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Abstract 

Syntax-based statistical machine transla-
tion (MT) aims at applying statistical 
models to structured data. In this paper, 
we present a syntax-based statistical ma-
chine translation system based on a prob-
abilistic synchronous dependency 
insertion grammar. Synchronous depend-
ency insertion grammars are a version of 
synchronous grammars defined on de-
pendency trees. We first introduce our 
approach to inducing such a grammar 
from parallel corpora. Second, we de-
scribe the graphical model for the ma-
chine translation task, which can also be 
viewed as a stochastic tree-to-tree trans-
ducer. We introduce a polynomial time 
decoding algorithm for the model. We 
evaluate the outputs of our MT system us-
ing the NIST and Bleu automatic MT 
evaluation software. The result shows that 
our system outperforms the baseline sys-
tem based on the IBM models in both 
translation speed and quality. 

1 Introduction 

Statistical approaches to machine translation, pio-
neered by (Brown et al., 1993), achieved impres-
sive performance by leveraging large amounts of 
parallel corpora. Such approaches, which are es-
sentially stochastic string-to-string transducers, do 
not explicitly model natural language syntax or 
semantics. In reality, pure statistical systems some-
times suffer from ungrammatical outputs, which 
are understandable at the phrasal level but some-
times hard to comprehend as a coherent sentence. 

In recent years, syntax-based statistical machine 

translation, which aims at applying statistical mod-
els to structural data, has begun to emerge. With 
the research advances in natural language parsing, 
especially the broad-coverage parsers trained from 
treebanks, for example (Collins, 1999), the utiliza-
tion of structural analysis of different languages 
has been made possible. Ideally, by combining the 
natural language syntax and machine learning 
methods, a broad-coverage and linguistically well-
motivated statistical MT system can be constructed. 

However, structural divergences between lan-
guages (Dorr, 1994)，which are due to either sys-
tematic differences between languages or loose 
translations in real corpora，pose a major chal-
lenge to syntax-based statistical MT. As a result, 
the syntax based MT systems have to transduce 
between non-isomorphic tree structures. 

(Wu, 1997) introduced a polynomial-time solu-
tion for the alignment problem based on synchro-
nous binary trees. (Alshawi et al., 2000) represents 
each production in parallel dependency trees as a 
finite-state transducer.  Both approaches learn the 
tree representations directly from parallel sen-
tences, and do not make allowances for non-
isomorphic structures.  (Yamada and Knight, 2001, 
2002) modeled translation as a sequence of tree 
operations transforming a syntactic tree into a 
string of the target language.  

When researchers try to use syntax trees in both 
languages, the problem of non-isomorphism must 
be addressed. In theory, stochastic tree transducers 
and some versions of synchronous grammars pro-
vide solutions for the non-isomorphic tree based 
transduction problem and hence possible solutions 
for MT. Synchronous Tree Adjoining Grammars, 
proposed by (Shieber and Schabes, 1990), were 
introduced primarily for semantics but were later 
also proposed for translation. Eisner (2003) pro-
posed viewing the MT problem as a probabilistic 
synchronous tree substitution grammar parsing 
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problem. Melamed (2003, 2004) formalized the 
MT problem as synchronous parsing based on 
multitext grammars. Graehl and Knight (2004) de-
fined training and decoding algorithms for both 
generalized tree-to-tree and tree-to-string transduc-
ers. All these approaches, though different in for-
malism, model the two languages using tree-based 
transduction rules or a synchronous grammar, pos-
sibly probabilistic, and using multi-lemma elemen-
tary structures as atomic units. The machine 
translation is done either as a stochastic tree-to-tree 
transduction or a synchronous parsing process. 

However, few of the above mentioned formal-
isms have large scale implementations. And to the 
best of our knowledge, the advantages of syntax 
based statistical MT systems over pure statistical 
MT systems have yet to be empirically verified. 

We believe difficulties in inducing a synchro-
nous grammar or a set of tree transduction rules 
from large scale parallel corpora are caused by:  
1. The abilities of synchronous grammars and 

tree transducers to handle non-isomorphism 
are limited. At some level, a synchronous 
derivation process must exist between the 
source and target language sentences.  

