
Proceedings of the 43rd Annual Meeting of the ACL, pages 541–548,
Ann Arbor, June 2005.c©2005 Association for Computational Linguistics

Machine Translation Using Probabilistic
Synchronous Dependency Insertion Grammars

Yuan Ding Martha Palmer

Department of Computer and Information Science
University of Pennsylvania

Philadelphia, PA 19104, USA
{yding, mpalmer}@linc.cis.upenn.edu

Abstract

Syntax-based statistical machine transla-
tion (MT) aims at applying statistical
models to structured data. In this paper,
we present a syntax-based statistical ma-
chine translation system based on a prob-
abilistic synchronous dependency
insertion grammar. Synchronous depend-
ency insertion grammars are a version of
synchronous grammars defined on de-
pendency trees. We first introduce our
approach to inducing such a grammar
from parallel corpora. Second, we de-
scribe the graphical model for the ma-
chine translation task, which can also be
viewed as a stochastic tree-to-tree trans-
ducer. We introduce a polynomial time
decoding algorithm for the model. We
evaluate the outputs of our MT system us-
ing the NIST and Bleu automatic MT
evaluation software. The result shows that
our system outperforms the baseline sys-
tem based on the IBM models in both
translation speed and quality.

1 Introduction

Statistical approaches to machine translation, pio-
neered by (Brown et al., 1993), achieved impres-
sive performance by leveraging large amounts of
parallel corpora. Such approaches, which are es-
sentially stochastic string-to-string transducers, do
not explicitly model natural language syntax or
semantics. In reality, pure statistical systems some-
times suffer from ungrammatical outputs, which
are understandable at the phrasal level but some-
times hard to comprehend as a coherent sentence.

In recent years, syntax-based statistical machine

translation, which aims at applying statistical mod-
els to structural data, has begun to emerge. With
the research advances in natural language parsing,
especially the broad-coverage parsers trained from
treebanks, for example (Collins, 1999), the utiliza-
tion of structural analysis of different languages
has been made possible. Ideally, by combining the
natural language syntax and machine learning
methods, a broad-coverage and linguistically well-
motivated statistical MT system can be constructed.

However, structural divergences between lan-
guages (Dorr, 1994)，which are due to either sys-
tematic differences between languages or loose
translations in real corpora，pose a major chal-
lenge to syntax-based statistical MT. As a result,
the syntax based MT systems have to transduce
between non-isomorphic tree structures.

(Wu, 1997) introduced a polynomial-time solu-
tion for the alignment problem based on synchro-
nous binary trees. (Alshawi et al., 2000) represents
each production in parallel dependency trees as a
finite-state transducer. Both approaches learn the
tree representations directly from parallel sen-
tences, and do not make allowances for non-
isomorphic structures. (Yamada and Knight, 2001,
2002) modeled translation as a sequence of tree
operations transforming a syntactic tree into a
string of the target language.

When researchers try to use syntax trees in both
languages, the problem of non-isomorphism must
be addressed. In theory, stochastic tree transducers
and some versions of synchronous grammars pro-
vide solutions for the non-isomorphic tree based
transduction problem and hence possible solutions
for MT. Synchronous Tree Adjoining Grammars,
proposed by (Shieber and Schabes, 1990), were
introduced primarily for semantics but were later
also proposed for translation. Eisner (2003) pro-
posed viewing the MT problem as a probabilistic
synchronous tree substitution grammar parsing

541

problem. Melamed (2003, 2004) formalized the
MT problem as synchronous parsing based on
multitext grammars. Graehl and Knight (2004) de-
fined training and decoding algorithms for both
generalized tree-to-tree and tree-to-string transduc-
ers. All these approaches, though different in for-
malism, model the two languages using tree-based
transduction rules or a synchronous grammar, pos-
sibly probabilistic, and using multi-lemma elemen-
tary structures as atomic units. The machine
translation is done either as a stochastic tree-to-tree
transduction or a synchronous parsing process.

However, few of the above mentioned formal-
isms have large scale implementations. And to the
best of our knowledge, the advantages of syntax
based statistical MT systems over pure statistical
MT systems have yet to be empirically verified.

