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Abstract 

In this paper we describe two new objective 
automatic evaluation methods for machine 
translation. The first method is based on long-
est common subsequence between a candidate 
translation and a set of reference translations. 
Longest common subsequence takes into ac-
count sentence level structure similarity natu-
rally and identifies longest co-occurring in-
sequence n-grams automatically.  The second 
method relaxes strict n-gram matching to skip-
bigram matching. Skip-bigram is any pair of 
words in their sentence order. Skip-bigram co-
occurrence statistics measure the overlap of 
skip-bigrams between a candidate translation 
and a set of reference translations. The empiri-
cal results show that both methods correlate 
with human judgments very well in both ade-
quacy and fluency. 

1 Introduction 

Using objective functions to automatically evalu-
ate machine translation quality is not new. Su et al. 
(1992) proposed a method based on measuring edit 
distance (Levenshtein 1966) between candidate 
and reference translations. Akiba et al. (2001) ex-
tended the idea to accommodate multiple refer-
ences.  Nießen et al. (2000) calculated the length-
normalized edit distance, called word error rate 
(WER), between a candidate and multiple refer-
ence translations. Leusch et al. (2003) proposed a 
related measure called position-independent word 
error rate (PER) that did not consider word posi-
tion, i.e. using bag-of-words instead. Instead of 
error measures, we can also use accuracy measures 
that compute similarity between candidate and ref-
erence translations in proportion to the number of 
common words between them as suggested by 
Melamed (1995). An n-gram co-occurrence meas-
ure, BLEU, proposed by Papineni et al. (2001) that 
calculates co-occurrence statistics based on n-gram 
overlaps have shown great potential. A variant of 
BLEU developed by NIST (2002) has been used in 

two recent large-scale machine translation evalua-
tions. 

Recently, Turian et al. (2003) indicated that 
standard accuracy measures such as recall, preci-
sion, and the F-measure can also be used in evalua-
tion of machine translation. However, results based 
on their method, General Text Matcher (GTM), 
showed that unigram F-measure correlated best 
with human judgments while assigning more 
weight to higher n-gram (n > 1) matches achieved 
similar performance as Bleu. Since unigram 
matches do not distinguish words in consecutive 
positions from words in the wrong order, measures 
based on position-independent unigram matches 
are not sensitive to word order and sentence level 
structure. Therefore, systems optimized for these 
unigram-based measures might generate adequate 
but not fluent target language. 

Since BLEU has been used to report the perform-
ance of many machine translation systems and it 
has been shown to correlate well with human 
judgments, we will explain BLEU in more detail 
and point out its limitations in the next section. We 
then introduce a new evaluation method called 
ROUGE-L that measures sentence-to-sentence 
similarity based on the longest common subse-
quence statistics between a candidate translation 
and a set of reference translations in Section 3. 
Section 4 describes another automatic evaluation 
method called ROUGE-S that computes skip-
bigram co-occurrence statistics. Section 5 presents 
the evaluation results of ROUGE-L, and ROUGE-
S and compare them with BLEU, GTM, NIST, 
PER, and WER in correlation with human judg-
ments in terms of adequacy and fluency. We con-
clude this paper and discuss extensions of the 
current work in Section 6. 

2 BLEU and N-gram Co-Occurrence 

To automatically evaluate machine translations 
the machine translation community recently 
adopted an n-gram co-occurrence scoring proce-
dure BLEU (Papineni et al. 2001). In two recent 
large-scale machine translation evaluations spon-
sored by NIST, a closely related automatic evalua-



tion method, simply called NIST score, was used. 
The NIST (NIST 2002) scoring method is based on 
BLEU. 

The main idea of BLEU is to measure the simi-
larity between a candidate translation and a set of 
reference translations with a numerical metric. 
They used a weighted average of variable length n-
gram matches between system translations and a 
set of human reference translations and showed 
that the weighted average metric correlating highly 
with human assessments.  