2. The training and/or induction of a synchro-
nous grammar or a set of transduction rules 
are usually computationally expensive if all 
the possible operations and elementary struc-
tures are allowed. The exhaustive search for 
all the possible sub-sentential structures in a 
syntax tree of a sentence is NP-complete. 

3. The problem is aggravated by the non-perfect 
training corpora. Loose translations are less of 
a problem for string based approaches than for 
approaches that require syntactic analysis. 

Hajic et al. (2002) limited non-isomorphism by 
n-to-m matching of nodes in the two trees.  How-
ever, even after extending this model by allowing 
cloning operations on subtrees, Gildea (2003) 
found that parallel trees over-constrained the 
alignment problem, and achieved better results 
with a tree-to-string model than with a tree-to-tree 
model using two trees. In a different approach, 
Hwa et al. (2002) aligned the parallel sentences 
using phrase based statistical MT models and then 
projected the alignments back to the parse trees. 

This motivated us to look for a more efficient 
and effective way to induce a synchronous gram-
mar from parallel corpora and to build an MT sys-
tem that performs competitively with the pure 

statistical MT systems. We chose to build the syn-
chronous grammar on the parallel dependency 
structures of the sentences. The synchronous 
grammar is induced by hierarchical tree partition-
ing operations. The rest of this paper describes the 
system details as follows: Sections 2 and 3 de-
scribe the motivation behind the usage of depend-
ency structures and how a version of synchronous  
dependency grammar is learned. This grammar is 
used as the primary translation knowledge source 
for our system. Section 4 defines the tree-to-tree 
transducer and the graphical model for the stochas-
tic tree-to-tree transduction process and introduces 
a polynomial time decoding algorithm for the 
transducer.  We evaluate our system in section 5 
with the NIST/Bleu automatic MT evaluation 
software and the results are discussed in Section 6. 

2 The Synchronous Grammar 

2.1 Why Dependency Structures? 

According to Fox (2002), dependency representa-
tions have the best inter-lingual phrasal cohesion 
properties. The percentage for head crossings is 
12.62% and that of modifier crossings is 9.22%. 
Furthermore, a grammar based on dependency 
structures has the advantage of being simple in 
formalism yet having CFG equivalent formal gen-
erative capacity (Ding and Palmer, 2004b). 

Dependency structures are inherently lexical-
ized as each node is one word. In comparison, 
phrasal structures (treebank style trees) have two 
node types: terminals store the lexical items and 
non-terminals store word order and phrasal scopes. 

2.2 Synchronous Dependency Insertion Grammars 

Ding and Palmer (2004b) described one version of 
synchronous grammar: Synchronous Dependency 
Insertion Grammars. A Dependency Insertion 
Grammars (DIG) is a generative grammar formal-
ism that captures word order phenomena within the 
dependency representation. In the scenario of two 
languages, the two sentences in the source and tar-
get languages can be modeled as being generated 
from a synchronous derivation process. 

A synchronous derivation process for the two 
syntactic structures of both languages suggests the 
level of cross-lingual isomorphism between the 
two trees (e.g. Synchronous Tree Adjoining 
Grammars (Shieber and Schabes, 1990)). 
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Apart from other details, a DIG can be viewed 
as a tree substitution grammar defined on depend-
ency trees (as opposed to phrasal structure trees). 
The basic units of the grammar are elementary 
trees (ET), which are sub-sentential dependency 
structures containing one or more lexical items. 
The synchronous version, SDIG, assumes that the 
isomorphism of the two syntactic structures is at 
the ET level, rather than at the word level, hence 
allowing non-isomorphic tree to tree mapping. 

We illustrate how the SDIG works using the 
following pseudo-translation example: 
 [Source] The girl kissed her kitty cat. 
 [Target] The girl gave a kiss to her cat. 