We believe difficulties in inducing a synchro-
nous grammar or a set of tree transduction rules
from large scale parallel corpora are caused by:
1. The abilities of synchronous grammars and

tree transducers to handle non-isomorphism
are limited. At some level, a synchronous
derivation process must exist between the
source and target language sentences.

2. The training and/or induction of a synchro-
nous grammar or a set of transduction rules
are usually computationally expensive if all
the possible operations and elementary struc-
tures are allowed. The exhaustive search for
all the possible sub-sentential structures in a
syntax tree of a sentence is NP-complete.

3. The problem is aggravated by the non-perfect
training corpora. Loose translations are less of
a problem for string based approaches than for
approaches that require syntactic analysis.

Hajic et al. (2002) limited non-isomorphism by
n-to-m matching of nodes in the two trees. How-
ever, even after extending this model by allowing
cloning operations on subtrees, Gildea (2003)
found that parallel trees over-constrained the
alignment problem, and achieved better results
with a tree-to-string model than with a tree-to-tree
model using two trees. In a different approach,
Hwa et al. (2002) aligned the parallel sentences
using phrase based statistical MT models and then
projected the alignments back to the parse trees.

This motivated us to look for a more efficient
and effective way to induce a synchronous gram-
mar from parallel corpora and to build an MT sys-
tem that performs competitively with the pure

statistical MT systems. We chose to build the syn-
chronous grammar on the parallel dependency
structures of the sentences. The synchronous
grammar is induced by hierarchical tree partition-
ing operations. The rest of this paper describes the
system details as follows: Sections 2 and 3 de-
scribe the motivation behind the usage of depend-
ency structures and how a version of synchronous
dependency grammar is learned. This grammar is
used as the primary translation knowledge source
for our system. Section 4 defines the tree-to-tree
transducer and the graphical model for the stochas-
tic tree-to-tree transduction process and introduces
a polynomial time decoding algorithm for the
transducer. We evaluate our system in section 5
with the NIST/Bleu automatic MT evaluation
software and the results are discussed in Section 6.

2 The Synchronous Grammar

2.1 Why Dependency Structures?

According to Fox (2002), dependency representa-
tions have the best inter-lingual phrasal cohesion
properties. The percentage for head crossings is
12.62% and that of modifier crossings is 9.22%.
Furthermore, a grammar based on dependency
structures has the advantage of being simple in
formalism yet having CFG equivalent formal gen-
erative capacity (Ding and Palmer, 2004b).

Dependency structures are inherently lexical-
ized as each node is one word. In comparison,
phrasal structures (treebank style trees) have two
node types: terminals store the lexical items and
non-terminals store word order and phrasal scopes.

2.2 Synchronous Dependency Insertion Grammars

Ding and Palmer (2004b) described one version of
synchronous grammar: Synchronous Dependency
Insertion Grammars. A Dependency Insertion
Grammars (DIG) is a generative grammar formal-
ism that captures word order phenomena within the
dependency representation. In the scenario of two
languages, the two sentences in the source and tar-
get languages can be modeled as being generated
from a synchronous derivation process.

A synchronous derivation process for the two
syntactic structures of both languages suggests the
level of cross-lingual isomorphism between the
two trees (e.g. Synchronous Tree Adjoining
Grammars (Shieber and Schabes, 1990)).

542

Apart from other details, a DIG can be viewed
as a tree substitution grammar defined on depend-
ency trees (as opposed to phrasal structure trees).
The basic units of the grammar are elementary
trees (ET), which are sub-sentential dependency
structures containing one or more lexical items.
The synchronous version, SDIG, assumes that the
isomorphism of the two syntactic structures is at
the ET level, rather than at the word level, hence
allowing non-isomorphic tree to tree mapping.

We illustrate how the SDIG works using the
following pseudo-translation example:
 [Source] The girl kissed her kitty cat.
 [Target] The girl gave a kiss to her cat.

Figure 1.
An example

Figure 2.
Tree-to-tree
transduction

Almost any tree-transduction operations de-
fined on a single node will fail to generate the tar-
get sentence from the source sentence without
using insertion/deletion operations. However, if we
view each dependency tree as an assembly of indi-
visible sub-sentential elementary trees (ETs), we
can find a proper way to transduce the input tree to
the output tree. An ET is a single “symbol” in a
transducer’s language. As shown in Figure 2, each
circle stands for an ET and thick arrows denote the
transduction of each ET as a single symbol.