BLEU measures how well a machine translation 
overlaps with multiple human translations using n-
gram co-occurrence statistics. N-gram precision in 
BLEU is computed as follows: 
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Where Countclip(n-gram) is the maximum num-

ber of n-grams co-occurring in a candidate transla-
tion and a reference translation, and Count(n-
gram) is the number of n-grams in the candidate 
translation. To prevent very short translations that 
try to maximize their precision scores, BLEU adds a 
brevity penalty, BP, to the formula: 
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Where |c| is the length of the candidate transla-

tion and |r| is the length of the reference transla-
tion. The BLEU formula is then written as follows: 
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The weighting factor, wn, is set at 1/N. 
Although BLEU has been shown to correlate well 

with human assessments, it has a few things that 
can be improved. First the subjective application of 
the brevity penalty can be replaced with a recall 
related parameter that is sensitive to reference 
length. Although brevity penalty will penalize can-
didate translations with low recall by a factor of e(1-

|r|/|c|), it would be nice if we can use the traditional 
recall measure that has been a well known measure 
in NLP as suggested by Melamed (2003). Of 
course we have to make sure the resulting compos-
ite function of precision and recall is still correlates 
highly with human judgments. 

Second, although BLEU uses high order n-gram 
(n>1) matches to favor candidate sentences with 

consecutive word matches and to estimate their 
fluency, it does not consider sentence level struc-
ture. For example, given the following sentences: 

 
S1. police killed the gunman 
S2. police kill the gunman1 
S3. the gunman kill police 

 
We only consider BLEU with unigram and bi-

gram, i.e. N=2, for the purpose of explanation and 
call this BLEU-2. Using S1 as the reference and S2 
and S3 as the candidate translations, S2 and S3 
would have the same BLEU-2 score, since they 
both have one bigram and three unigram matches2. 
However, S2 and S3 have very different meanings. 

Third, BLEU is a geometric mean of unigram to 
N-gram precisions. Any candidate translation 
without a N-gram match has a per-sentence BLEU 
score of zero. Although BLEU is usually calculated 
over the whole test corpus, it is still desirable to 
have a measure that works reliably at sentence 
level for diagnostic and introspection purpose. 

To address these issues, we propose three new 
automatic evaluation measures based on longest 
common subsequence statistics and skip bigram 
co-occurrence statistics in the following sections. 

3 Longest Common Subsequence 

3.1 ROUGE-L 

A sequence Z = [z1, z2, ..., zn] is a subsequence of 
another sequence X = [x1, x2, ..., xm], if there exists 
a strict increasing sequence [i1, i2, ..., ik] of indices 
of X such that for all j = 1, 2, ..., k, we have xij = zj  
(Cormen et al. 1989). Given two sequences X and 
Y, the longest common subsequence (LCS) of X 
and Y is a common subsequence with maximum 
length. We can find the LCS of two sequences of 
length m and n using standard dynamic program-
ming technique in O(mn) time. 

LCS has been used to identify cognate candi-
dates during construction of N-best translation 
lexicons from parallel text. Melamed (1995) used 
the ratio (LCSR) between the length of the LCS of 
two words and the length of the longer word of the 
two words to measure the cognateness between 
them. He used as an approximate string matching 
algorithm. Saggion et al. (2002) used normalized 
pairwise LCS (NP-LCS) to compare similarity be-
tween two texts in automatic summarization 
evaluation. NP-LCS can be shown as a special case 
of Equation (6) with β = 1. However, they did not 
provide the correlation analysis of NP-LCS with 
                                                      

1 This is a real machine translation output. 
2 The “kill” in S2 or S3 does not match with “killed” in 

S1 in strict word-to-word comparison.  



human judgments and its effectiveness as an auto-
matic evaluation measure. 

To apply LCS in machine translation evaluation, 
we view a translation as a sequence of words. The 
intuition is that the longer the LCS of two transla-
tions is, the more similar the two translations are. 
We propose using LCS-based F-measure to esti-
mate the similarity between two translations X of 
length m and Y of length n, assuming X is a refer-
ence translation and Y is a candidate translation, as 
follows: 
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Where LCS(X,Y) is the length of a longest common 
subsequence of X and Y, and β = Plcs/Rlcs when 
∂Flcs/∂Rlcs_=_∂Flcs/∂Plcs. We call the LCS-based F-
measure, i.e. Equation 6, ROUGE-L. Notice that 
ROUGE-L is 1 when X = Y since LCS(X,Y) = m or 
n; while ROUGE-L is zero when LCS(X,Y) = 0, i.e. 
there is nothing in common between X and Y. F-
measure or its equivalents has been shown to have 
met several theoretical criteria in measuring accu-
racy involving more than one factor (Van Rijsber-
gen 1979). The composite factors are LCS-based 
recall and precision in this case. Melamed et al. 
(2003) used unigram F-measure to estimate ma-
chine translation quality and showed that unigram 
F-measure was as good as BLEU.  