 

Figure 1.
An example

 

Figure 2. 
Tree-to-tree 
transduction

Almost any tree-transduction operations de-
fined on a single node will fail to generate the tar-
get sentence from the source sentence without 
using insertion/deletion operations. However, if we 
view each dependency tree as an assembly of indi-
visible sub-sentential elementary trees (ETs), we 
can find a proper way to transduce the input tree to 
the output tree. An ET is a single “symbol” in a 
transducer’s language. As shown in Figure 2, each 
circle stands for an ET and thick arrows denote the 
transduction of each ET as a single symbol. 

3 Inducing a Synchronous Dependency 
Insertion Grammar 

As the start to our syntax-based SMT system, the 
SDIG must be learned from the parallel corpora.  

3.1 Cross-lingual Dependency Inconsistencies 

One straightforward way to induce a generative 
grammar is using EM style estimation on the gen-
erative process. Different versions of such training 
algorithms can be found in (Hajic et al., 2002; Eis-

ner 2003; Gildea 2003; Graehl and Knight 2004). 
However, a synchronous derivation process 

cannot handle two types of cross-language map-
pings: crossing-dependencies (parent-descendent 
switch) and broken dependencies (descendent ap-
pears elsewhere), which are illustrated below: 

 
Figure 3. Cross-lingual dependency consistencies 

In the above graph, the two sides are English 
and the foreign dependency trees. Each node in a 
tree stands for a lemma in a dependency tree. The 
arrows denote aligned nodes and those resulting 
inconsistent dependencies are marked with a “*”.  

Fox (2002) collected the statistics mainly on 
French and English data: in dependency represen-
tations, the percentage of head crossings per 
chance (case [b] in the graph) is 12.62%.  

Using the statistics on cross-lingual dependency 
consistencies from a small word to word aligned 
Chinese-English parallel corpus1, we found that the 
percentage of crossing-dependencies (case [b]) 
between Chinese and English is 4.7% while that of 
broken dependencies (case [c]) is 59.3%. 

The large number of broken dependencies pre-
sents a major challenge for grammar induction 
based on a top-down style EM learning process. 

Such broken and crossing dependencies can be 
modeled by SDIG if they appear inside a pair of 
elementary trees. However, if they appear between 
the elementary trees, they are not compatible with 
the isomorphism assumption on which SDIG is 
based. Nevertheless, the hope is that the fact that 
the training corpus contains a significant percent-
age of dependency inconsistencies does not mean 
that during decoding the target language sentence 
cannot be written in a dependency consistent way. 

3.2 Grammar Induction by Synchronous  
Hierarchical Tree Partitioning 

(Ding and Palmer, 2004a) gave a polynomial time 
solution for learning parallel sub-sentential de-

                                                           
1  Total 826 sentence pairs, 9957 Chinese words, 12660 Eng-
lish words. Data made available by the courtesy of Microsoft 
Research, Asia and IBM T.J. Watson Research. 
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pendency structures from non-isomorphic depend-
ency trees. Our approach, while similar to (Ding 
and Palmer, 2004a) in that we also iteratively parti-
tion the parallel dependency trees based on a heu-
ristic function, departs (Ding and Palmer, 2004a) 
in three ways: (1) we base the hierarchical tree par-
titioning operations on the categories of the de-
pendency trees; (2) the statistics of the resultant 
tree pairs from the partitioning operation are col-
lected at each iteration rather than at the end of the 
algorithm; (3) we do not re-train the word to word 
probabilities at each iteration. Our grammar induc-
tion algorithm is sketched below: 

Step 0. View each tree as a “bag of words” and train a 
statistical translation model on all the tree pairs to 
acquire word-to-word translation probabilities. In 
our implementation, the IBM Model 1 (Brown et 
al., 1993) is used. 