3 Inducing a Synchronous Dependency
Insertion Grammar

As the start to our syntax-based SMT system, the
SDIG must be learned from the parallel corpora.

3.1 Cross-lingual Dependency Inconsistencies

One straightforward way to induce a generative
grammar is using EM style estimation on the gen-
erative process. Different versions of such training
algorithms can be found in (Hajic et al., 2002; Eis-

ner 2003; Gildea 2003; Graehl and Knight 2004).
However, a synchronous derivation process

cannot handle two types of cross-language map-
pings: crossing-dependencies (parent-descendent
switch) and broken dependencies (descendent ap-
pears elsewhere), which are illustrated below:

Figure 3. Cross-lingual dependency consistencies

In the above graph, the two sides are English
and the foreign dependency trees. Each node in a
tree stands for a lemma in a dependency tree. The
arrows denote aligned nodes and those resulting
inconsistent dependencies are marked with a “*”.

Fox (2002) collected the statistics mainly on
French and English data: in dependency represen-
tations, the percentage of head crossings per
chance (case [b] in the graph) is 12.62%.

Using the statistics on cross-lingual dependency
consistencies from a small word to word aligned
Chinese-English parallel corpus1, we found that the
percentage of crossing-dependencies (case [b])
between Chinese and English is 4.7% while that of
broken dependencies (case [c]) is 59.3%.

The large number of broken dependencies pre-
sents a major challenge for grammar induction
based on a top-down style EM learning process.

Such broken and crossing dependencies can be
modeled by SDIG if they appear inside a pair of
elementary trees. However, if they appear between
the elementary trees, they are not compatible with
the isomorphism assumption on which SDIG is
based. Nevertheless, the hope is that the fact that
the training corpus contains a significant percent-
age of dependency inconsistencies does not mean
that during decoding the target language sentence
cannot be written in a dependency consistent way.

3.2 Grammar Induction by Synchronous
Hierarchical Tree Partitioning

(Ding and Palmer, 2004a) gave a polynomial time
solution for learning parallel sub-sentential de-

1 Total 826 sentence pairs, 9957 Chinese words, 12660 Eng-
lish words. Data made available by the courtesy of Microsoft
Research, Asia and IBM T.J. Watson Research.

543

pendency structures from non-isomorphic depend-
ency trees. Our approach, while similar to (Ding
and Palmer, 2004a) in that we also iteratively parti-
tion the parallel dependency trees based on a heu-
ristic function, departs (Ding and Palmer, 2004a)
in three ways: (1) we base the hierarchical tree par-
titioning operations on the categories of the de-
pendency trees; (2) the statistics of the resultant
tree pairs from the partitioning operation are col-
lected at each iteration rather than at the end of the
algorithm; (3) we do not re-train the word to word
probabilities at each iteration. Our grammar induc-
tion algorithm is sketched below:

Step 0. View each tree as a “bag of words” and train a
statistical translation model on all the tree pairs to
acquire word-to-word translation probabilities. In
our implementation, the IBM Model 1 (Brown et
al., 1993) is used.

Step 1. Let i denote the current iteration and let
[]C CategorySequence i= be the current syntac-

tic category set.
For each tree pair in the corpus, do {

a) For the tentative synchronous partitioning opera-
tion, use a heuristic function to select the BEST word
pair * *(,)i je f , where both * *,i je f are NOT “chosen”,

*()iCategory e C∈ and *()jCategory f C∈ .

b) If * *(,)i je f is found in (a), mark * *,i je f as “cho-
sen” and go back to (a), else go to (c).
c) Execute the synchronous tree partitioning opera-
tion on all the “chosen” word pairs on the tree pair.
Hence, several new tree pairs are created. Replace the
old tree pair with the new tree pairs together with the
rest of the old tree pair.
d) Collect the statistics for all the new tree pairs as
elementary tree pairs. }

Step 2. 1i i= + . Go to Step 1 for the next iteration.