One advantage of using LCS is that it does not 
require consecutive matches but in-sequence 
matches that reflect sentence level word order as n-
grams. The other advantage is that it automatically 
includes longest in-sequence common n-grams, 
therefore no predefined n-gram length is necessary.  
ROUGE-L as defined in Equation 6 has the prop-
erty that its value is less than or equal to the mini-
mum of unigram F-measure of X and Y. Unigram 
recall reflects the proportion of words in X (refer-
ence translation) that are also present in Y (candi-
date translation); while unigram precision is the 
proportion of words in Y that are also in X. Uni-
gram recall and precision count all co-occurring 
words regardless their orders; while ROUGE-L 
counts only in-sequence co-occurrences.  

By only awarding credit to in-sequence unigram 
matches, ROUGE-L also captures sentence level 
structure in a natural way. Consider again the ex-
ample given in Section 2 that is copied here for 
convenience: 
 

S1. police killed the gunman 
S2. police kill the gunman 
S3. the gunman kill police 

 
As we have shown earlier, BLEU-2 cannot differ-

entiate S2 from S3. However, S2 has a ROUGE-L 
score of 3/4 = 0.75 and S3 has a ROUGE-L score 
of 2/4 = 0.5, with β = 1. Therefore S2 is better than 
S3 according to ROUGE-L. This example also il-
lustrated that ROUGE-L can work reliably at sen-
tence level. 

However, LCS only counts the main in-sequence 
words; therefore, other longest common subse-
quences and shorter sequences are not reflected in 
the final score. For example, consider the follow-
ing candidate sentence: 
 

S4. the gunman police killed 
 

Using S1 as its reference, LCS counts either “the 
gunman” or “police killed”, but not both; therefore, 
S4 has the same ROUGE-L score as S3. BLEU-2 
would prefer S4 over S3. In Section 4, we will in-
troduce skip-bigram co-occurrence statistics that 
do not have this problem while still keeping the 
advantage of in-sequence (not necessary consecu-
tive) matching that reflects sentence level word 
order. 

3.2 Multiple References 

So far, we only demonstrated how to compute 
ROUGE-L using a single reference. When multiple 
references are used, we take the maximum LCS 
matches between a candidate translation, c, of n 
words and a set of u reference translations of  mj 
words. The LCS-based F-measure can be 
computed as follows: 
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where β = Plcs-multi/Rlcs-multi when ∂Flcs-multi/∂Rlcs-

multi_=_∂Flcs-multi/∂Plcs-multi. 
 

This procedure is also applied to computation of 
ROUGE-S when multiple references are used. In 
the next section, we introduce the skip-bigram co-
occurrence statistics. In the next section, we de-
scribe how to extend ROUGE-L to assign more 
credits to longest common subsequences with con-
secutive words. 



3.3 ROUGE-W: Weighted Longest Common 
Subsequence 

LCS has many nice properties as we have de-
scribed in the previous sections. Unfortunately, the 
basic LCS also has a problem that it does not dif-
ferentiate LCSes of different spatial relations 
within their embedding sequences. For example, 
given a reference sequence X and two candidate 
sequences Y1 and Y2 as follows: 

 
X:  [A B C D E F G] 
Y1: [A B C D H I K] 
Y2:  [A H B K C I D] 
 
Y1 and Y2 have the same ROUGE-L score. How-

ever, in this case, Y1 should be the better choice 
than Y2 because Y1 has consecutive matches. To 
improve the basic LCS method, we can simply re-
member the length of consecutive matches encoun-
tered so far to a regular two dimensional dynamic 
program table computing LCS. We call this 
weighted LCS (WLCS) and use k to indicate the 
length of the current consecutive matches ending at 
words xi and yj. Given two sentences X and Y, the 
WLCS score of X and Y can be computed using the 
following dynamic programming procedure: 

 
(1) For (i = 0; i <=m; i++) 
        c(i,j) = 0  // initialize c-table 
        w(i,j) = 0 // initialize w-table 
(2) For (i = 1; i <= m; i++) 
        For (j = 1; j <= n; j++) 
          If xi = yj Then 

     // the length of consecutive matches at 
     // position i-1 and j-1 
     k = w(i-1,j-1) 
     c(i,j) = c(i-1,j-1) + f(k+1) – f(k) 
     // remember the length of consecutive 
     // matches at position i, j 
     w(i,j) = k+1 