Step 1. Let i  denote the current iteration and let 
[ ]C CategorySequence i=  be the current syntac-

tic category set. 
For each tree pair in the corpus, do { 

a) For the tentative synchronous partitioning opera-
tion, use a heuristic function to select the BEST word 
pair * *( , )i je f , where both * *,i je f  are NOT “chosen”,  

*( )iCategory e C∈  and *( )jCategory f C∈ . 

b) If * *( , )i je f  is found in (a), mark * *,i je f  as “cho-
sen” and go back to (a), else go to (c). 
c) Execute the synchronous tree partitioning opera-
tion on all the “chosen” word pairs on the tree pair. 
Hence, several new tree pairs are created. Replace the 
old tree pair with the new tree pairs together with the 
rest of the old tree pair. 
d) Collect the statistics for all the new tree pairs as 
elementary tree pairs. } 

Step 2. 1i i= + . Go to Step 1 for the next iteration. 

At each iteration, one specific set of categories 
of nodes is handled. The category sequence we 
used in the grammar induction is:  

1. Top-NP: the noun phrases that do not have 
another noun phrase as parent or ancestor. 

2. NP: all the noun phrases 
3. VP, IP, S, SBAR:  verb phrases equivalents. 
4. PP, ADJP, ADVP, JJ, RB: all the modifiers 
5. CD: all the numbers. 

We first process top NP chunks because they are 
the most stable between languages. Interestingly, 
NPs are also used as anchor points to learn mono-
lingual paraphrases (Ibrahim et al., 2003). The 
phrasal structure categories can be extracted from 

automatic parsers using methods in (Xia, 2001). 
An illustration is given below (Chinese in pin-

yin form). The placement of the dependency arcs 
reflects the relative word order between a parent 
node and all its immediate children. The collected 
ETs are put into square boxes and the partitioning 
operations taken are marked with dotted arrows. 
 [English]   I have been in Canada since 1947. 
 [Chinese]  Wo 1947 nian yilai  yizhi   zhu  zai  jianada. 
 [Glossary]  I   1947 year since always live in  Canada 

[ ITERATION 1 & 2 ] Partition at word pair  
(“I” and “wo”) (“Canada” and “janada”) 

 
[ ITERATION 3 ] (“been” and “zhu”) are chosen but no 

partition operation is taken because they are roots. 

[ ITERATION 4 ] Partition at word pair  
(“since” and “yilai”) (“in” and “zai”) 

 
[ ITERATION 5 ] Partition at “1947” and “1947” 

 
[ FINALLY ] Total of 6 resultant ET pairs (figure omitted) 

Figure 4. An Example 

3.3 Heuristics 

Similar to (Ding and Palmer, 2004a), we also use a 
heuristic function in Step 1(a) of the algorithm to 
rank all the word pairs for the tentative tree parti-
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tioning operation. The heuristic function is based 
on a set of heuristics, most of which are similar to 
those in (Ding and Palmer, 2004a).  

For a word pair ( , )i je f for the tentative parti-
tioning operation, we briefly describe the heuristics: 
 Inside-outside probabilities: We borrow the 

idea from PCFG parsing. This is the probabil-
ity of an English subtree (inside) generating a 
foreign subtree and the probability of the Eng-
lish residual tree (outside) generating a for-
eign residual tree. Here both probabilities are 
based on a “bag of words” model. 

 Inside-outside penalties: here the probabilities 
of the inside English subtree generating the 
outside foreign residual tree and outside Eng-
lish residual tree generating the inside English 
subtree are used as penalty terms. 

 Entropy: the entropy of the word to word 
translation probability of the English word ie . 

 Part-of-Speech mapping template: whether the 
POS tags of the two words are in the “highly 
likely to match” POS tag pairs. 

 Word translation probability: P( | )j if e . 
 Rank: the rank of the word to word probabil-

ity of jf  in as a translation of ie  among all 
the foreign words in the current tree. 

The above heuristics are a set of real valued 
numbers. We use a Maximum Entropy model to 
interpolate the heuristics in a log-linear fashion, 
which is different from the error minimization 
training in (Ding and Palmer, 2004a).  

( )0 1P | ( , ), ( , )... ( , )

1 exp ( , )

i j i j n i j

k k i j s
k

y h e f h e f h e f

h e f
Z

λ λ 
= + 

 
∑

  (1) 

where (0,1)y =  as labeled in the training data 
whether the two words are mapped with each other. 