At each iteration, one specific set of categories
of nodes is handled. The category sequence we
used in the grammar induction is:

1. Top-NP: the noun phrases that do not have
another noun phrase as parent or ancestor.

2. NP: all the noun phrases
3. VP, IP, S, SBAR: verb phrases equivalents.
4. PP, ADJP, ADVP, JJ, RB: all the modifiers
5. CD: all the numbers.

We first process top NP chunks because they are
the most stable between languages. Interestingly,
NPs are also used as anchor points to learn mono-
lingual paraphrases (Ibrahim et al., 2003). The
phrasal structure categories can be extracted from

automatic parsers using methods in (Xia, 2001).
An illustration is given below (Chinese in pin-

yin form). The placement of the dependency arcs
reflects the relative word order between a parent
node and all its immediate children. The collected
ETs are put into square boxes and the partitioning
operations taken are marked with dotted arrows.
 [English] I have been in Canada since 1947.
 [Chinese] Wo 1947 nian yilai yizhi zhu zai jianada.
 [Glossary] I 1947 year since always live in Canada

[ITERATION 1 & 2] Partition at word pair
(“I” and “wo”) (“Canada” and “janada”)

[ITERATION 3] (“been” and “zhu”) are chosen but no

partition operation is taken because they are roots.

[ITERATION 4] Partition at word pair
(“since” and “yilai”) (“in” and “zai”)

[ITERATION 5] Partition at “1947” and “1947”

[FINALLY] Total of 6 resultant ET pairs (figure omitted)

Figure 4. An Example

3.3 Heuristics

Similar to (Ding and Palmer, 2004a), we also use a
heuristic function in Step 1(a) of the algorithm to
rank all the word pairs for the tentative tree parti-

544

tioning operation. The heuristic function is based
on a set of heuristics, most of which are similar to
those in (Ding and Palmer, 2004a).

For a word pair (,)i je f for the tentative parti-
tioning operation, we briefly describe the heuristics:
 Inside-outside probabilities: We borrow the

idea from PCFG parsing. This is the probabil-
ity of an English subtree (inside) generating a
foreign subtree and the probability of the Eng-
lish residual tree (outside) generating a for-
eign residual tree. Here both probabilities are
based on a “bag of words” model.

 Inside-outside penalties: here the probabilities
of the inside English subtree generating the
outside foreign residual tree and outside Eng-
lish residual tree generating the inside English
subtree are used as penalty terms.

 Entropy: the entropy of the word to word
translation probability of the English word ie .

 Part-of-Speech mapping template: whether the
POS tags of the two words are in the “highly
likely to match” POS tag pairs.

 Word translation probability: P(|)j if e .
 Rank: the rank of the word to word probabil-

ity of jf in as a translation of ie among all
the foreign words in the current tree.

The above heuristics are a set of real valued
numbers. We use a Maximum Entropy model to
interpolate the heuristics in a log-linear fashion,
which is different from the error minimization
training in (Ding and Palmer, 2004a).

()0 1P | (,), (,)... (,)

1 exp (,)

i j i j n i j

k k i j s
k

y h e f h e f h e f

h e f
Z

λ λ
= +

∑

 (1)

where (0,1)y = as labeled in the training data
whether the two words are mapped with each other.

The MaxEnt model is trained using the same
word level aligned parallel corpus as the one in
Section 3.1. Although the training corpus isn’t
large, the fact that we only have a handful of pa-
rameters to fit eased the problem.

3.4 A Scaled-down SDIG

It is worth noting that the set of derived parallel
dependency Elementary Trees is not a full-fledged
SDIG yet. Many features in the SDIG formalism
such as arguments, head percolation, etc. are not

yet filled. We nevertheless use this derived gram-
mar as a Mini-SDIG, assuming the unfilled fea-
tures as empty by default. A full-fledged SDIG
remains a goal for future research.

4 The Machine Translation System

4.1 System Architecture

As discussed before (see Figure 1 and 2), the archi-
tecture of our syntax based statistical MT system is
illustrated in Figure 5. Note that this is a non-
deterministic process. The input sentence is first
parsed using an automatic parser and a dependency
tree is derived. The rest of the pipeline can be
viewed as a stochastic tree transducer. The MT
decoding starts first by decomposing the input de-
pendency tree in to elementary trees. Several dif-
ferent results of the decomposition are possible.
Each decomposition is indeed a derivation process
on the foreign side of SDIG. Then the elementary
trees go through a transfer phase and target ETs are
combined together into the output.