          Otherwise 
     If c(i-1,j) > c(i,j-1) Then 

    c(i,j) = c(i-1,j) 
    w(i,j) = 0           // no match at i, j 

     Else c(i,j) = c(i,j-1) 
     w(i,j) = 0           // no match at i, j 

(3) WLCS(X,Y) = c(m,n) 
 
Where c is the dynamic programming table, c(i,j) 

stores the WLCS score ending at word xi of X and 
yj of Y, w is the table storing the length of consecu-
tive matches ended at c table position i and j, and f 
is a function of consecutive matches at the table 
position, c(i,j). Notice that by providing different 
weighting function f, we can parameterize the 
WLCS algorithm to assign different credit to con-
secutive in-sequence matches.  

The weighting function f must have the property 
that f(x+y) > f(x) + f(y) for any positive integers x 
and y. In other words, consecutive matches are 
awarded more scores than non-consecutive 
matches. For example, f(k)-=-αk – β when k >= 0, 
and α, β > 0. This function charges a gap penalty 
of –β for each non-consecutive n-gram sequences. 
Another possible function family is the polynomial 
family of the form kα where -α > 1. However, in 
order to normalize the final ROUGE-W score, we 
also prefer to have a function that has a close form 
inverse function. For example, f(k)-=-k2 has a close 
form inverse function f -1(k)-=-k1/2. F-measure 
based on WLCS can be computed as follows, 
given two sequences X of length m and Y of length 
n: 
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Where f -1 is the inverse function of f. We call the 
WLCS-based F-measure, i.e. Equation 12, 
ROUGE-W. Using Equation 12 and f(k)-=-k2 as the 
weighting function, the ROUGE-W scores for se-
quences Y1 and Y2 are 0.571 and 0.286 respec-
tively. Therefore, Y1 would be ranked higher than 
Y2 using WLCS. We use the polynomial function 
of the form kα in the ROUGE evaluation package. In 
the next section, we introduce the skip-bigram co-
occurrence statistics. 

4 ROUGE-S: Skip-Bigram Co-Occurrence 
Statistics 

Skip-bigram is any pair of words in their sen-
tence order, allowing for arbitrary gaps. Skip-
bigram co-occurrence statistics measure the over-
lap of skip-bigrams between a candidate translation 
and a set of reference translations. Using the ex-
ample given in Section 3.1: 

 
S1. police killed the gunman 
S2. police kill the gunman 
S3. the gunman kill police 
S4. the gunman police killed 

 
Each sentence has C(4,2)3 = 6 skip-bigrams. For 

example, S1 has the following skip-bigrams: 
 

                                                      
3 Combination: C(4,2) = 4!/(2!*2!) = 6. 



(“police killed”, “police the”, “police gunman”, 
“killed the”, “killed gunman”, “the gunman”)  

 
S2 has three skip-bigram matches with S1 (“po-

lice the”, “police gunman”, “the gunman”), S3 has 
one skip-bigram match with S1 (“the gunman”), 
and S4 has two skip-bigram matches with S1 (“po-
lice killed”, “the gunman”).  Given translations X 
of length m and Y of length n, assuming X is a ref-
erence translation and Y is a candidate translation, 
we compute skip-bigram-based F-measure as fol-
lows: 
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Where SKIP2(X,Y) is the number of skip-bigram 

matches between X and Y, β = Pskip2/Rskip2 when 
∂Fskip2/∂Rskip2_=_∂Fskip2/∂Pskip2, and  C is the combi-
nation function. We call the skip-bigram-based F-
measure, i.e. Equation 15, ROUGE-S. 

Using Equation 15 with β = 1 and S1 as the ref-
erence, S2’s ROUGE-S score is 0.5, S3 is 0.167, 
and S4 is 0.333. Therefore, S2 is better than S3 and 
S4, and S4 is better than S3. This result is more 
intuitive than using BLEU-2 and ROUGE-L. One 
advantage of skip-bigram vs. BLEU is that it does 
not require consecutive matches but is still sensi-
tive to word order. Comparing skip-bigram with 
LCS, skip-bigram counts all in-order matching 
word pairs while LCS only counts one longest 
common subsequence. 

We can limit the maximum skip distance, dskip, 
between two in-order words that is allowed to form 
a skip-bigram. Applying such constraint, we limit 
skip-bigram formation to a fix window size. There-
fore, computation time can be reduced and hope-
fully performance can be as good as the version 
without such constraint. For example, if we set dskip 
to 0 then ROUGE-S is equivalent to bigram over-
lap. If we set dskip to 4 then only word pairs of at 
most 4 words apart can form skip-bigrams. 

