, we adopted an N-best 
stack decoder (Schwartz and Chow, 1990) in both 
TM and NCM experiments to search for N-best 
results. The algorithm also allows us to apply 
higher order n-gram such as trigram in the search. 

4.2 E2C transliteration 

In this experiment, we conduct both open and 
closed tests for TM and NCM models under DOM 
paradigm. Results are reported in Table 3 and 
Table 4.  

 open 
(word) 

open 
(char) 

closed 
(word) 

closed 
(char) 

1-gram 45.6% 21.1% 44.8% 20.4% 
2-gram 31.6% 13.6% 10.8% 4.7% 
3-gram 29.9% 10.8% 1.6% 0.8% 

Table 3. E2C error rates for n-gram TM tests.  

 open 
(word)

open 
(char) 

closed 
(word) 

closed 
(char) 

1-gram 47.3% 23.9% 46.9% 22.1% 
2-gram 39.6% 20.0% 16.4% 10.9% 
3-gram 39.0% 18.8% 7.8% 1.9% 

Table 4. E2C error rates for n-gram NCM tests 

In word error report, a word is considered 
correct only if an exact match happens between 
transliteration and the reference. The character 
error rate is the sum of deletion, insertion and 



substitution errors. Only the top choice in N-best 
results is used for error rate reporting. Not 
surprisingly, one can see that n-gram TM, which 
benefits from the joint source-channel model 
coupling both source and target contextual 
information into the model, is superior to NCM in 
all the test cases.  

4.3 C2E back-transliteration 

The C2E back-transliteration is more 
challenging than E2C transliteration. Not many 
studies have been reported in this area. It is 
common that multiple English names are mapped 
into the same Chinese transliteration. In Table 1, 
we see only 28,632 unique Chinese transliterations 
exist for 37,694 English entries, meaning that some 
phonemic evidence is lost in the process of 
transliteration. To better understand the task, let’s 
compare the complexity of the two languages 
presented in the bilingual dictionary.  

Table 1 also shows that the 5,640 transliteration 
pairs are cross mappings between 3,683 English 
and 374 Chinese units. In order words, on average, 
for each English unit, we have 1.53 = 5,640/3,683 
Chinese correspondences. In contrast, for each 
Chinese unit, we have 15.1 = 5,640/374 English 
back-transliteration units! Confusion is increased 
tenfold going backward.  

The difficulty of back-transliteration is also 
reflected by the perplexity of the languages as in 
Table 5. Based on the same alignment 
tokenization, we estimate the monolingual 
language perplexity for Chinese and English 
independently using the n-gram language models 

)|( 1
1

−
+−

k
nkk ccP  and )|( 1

1
−
+−

k
nkk eeP . Without 

surprise, Chinese names have much lower 
perplexity than English names thanks to fewer 
Chinese units. This contributes to the success of 
E2C but presents a great challenge to C2E back-
transliteration. 

 
 1-gram 2-gram 3-gram 
Chinese 207/206 97/86 79/45 
English 710/706 265/152 234/67 

Table 5 language perplexity comparison 
(open/closed test) 

 open 
(word) 

open 
(letter) 

closed 
(word) 

closed 
(letter) 

1 gram 82.3% 28.2% 81% 27.7% 
2 gram 63.8% 20.1% 40.4% 12.3% 
3 gram 62.1% 19.6% 14.7% 5.0% 

Table 6. C2E error rate for n-gram TM tests 

 E2C 
open 

E2C 
closed 

C2E 
open 

C2E 
closed 

1-best 29.9% 1.6% 62.1% 14.7% 
5-best 8.2% 0.94% 43.3% 5.2% 
10-best 5.4% 0.90% 24.6% 4.8% 

Table 7. N-best word error rates for 3-gram TM 
tests 

A back-transliteration is considered correct if it 
falls within the multiple valid orthographically 
correct options. Experiment results are reported in 
Table 6. As expected, C2E error rate is much 
higher than that of E2C. 

In this paper, the n-gram TM model serves as the 
sole knowledge source for transliteration. 
However, if secondary knowledge, such as a 
lookup table of valid target transliterations, is 
available, it can help reduce error rate by 
discarding invalid transliterations top-down the N 
choices. In Table 7, the word error rates for both 
E2C and C2E are reported which imply potential 
error reduction by secondary knowledge source. 
The N-best error rates are reduced significantly at 
10-best level as reported in Table 7. 

5 Discussions 

It would be interesting to relate n-gram TM to 
other related framework. 

5.1 DOM: n-gram TM vs. ID3 

In section 4, one observes that contextual 
information in both source and target languages is 
essential. To capture them in the modeling, one 
could think of decision tree, another popular 
machine learning approach. Under the DOM 
framework, here is the first attempt to apply 
decision tree in E2C and C2E transliteration. 

With the decision tree, given a fixed size 
learning vector, we used top-down induction trees 
to predict the corresponding output. Here we 
implement ID3 (Quinlan, 1993) algorithm to 
construct the decision tree which contains 
questions and return values at terminal nodes. 
Similar to n-gram TM, for unseen names in open 
test, ID3 has backoff smoothing, which lies on the 
default case which returns the most probable value 
as its best guess for a partial tree path according to 
the learning set.  