The MaxEnt model is trained using the same 
word level aligned parallel corpus as the one in 
Section 3.1. Although the training corpus isn’t 
large, the fact that we only have a handful of pa-
rameters to fit eased the problem.  

3.4 A Scaled-down SDIG 

It is worth noting that the set of derived parallel 
dependency Elementary Trees is not a full-fledged 
SDIG yet. Many features in the SDIG formalism 
such as arguments, head percolation, etc. are not 

yet filled. We nevertheless use this derived gram-
mar as a Mini-SDIG, assuming the unfilled fea-
tures as empty by default. A full-fledged SDIG 
remains a goal for future research. 

4 The Machine Translation System 

4.1 System Architecture 

As discussed before (see Figure 1 and 2), the archi-
tecture of our syntax based statistical MT system is 
illustrated in Figure 5. Note that this is a non-
deterministic process. The input sentence is first 
parsed using an automatic parser and a dependency 
tree is derived. The rest of the pipeline can be 
viewed as a stochastic tree transducer. The MT 
decoding starts first by decomposing the input de-
pendency tree in to elementary trees. Several dif-
ferent results of the decomposition are possible. 
Each decomposition is indeed a derivation process 
on the foreign side of SDIG. Then the elementary 
trees go through a transfer phase and target ETs are 
combined together into the output. 

 
Figure 5. System architecture 

4.2 The Graphical Model 

The stochastic tree-to-tree transducer we propose 
models MT as a probabilistic optimization process. 

Let f  be the input sentence (foreign language), 
and e  be the output sentence (English). We have 

P( | ) P( )P( | )
P( )

f e ee f
f

= , and the best translation is: 

 * arg max P( | )P( )
e

e f e e=    (2) 

P( | )f e  and P( )e  are also known as the “trans-
lation model” (TM) and the “language model” 
(LM). Assuming the decomposition of the foreign 
tree is given, our approach, which is based on ETs, 
uses the graphical model shown in Figure 6. 

In the model, the left side is the input depend-
ency tree (foreign language) and the right side is 
the output dependency tree (English). Each circle 
stands for an ET. The solid lines denote the syntac-
tical dependencies while the dashed arrows denote 
the statistical dependencies. 
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Figure 6 
The graphical 

model 

Let T( )x be the dependency tree constructed 
from sentence x . A tree-decomposition function  
D( )t  is defined on a dependency tree t , and out-
puts a certain ET derivation tree of  t , which is 
generated by decomposing t  into ETs. Given t , 
there could be multiple decompositions. Condi-
tioned on decomposition D , we can rewrite (2) as: 

* arg max P( , | )P( )

arg max P( | , )P( | )P( )
e D

e D

e f e D D

f e D e D D

=

=

∑

∑
 (3) 

By definition, the ET derivation trees of the in-
put and output trees should be isomorphic: 
D(T( )) D(T( ))f e≅ . Let Tran( )u  be a set of possi-
ble translations for the ET u . We have: 

D(T( )), D(T( )), Tran( )

P( | , ) P(T( ) | P(T( ), )
P( | )

u f v e v u

f e D f e D
u v

∈ ∈ ∈

=

= ∏           (4) 

For any ET v  in a given ET derivation tree d , 
let Root( )d  be the root ET of d , and let 
Parent( )v  denote the parent ET of  v . We have: 

( )( )

D(T( )), Root(D(T( ))

P( | ) P(T( ) | )

P Root D(T( )

P( | Parent( ))
v e v e

e D e D

e

v v
∈ ≠

=

= ⋅

 
⋅ 
 

∏

 (5) 

where, letting root( )v  denote the root word of v , 

( ) ( )( )P | Parent( ) P root( ) | root Parent( )v v v v=  (6) 
The prior probability of tree decomposition is 

defined as: ( )
D(T( ))

P D(T( )) P( )
u f

f u
∈

= ∏   (7) 

Figure 7 
 Comparing to 

the HMM 

An analogy between our model and a Hidden 
Markov Model (Figure 7) may be helpful. In Eq. 
(4), P( | )u v  is analogous to the emission probably 
P( | )i io s  in an HMM. In Eq. (5), P( | Parent( ))v v  is 
analogous to the transition probability 1P( | )i is s −  in 

an HMM. While HMM is defined on a sequence 
our model is defined on the derivation tree of ETs. 