Adjusting Equations 13, 14, and 15 to use maxi-
mum skip distance limit is straightforward: we 
only count the skip-bigram matches, SKIP2(X,Y), 
within the maximum skip distance and replace de-
nominators of Equations 13, C(m,2), and 14, 
C(n,2), with the actual numbers of within distance 
skip-bigrams from the reference and the candidate 
respectively.  

In the next section, we present the evaluations of 
ROUGE-L, ROUGE-S, and compare their per-
formance with other automatic evaluation meas-
ures. 

5 Evaluations 

One of the goals of developing automatic evalua-
tion measures is to replace labor-intensive human 
evaluations. Therefore the first criterion to assess 
the usefulness of an automatic evaluation measure 
is to show that it correlates highly with human 
judgments in different evaluation settings. How-
ever, high quality large-scale human judgments are 
hard to come by. Fortunately, we have access to 
eight MT systems’ outputs, their human assess-
ment data, and the reference translations from 2003 
NIST Chinese MT evaluation (NIST 2002a). There 
were 919 sentence segments in the corpus. We first 
computed averages of the adequacy and fluency 
scores of each system assigned by human evalua-
tors. For the input of automatic evaluation meth-
ods, we created three evaluation sets from the MT 
outputs: 

1. Case set: The original system outputs with 
case information. 

2. NoCase set: All words were converted 
into lower case, i.e. no case information 
was used. This set was used to examine 
whether human assessments were affected 
by case information since not all MT sys-
tems generate properly cased output. 

3. Stem set: All words were converted into 
lower case and stemmed using the Porter 
stemmer (Porter 1980). Since ROUGE 
computed similarity on surface word 
level, stemmed version allowed ROUGE 
to perform more lenient matches. 

To accommodate multiple references, we use a 
Jackknifing procedure. Given N references, we 
compute the best score over N sets of N-1 refer-
ences. The final score is the average of the N best 
scores using N different sets of N-1 references.  
The Jackknifing procedure is adopted since we 
often need to compare system and human perform-
ance and the reference translations are usually the 
only human translations available. Using this pro-
cedure, we are able to estimate average human per-
formance by averaging N best scores of one 
reference vs. the rest N-1 references.  

We then computed average BLEU1-12 4 , GTM 
with exponents of 1.0, 2.0, and 3.0, NIST, WER, 
and PER scores over these three sets. Finally we 
applied ROUGE-L, ROUGE-W with weighting 
function k1.2, and ROUGE-S without skip distance 
                                                      

4 BLEUN computes BLEU over n-grams up to length N. 
Only BLEU1, BLEU4, and BLEU12 are shown in Table 1.  



limit and with skip distant limits of 0, 4, and 9. 
Correlation analysis based on two different correla-
tion statistics, Pearson’s ρ and Spearman’s ρ, with 
respect to adequacy and fluency are shown in Ta-
ble 1.  
The Pearson’s correlation coefficient5 measures the 
strength and direction of a linear relationship be-
tween any two variables, i.e. automatic metric 
score and human assigned mean coverage score in 
our case. It ranges from +1 to -1. A correlation of 1 
means that there is a perfect positive linear rela-
tionship between the two variables, a correlation of 
-1 means that there is a perfect negative linear rela-
tionship between them, and  a correlation of 0 
means that there is no linear relationship between 
them. Since we would like to use automatic 
evaluation metric not only in comparing systems 
                                                      

5 For a quick overview of the Pearson’s coefficient, see: 
http://davidmlane.com/hyperstat/A34739.html. 

but also in in-house system development, a good 
linear correlation with human judgment would en-
able us to use automatic scores to predict corre-
sponding human judgment scores. Therefore, 
Pearson’s correlation coefficient is a good measure 
to look at. 