Figure 5. System architecture

4.2 The Graphical Model

The stochastic tree-to-tree transducer we propose
models MT as a probabilistic optimization process.

Let f be the input sentence (foreign language),
and e be the output sentence (English). We have

P(|) P()P(|)
P()

f e ee f
f

= , and the best translation is:

 * arg max P(|)P()
e

e f e e= (2)

P(|)f e and P()e are also known as the “trans-
lation model” (TM) and the “language model”
(LM). Assuming the decomposition of the foreign
tree is given, our approach, which is based on ETs,
uses the graphical model shown in Figure 6.

In the model, the left side is the input depend-
ency tree (foreign language) and the right side is
the output dependency tree (English). Each circle
stands for an ET. The solid lines denote the syntac-
tical dependencies while the dashed arrows denote
the statistical dependencies.

545

Figure 6
The graphical

model

Let T()x be the dependency tree constructed
from sentence x . A tree-decomposition function
D()t is defined on a dependency tree t , and out-
puts a certain ET derivation tree of t , which is
generated by decomposing t into ETs. Given t ,
there could be multiple decompositions. Condi-
tioned on decomposition D , we can rewrite (2) as:

* arg max P(, |)P()

arg max P(| ,)P(|)P()
e D

e D

e f e D D

f e D e D D

=

=

∑

∑
 (3)

By definition, the ET derivation trees of the in-
put and output trees should be isomorphic:
D(T()) D(T())f e≅ . Let Tran()u be a set of possi-
ble translations for the ET u . We have:

D(T()), D(T()), Tran()

P(| ,) P(T() | P(T(),)
P(|)

u f v e v u

f e D f e D
u v

∈ ∈ ∈

=

= ∏ (4)

For any ET v in a given ET derivation tree d ,
let Root()d be the root ET of d , and let
Parent()v denote the parent ET of v . We have:

()()

D(T()), Root(D(T())

P(|) P(T() |)

P Root D(T()

P(| Parent())
v e v e

e D e D

e

v v
∈ ≠

=

= ⋅

⋅

∏

 (5)

where, letting root()v denote the root word of v ,

() ()()P | Parent() P root() | root Parent()v v v v= (6)
The prior probability of tree decomposition is

defined as: ()
D(T())

P D(T()) P()
u f

f u
∈

= ∏ (7)

Figure 7
 Comparing to

the HMM

An analogy between our model and a Hidden
Markov Model (Figure 7) may be helpful. In Eq.
(4), P(|)u v is analogous to the emission probably
P(|)i io s in an HMM. In Eq. (5), P(| Parent())v v is
analogous to the transition probability 1P(|)i is s − in

an HMM. While HMM is defined on a sequence
our model is defined on the derivation tree of ETs.

4.3 Other Factors

 Augmenting parallel ET pairs
In reality, the learned parallel ETs are unlikely to
cover all the structures that we may encounter in
decoding. As a unified approach, we augment the
SDIG by adding all the possible word pairs (,)j if e
as a parallel ET pair and using the IBM Model 1
(Brown et al., 1993) word to word translation
probability as the ET translation probability.
 Smoothing the ET translation probabilities.

The LM probabilities P(| Parent())v v are simply
estimated using the relative frequencies. In order to
handle possible noise from the ET pair learning
process, the ET translation probabilities P (|)emp u v
estimated by relative frequencies are smoothed
using a word level model. For each ET pair (,)u v ,
we interpolate the empirical probability with the
“bag of words” probability and then re-normalize:

size()

1 1P(|) P (,) P(|)
size()

ij

emp j iv
e vf u

u v u v f e
Z u ∈∈

= ⋅ ∑∏ (8)

4.4 Polynomial Time Decoding

For efficiency reasons, we use maximum approxi-
mation for (3). Instead of summing over all the
possible decompositions, we only search for the
best decomposition as follows:

,
*, * arg max P(| ,)P(|)P()

e D
e D f e D e D D= (9)

So bringing equations (4) to (9) together, the
best translation would maximize:

()P(|) P Root() P(| Parent()) P()u v e v v u
⋅ ⋅ ⋅

∏ ∏ ∏ (10)

Observing the similarity between our model
and a HMM, our dynamic programming decoding
algorithm is in spirit similar to the Viterbi algo-
rithm except that instead of being sequential the
decoding is done on trees in a top down fashion.