4.3 Other Factors 

 Augmenting parallel ET pairs 
In reality, the learned parallel ETs are unlikely to 
cover all the structures that we may encounter in 
decoding. As a unified approach, we augment the 
SDIG by adding all the possible word pairs ( , )j if e   
as a parallel ET pair and using the IBM Model 1 
(Brown et al., 1993) word to word translation 
probability as the ET translation probability. 
 Smoothing the ET translation probabilities. 

The LM probabilities P( | Parent( ))v v  are simply 
estimated using the relative frequencies. In order to 
handle possible noise from the ET pair learning 
process, the ET translation probabilities P ( | )emp u v  
estimated by relative frequencies are smoothed 
using a word level model. For each ET pair ( , )u v , 
we interpolate the empirical probability with the 
“bag of words” probability and then re-normalize: 

size( )

1 1P( | ) P ( , ) P( | )
size( )

ij

emp j iv
e vf u

u v u v f e
Z u ∈∈

= ⋅ ∑∏  (8) 

4.4 Polynomial Time Decoding 

For efficiency reasons, we use maximum approxi-
mation for (3). Instead of summing over all the 
possible decompositions, we only search for the 
best decomposition as follows: 

,
*, * arg max P( | , )P( | )P( )

e D
e D f e D e D D=  (9) 

So bringing equations (4) to (9) together, the 
best translation would maximize: 

( )P( | ) P Root( ) P( | Parent( )) P( )u v e v v u 
⋅ ⋅ ⋅ 

 
∏ ∏ ∏ (10) 

Observing the similarity between our model 
and a HMM, our dynamic programming decoding 
algorithm is in spirit similar to the Viterbi algo-
rithm except that instead of being sequential the 
decoding is done on trees in a top down fashion. 

As to the relative orders of the ETs, we cur-
rently choose not to reorder the children ETs given 
the parent ET because: (1) the permutation of the 
ETs is computationally expensive (2) it is possible 
that we can resort to simple linguistic treatments 
on the output dependency tree to order the ETs. 

Currently, all the ETs are attached to each other 
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at their root nodes. 
In our implementation, the different decomposi-

tions of the input dependency tree are stored in a 
shared forest structure, utilizing the dynamic pro-
gramming property of the tree structures explicitly. 

Suppose the input sentence has n  words and 
the shared forest representation has m  nodes. 
Suppose for each word, there are maximally k  
different ETs containing it, we have knm ≤ . Let 
b  be the max breadth factor in the packed forest, it 
can be shown that the decoder visits at most mb  
nodes during execution. Hence, we have: 

)()( kbnOdecodingT ≤             (11) 
which is linear to the input size. Combined with a 
polynomial time parsing algorithm, the whole 
decoding process is polynomial time. 

5 Evaluation  

We implemented the above approach for a Chi-
nese-English machine translation system. We used 
an automatic syntactic parser (Bikel, 2002) to pro-
duce the parallel parse trees. The parser was 
trained using the Penn English/Chinese Treebanks. 
We then used the algorithm in (Xia 2001) to con-
vert the phrasal structure trees to dependency trees 
to acquire the parallel dependency trees. The statis-
tics of the datasets we used are shown as follows: 

Dataset Xinhua FBIS NIST 
Sentence# 56263 45212 206 
Chinese word# 1456495 1185297 27.4 average
English word# 1490498 1611932 37.7 average
Usage training training testing 

Figure 8. Evaluation data details 
 The training set consists of Xinhua newswire 

data from LDC and the FBIS data (mostly news), 
both filtered to ensure parallel sentence pair quality. 
We used the development test data from the 2001 
NIST MT evaluation workshop as our test data for 
the MT system performance. In the testing data, 
each input Chinese sentence has 4 English transla-
tions as references. Our MT system was evaluated 
using the n-gram based Bleu (Papineni et al., 2002) 
and NIST machine translation evaluation software. 
We used the NIST software package “mteval” ver-
sion 11a, configured as case-insensitive. 