Spearman’s correlation coefficient 6  is also a 
measure of correlation between two variables. It is 
a non-parametric measure and is a special case of 
the Pearson’s correlation coefficient when the val-
ues of data are converted into ranks before comput-
ing the coefficient. Spearman’s correlation 
coefficient does not assume the correlation be-
tween the variables is linear. Therefore it is a use-
ful correlation indicator even when good linear 
correlation, for example, according to Pearson’s 
correlation coefficient between two variables could 
                                                      

6 For a quick overview of the Spearman’s coefficient, see: 
http://davidmlane.com/hyperstat/A62436.html. 

Adequacy
Method P 95%L 95%U S 95%L 95%U P 95%L 95%U S 95%L 95%U P 95%L 95%U S 95%L 95%U

BLEU1 0.86 0.83 0.89 0.80 0.71 0.90 0.87 0.84 0.90 0.76 0.67 0.89 0.91 0.89 0.93 0.85 0.76 0.95

BLEU4 0.77 0.72 0.81 0.77 0.71 0.89 0.79 0.75 0.82 0.67 0.55 0.83 0.82 0.78 0.85 0.76 0.67 0.89

BLEU12 0.66 0.60 0.72 0.53 0.44 0.65 0.72 0.57 0.81 0.65 0.25 0.88 0.72 0.58 0.81 0.66 0.28 0.88

NIST 0.89 0.86 0.92 0.78 0.71 0.89 0.87 0.85 0.90 0.80 0.74 0.92 0.90 0.88 0.93 0.88 0.83 0.97

WER 0.47 0.41 0.53 0.56 0.45 0.74 0.43 0.37 0.49 0.66 0.60 0.82 0.48 0.42 0.54 0.66 0.60 0.81

PER 0.67 0.62 0.72 0.56 0.48 0.75 0.63 0.58 0.68 0.67 0.60 0.83 0.72 0.68 0.76 0.69 0.62 0.86

ROUGE-L 0.87 0.84 0.90 0.84 0.79 0.93 0.89 0.86 0.92 0.84 0.71 0.94 0.92 0.90 0.94 0.87 0.76 0.95

ROUGE-W 0.84 0.81 0.87 0.83 0.74 0.90 0.85 0.82 0.88 0.77 0.67 0.90 0.89 0.86 0.91 0.86 0.76 0.95

ROUGE-S* 0.85 0.81 0.88 0.83 0.76 0.90 0.90 0.88 0.93 0.82 0.70 0.92 0.95 0.93 0.97 0.85 0.76 0.94

ROUGE-S0 0.82 0.78 0.85 0.82 0.71 0.90 0.84 0.81 0.87 0.76 0.67 0.90 0.87 0.84 0.90 0.82 0.68 0.90

ROUGE-S4 0.82 0.78 0.85 0.84 0.79 0.93 0.87 0.85 0.90 0.83 0.71 0.90 0.92 0.90 0.94 0.84 0.74 0.93

ROUGE-S9 0.84 0.80 0.87 0.84 0.79 0.92 0.89 0.86 0.92 0.84 0.76 0.93 0.94 0.92 0.96 0.84 0.76 0.94

GTM10 0.82 0.79 0.85 0.79 0.74 0.83 0.91 0.89 0.94 0.84 0.79 0.93 0.94 0.92 0.96 0.84 0.79 0.92

GTM20 0.77 0.73 0.81 0.76 0.69 0.88 0.79 0.76 0.83 0.70 0.55 0.83 0.83 0.79 0.86 0.80 0.67 0.90

GTM30 0.74 0.70 0.78 0.73 0.60 0.86 0.74 0.70 0.78 0.63 0.52 0.79 0.77 0.73 0.81 0.64 0.52 0.80

Fluency
Method P 95%L 95%U S 95%L 95%U P 95%L 95%U S 95%L 95%U P 95%L 95%U S 95%L 95%U