In the case of E2C transliteration, we form a 
learning vector of 6 attributes by combining 2 left 
and 2 right letters around the letter of focus ke  and 
1 previous Chinese unit 1−kc . The process is 
illustrated in Table 8, where both English and 
Chinese contexts are used to infer a Chinese 



character. Similarly, 4 attributes combining 1 left, 
1 centre and 1 right Chinese character and 1 
previous English unit are used for the learning 
vector in C2E test. An aligned bilingual dictionary 
is needed to build the decision tree.  

To minimize the effects from alignment 
variation, we use the same alignment results from 
section 4. Two trees are built for two directions, 
E2C and C2E. The results are compared with those 
3-gram TM  in Table 9. 

 
2−ke  1−ke  ke  1+ke  2+ke  1−kc   

kc
_ _ N I C _ > 尼

_ N I C E 尼 > _ 

N I C E _ _ > 斯

I C E _ _ 斯 > _ 

Table 8. E2C transliteration using ID3 decision 
tree  for transliterating Nice to               

尼斯 (尼|NI 斯|CE)  

 open  closed  
ID3 E2C  39.1% 9.7% 
3-gram TM E2C 29.9% 1.6% 
ID3 C2E 63.3% 38.4% 
3-gram TM C2E 62.1% 14.7% 

Table 9. Word error rate ID3 vs. 3-gram TM 

One observes that n-gram TM consistently 
outperforms ID3 decision tree in all tests. Three 
factors could have contributed:  

 
1) English transliteration unit size ranges from 1 

letter to 7 letters. The fixed size windows in ID3 
obviously find difficult to capture the dynamics of 
various ranges.  n-gram TM seems to have better 
captured the dynamics of transliteration units;  

2) The backoff smoothing of n-gram TM is more 
effective than that of ID3;  

3) Unlike n-gram TM, ID3 requires a separate 
aligning process for bilingual dictionary. The 
resulting alignment may not be optimal for tree 
construction.  Nevertheless, ID3 presents another 
successful implementation of DOM framework.  

 

5.2 DOM vs. phoneme-based approach 

Due to lack of standard data sets, it is difficult to 
compare the performance of the n-gram TM to that 
of other approaches. For reference purpose, we list 
some reported studies on other databases of E2C 
transliteration tasks in Table 10. As in the 
references, only character and Pinyin error rates 

are reported, we only include our character and 
Pinyin error rates for easy reference. The reference 
data are extracted from Table 1 and 3 of (Virga and 
Khudanpur 2003). As we have not found any C2E 
result in the literature, only E2C results are 
compared here. 

The first 4 setups by Virga et al all adopted the 
phoneme-based approach in the following steps:  

 
1) English name to English phonemes; 
2) English phonemes to Chinese Pinyin;  
3) Chinese Pinyin to Chinese characters. 
 
It is obvious that the n-gram TM compares 

favorably to other techniques. n-gram TM presents 
an error reduction of 74.6%=(42.5-10.8)/42.5% for 
Pinyin over the best reported result, Huge MT (Big 
MT) test case, which is noteworthy.  

The DOM framework shows a quantum leap in 
performance with n-gram TM being the most 
successful implementation. The n-gram TM and 
ID3 under direct orthographic mapping (DOM) 
paradigm simplify the process and reduce the 
chances of conversion errors. As a result, n-gram 
TM and ID3 do not generate Chinese Pinyin as 
intermediate results. It is noted that in the 374 
legitimate Chinese characters for transliteration, 
character to Pinyin mapping is unique while Pinyin 
to character mapping could be one to many. Since 
we have obtained results in character already, we 
expect less Pinyin error than character error should 
a character-to-Pinyin mapping be needed. 

 
System Trainin

g size 
Test 
size 

Pinyin 
errors 

Char 
errors 

Meng et al 2,233 1,541 52.5% N/A 
Small MT 2,233 1,541 50.8% 57.4% 
Big MT 3,625 250 49.1% 57.4% 
Huge MT 
(Big MT) 

309,01
9 

3,122 42.5% N/A 

3-gram 
TM/DOM 

34,777 2,896 < 10.8% 10.8% 

ID3/DOM 34,777 2,896 < 15.6% 15.6% 

Table 10. Performance reference in recent 
studies 

6 Conclusions 

In this paper, we propose a new framework 
(DOM) for transliteration. n-gram TM is a 
successful realization of DOM paradigm. It 
generates probabilistic orthographic transformation 
rules using a data driven approach. By skipping the 
intermediate phonemic interpretation, the 
transliteration error rate is reduced significantly. 



Furthermore, the bilingual aligning process is 
integrated into the decoding process in n-gram TM, 
which allows us to achieve a joint optimization of 
alignment and transliteration automatically. Unlike 
other related work where pre-alignment is needed, 
the new framework greatly reduces the 
development efforts of machine transliteration 
systems. Although the framework is implemented 
on an English-Chinese personal name data set, 
without loss of generality, it well applies to 
transliteration of other language pairs such as 
English/Korean and English/Japanese. 

It is noted that place and company names are 
sometimes translated in combination of 
transliteration and meanings, for example, 
/Victoria-Fall/ becomes 维 多 利 亚 瀑 布 
(Pinyin:Wei Duo Li Ya Pu Bu). As the proposed 
framework allows direct orthographical mapping, 
it can also be easily extended to handle such name 
translation. We expect to see the proposed model 
to be further explored in other related areas. 
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