In comparison, we deployed the GIZA++ MT 
modeling tool kit, which is an implementation of 
the IBM Models 1 to 4 (Brown et al., 1993; Al-

Onaizan et al., 1999; Och and Ney, 2003). The 
IBM models were trained on the same training data 
as our system. We used the ISI Rewrite decoder 
(Germann et al. 2001) to decode the IBM models. 

The results are shown in Figure 9. The score 
types “I” and “C” stand for individual and cumula-
tive n-gram scores. The final NIST and Bleu scores 
are marked with bold fonts.  

Systems Score Type 1-gram 2-gram 3-gram 4-gram
NIST 2.562 0.412 0.051 0.008I Bleu 0.714 0.267 0.099 0.040
NIST 2.562 2.974 3.025 3.034

IBM 
Model 4 C Bleu 0.470 0.287 0.175 0.109

NIST 5.130 0.763 0.082 0.013I Bleu 0.688 0.224 0.075 0.029
NIST 5.130 5.892 5.978 5.987

SDIG
C Bleu 0.674 0.384 0.221 0.132

Figure 9. Evaluation Results. 

The evaluation results show that the NIST score 
achieved a 97.3% increase, while the Bleu score 
increased by 21.1%. 

In terms of decoding speed, the Rewrite de-
coder took 8102 seconds to decode the test sen-
tences on a Xeon 1.2GHz 2GB memory machine. 
On the same machine, the SDIG decoder took 3 
seconds to decode, excluding the parsing time. The 
recent advances in parsing have achieved parsers 
with 3( )O n  time complexity without the grammar 
constant (McDonald et al., 2005). It can be ex-
pected that the total decoding time for SDIG can 
be as short as 0.1 second per sentence. 

Neither of the two systems has any specific 
translation components, which are usually present 
in real world systems (E.g. components that trans-
late numbers, dates, names, etc.) It is reasonable to 
expect that the performance of SDIG can be further 
improved with such specific optimizations. 

6 Discussions 

We noticed that the SDIG system outputs tend to 
be longer than those of the IBM Model 4 system, 
and are closer to human translations in length. 

Translation Type Human SDIG IBM-4
Avg. Sent. Len. 37.7 33.6 24.2 

Figure 10. Average Sentence Word Count 
This partly explains why the IBM Model 4 system 
has slightly higher individual n-gram precision 
scores (while the SDIG system outputs are still 
better in terms of absolute matches).  

547



The relative orders between the parent and child 
ETs in the output tree is currently kept the same as 
the orders in the input tree. Admittedly, we bene-
fited from the fact that both Chinese and English 
are SVO languages, and that many of orderings 
between the arguments and adjuncts can be kept 
the same. However, we did notice that this simple 
“ostrich” treatment caused outputs such as “foreign 
financial institutions the president of”. 

While statistical modeling of children reorder-
ing is one possible remedy for this problem, we 
believe simple linguistic treatment is another, as 
the output of the SDIG system is an English 
dependency tree rather than a string of words. 

7 Conclusions and Future Work 

In this paper we presented a syntax-based statisti-
cal MT system based on a Synchronous Depend-
ency Insertion Grammar and a non-isomorphic 
stochastic tree-to-tree transducer. A graphical 
model for the transducer is defined and a polyno-
mial time decoding algorithm is introduced. The 
results of our current implementation were evalu-
ated using the NIST and Bleu automatic MT 
evaluation software. The evaluation shows that the 
SDIG system outperforms an IBM Model 4 based 
system in both speed and quality. 

Future work includes a full-fledged version of 
SDIG and a more sophisticated MT pipeline with 
possibly a tri-gram language model for decoding. 
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