BLEU1 0.81 0.75 0.86 0.76 0.62 0.90 0.73 0.67 0.79 0.70 0.62 0.81 0.70 0.63 0.77 0.79 0.67 0.90

BLEU4 0.86 0.81 0.90 0.74 0.62 0.86 0.83 0.78 0.88 0.68 0.60 0.81 0.83 0.78 0.88 0.70 0.62 0.81

BLEU12 0.87 0.76 0.93 0.66 0.33 0.79 0.93 0.81 0.97 0.78 0.44 0.94 0.93 0.84 0.97 0.80 0.49 0.94

NIST 0.81 0.75 0.87 0.74 0.62 0.86 0.70 0.64 0.77 0.68 0.60 0.79 0.68 0.61 0.75 0.77 0.67 0.88

WER 0.69 0.62 0.75 0.68 0.57 0.85 0.59 0.51 0.66 0.70 0.57 0.82 0.60 0.52 0.68 0.69 0.57 0.81

PER 0.79 0.74 0.85 0.67 0.57 0.82 0.68 0.60 0.73 0.69 0.60 0.81 0.70 0.63 0.76 0.65 0.57 0.79

ROUGE-L 0.83 0.77 0.88 0.80 0.67 0.90 0.76 0.69 0.82 0.79 0.64 0.90 0.73 0.66 0.80 0.78 0.67 0.90

ROUGE-W 0.85 0.80 0.90 0.79 0.63 0.90 0.78 0.73 0.84 0.72 0.62 0.83 0.77 0.71 0.83 0.78 0.67 0.90

ROUGE-S* 0.84 0.78 0.89 0.79 0.62 0.90 0.80 0.74 0.86 0.77 0.64 0.90 0.78 0.71 0.84 0.79 0.69 0.90

ROUGE-S0 0.87 0.81 0.91 0.78 0.62 0.90 0.83 0.78 0.88 0.71 0.62 0.82 0.82 0.77 0.88 0.76 0.62 0.90

ROUGE-S4 0.84 0.79 0.89 0.80 0.67 0.90 0.82 0.77 0.87 0.78 0.64 0.90 0.81 0.75 0.86 0.79 0.67 0.90

ROUGE-S9 0.84 0.79 0.89 0.80 0.67 0.90 0.81 0.76 0.87 0.79 0.69 0.90 0.79 0.73 0.85 0.79 0.69 0.90

GTM10 0.73 0.66 0.79 0.76 0.60 0.87 0.71 0.64 0.78 0.80 0.67 0.90 0.66 0.58 0.74 0.80 0.64 0.90

GTM20 0.86 0.81 0.90 0.80 0.67 0.90 0.83 0.77 0.88 0.69 0.62 0.81 0.83 0.77 0.87 0.74 0.62 0.89

GTM30 0.87 0.81 0.91 0.79 0.67 0.90 0.83 0.77 0.87 0.73 0.62 0.83 0.83 0.77 0.88 0.71 0.60 0.83

With Case Information (Case) Lower Case (NoCase) Lower Case & Stemmed (Stem)

With Case Information (Case) Lower Case (NoCase) Lower Case & Stemmed (Stem)

Table 1. Pearson’s ρ and Spearman’s ρ correlations of automatic evaluation measures vs. adequacy
and fluency: BLEU1, 4, and 12 are BLEU with maximum of 1, 4, and 12 grams, NIST is the NIST 
score, ROUGE-L is LCS-based F-measure (β = 1), ROUGE-W is weighted LCS-based  F-measure (β 
= 1). ROUGE-S* is skip-bigram-based co-occurrence statistics with any skip distance limit, ROUGE-
SN is skip-bigram-based F-measure (β = 1) with maximum skip distance of N, PER is position inde-
pendent word error rate, and WER is word error rate. GTM 10, 20, and 30 are general text matcher 
with exponents of 1.0, 2.0, and 3.0. (Note, only BLEU1, 4, and 12 are shown here to preserve space.) 

 



not be found. It also suits the NIST MT evaluation 
scenario where multiple systems are ranked ac-
cording to some performance metrics. 

To estimate the significance of these correlation 
statistics, we applied bootstrap resampling, gener-
ating random samples of the 919 different sentence 
segments. The lower and upper values of 95% con-
fidence interval are also shown in the table. Dark 
(green) cells are the best correlation numbers in 
their categories and light gray cells are statistically 
equivalent to the best numbers in their categories. 
Analyzing all runs according to the adequacy and 
fluency table, we make the following observations: 

Applying the stemmer achieves higher correla-
tion with adequacy but keeping case information 
achieves higher correlation with fluency except for 
BLEU7-12 (only BLEU12 is shown). For example, 
the Pearson’s ρ (P) correlation of ROUGE-S* with 
adequacy increases from 0.85 (Case) to 0.95 
(Stem) while its Pearson’s ρ correlation with flu-
ency drops from 0.84 (Case) to 0.78 (Stem). We 
will focus our discussions on the Stem set in ade-
quacy and Case set in fluency. 

The Pearson's ρ correlation values in the Stem 
set of the Adequacy Table, indicates that ROUGE-
L and ROUGE-S with a skip distance longer than 0 
correlate highly and linearly with adequacy and 
outperform BLEU and NIST. ROUGE-S* achieves 
that best correlation with a Pearson’s ρ of 0.95. 
Measures favoring consecutive matches, i.e. 
BLEU4 and 12, ROUGE-W, GTM20 and 30, 
ROUGE-S0 (bigram), and WER have lower Pear-
son’s ρ. Among them WER (0.48) that tends to 
penalize small word movement is the worst per-
former. One interesting observation is that longer 
BLEU has lower correlation with adequacy. 

Spearman’s ρ values generally agree with Pear-
son's ρ but have more equivalents. 

The Pearson's ρ correlation values in the Stem 
set of the Fluency Table, indicates that BLEU12 has 
the highest correlation (0.93) with fluency. How-
ever, it is statistically indistinguishable with 95% 
confidence from all other metrics shown in the 
Case set of the Fluency Table except for WER and 
GTM10.  

GTM10 has good correlation with human judg-
ments in adequacy but not fluency; while GTM20 
and GTM30, i.e. GTM with exponent larger than 
1.0, has good correlation with human judgment in 
fluency but not adequacy. 

ROUGE-L and ROUGE-S*, 4, and 9 are good 
automatic evaluation metric candidates since they 
perform as well as BLEU in fluency correlation 
analysis and outperform BLEU4 and 12 signifi-
cantly in adequacy. Among them, ROUGE-L is the 
best metric in both adequacy and fluency correla-
tion with human judgment according to Spear-

man’s correlation coefficient and is statistically 
indistinguishable from the best metrics in both 
adequacy and fluency correlation with human 
judgment according to Pearson’s correlation coef-
ficient. 

6 Conclusion 

In this paper we presented two new objective 
automatic evaluation methods for machine transla-
tion, ROUGE-L based on longest common subse-
quence (LCS) statistics between a candidate 
translation and a set of reference translations. 
Longest common subsequence takes into account 
sentence level structure similarity naturally and 
identifies longest co-occurring in-sequence n-
grams automatically while this is a free parameter 
in BLEU.   

To give proper credit to shorter common se-
quences that are ignored by LCS but still retain the 
flexibility of non-consecutive matches, we pro-
posed counting skip bigram co-occurrence. The 
skip-bigram-based ROUGE-S* (without skip dis-
tance restriction) had the best Pearson's ρ correla-
tion of 0.95 in adequacy when all words were 
lower case and stemmed. ROUGE-L, ROUGE-W, 
ROUGE-S*, ROUGE-S4, and ROUGE-S9 were 
equal performers to BLEU in measuring fluency. 
However, they have the advantage that we can ap-
ply them on sentence level while longer BLEU such 
as BLEU12 would not differentiate any sentences 
with length shorter than 12 words (i.e. no 12-gram 
matches). We plan to explore their correlation with 
human judgments on sentence-level in the future. 
We also confirmed empirically that adequacy and 
fluency focused on different aspects of machine 
translations. Adequacy placed more emphasis on 
terms co-occurred in candidate and reference trans-
lations as shown in the higher correlations in Stem 
set than Case set in Table 1; while the reverse was 
true in the terms of fluency. 

The evaluation results of ROUGE-L, ROUGE-
W, and ROUGE-S in machine translation evalua-
tion are very encouraging. However, these meas-
ures in their current forms are still only applying 
string-to-string matching. We have shown that bet-
ter correlation with adequacy can be reached by 
applying stemmer. In the next step, we plan to ex-
tend them to accommodate synonyms and para-
phrases. For example, we can use an existing 
thesaurus such as WordNet (Miller 1990) or creat-
ing a customized one by applying automated syno-
nym set discovery methods (Pantel and Lin 2002) 
to identify potential synonyms. Paraphrases can 
also be automatically acquired using statistical 
methods as shown by Barzilay and Lee (2003). 
Once we have acquired synonym and paraphrase 



data, we then need to design a soft matching func-
tion that assigns partial credits to these approxi-
mate matches. In this scenario, statistically 
generated data has the advantage of being able to 
provide scores reflecting the strength of similarity 
between synonyms and paraphrased.  

ROUGE-L, ROUGE-W, and ROUGE-S have 
also been applied in automatic evaluation of sum-
marization and achieved very promising results 
(Lin 2004). In Lin and Och (2004), we proposed a 
framework that automatically evaluated automatic 
MT evaluation metrics using only manual transla-
tions without further human involvement. Accord-
ing to the results reported in that paper, ROUGE-L, 
ROUGE-W, and ROUGE-S also outperformed 
BLEU and NIST. 
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