As to the relative orders of the ETs, we cur-
rently choose not to reorder the children ETs given
the parent ET because: (1) the permutation of the
ETs is computationally expensive (2) it is possible
that we can resort to simple linguistic treatments
on the output dependency tree to order the ETs.

Currently, all the ETs are attached to each other

546

at their root nodes.
In our implementation, the different decomposi-

tions of the input dependency tree are stored in a
shared forest structure, utilizing the dynamic pro-
gramming property of the tree structures explicitly.

Suppose the input sentence has n words and
the shared forest representation has m nodes.
Suppose for each word, there are maximally k
different ETs containing it, we have knm ≤ . Let
b be the max breadth factor in the packed forest, it
can be shown that the decoder visits at most mb
nodes during execution. Hence, we have:

)()(kbnOdecodingT ≤ (11)
which is linear to the input size. Combined with a
polynomial time parsing algorithm, the whole
decoding process is polynomial time.

5 Evaluation

We implemented the above approach for a Chi-
nese-English machine translation system. We used
an automatic syntactic parser (Bikel, 2002) to pro-
duce the parallel parse trees. The parser was
trained using the Penn English/Chinese Treebanks.
We then used the algorithm in (Xia 2001) to con-
vert the phrasal structure trees to dependency trees
to acquire the parallel dependency trees. The statis-
tics of the datasets we used are shown as follows:

Dataset Xinhua FBIS NIST
Sentence# 56263 45212 206
Chinese word# 1456495 1185297 27.4 average
English word# 1490498 1611932 37.7 average
Usage training training testing

Figure 8. Evaluation data details
 The training set consists of Xinhua newswire

data from LDC and the FBIS data (mostly news),
both filtered to ensure parallel sentence pair quality.
We used the development test data from the 2001
NIST MT evaluation workshop as our test data for
the MT system performance. In the testing data,
each input Chinese sentence has 4 English transla-
tions as references. Our MT system was evaluated
using the n-gram based Bleu (Papineni et al., 2002)
and NIST machine translation evaluation software.
We used the NIST software package “mteval” ver-
sion 11a, configured as case-insensitive.

In comparison, we deployed the GIZA++ MT
modeling tool kit, which is an implementation of
the IBM Models 1 to 4 (Brown et al., 1993; Al-

Onaizan et al., 1999; Och and Ney, 2003). The
IBM models were trained on the same training data
as our system. We used the ISI Rewrite decoder
(Germann et al. 2001) to decode the IBM models.

The results are shown in Figure 9. The score
types “I” and “C” stand for individual and cumula-
tive n-gram scores. The final NIST and Bleu scores
are marked with bold fonts.

Systems Score Type 1-gram 2-gram 3-gram 4-gram
NIST 2.562 0.412 0.051 0.008I Bleu 0.714 0.267 0.099 0.040
NIST 2.562 2.974 3.025 3.034

IBM
Model 4 C Bleu 0.470 0.287 0.175 0.109

NIST 5.130 0.763 0.082 0.013I Bleu 0.688 0.224 0.075 0.029
NIST 5.130 5.892 5.978 5.987

SDIG
C Bleu 0.674 0.384 0.221 0.132

Figure 9. Evaluation Results.

The evaluation results show that the NIST score
achieved a 97.3% increase, while the Bleu score
increased by 21.1%.

In terms of decoding speed, the Rewrite de-
coder took 8102 seconds to decode the test sen-
tences on a Xeon 1.2GHz 2GB memory machine.
On the same machine, the SDIG decoder took 3
seconds to decode, excluding the parsing time. The
recent advances in parsing have achieved parsers
with 3()O n time complexity without the grammar
constant (McDonald et al., 2005). It can be ex-
pected that the total decoding time for SDIG can
be as short as 0.1 second per sentence.

Neither of the two systems has any specific
translation components, which are usually present
in real world systems (E.g. components that trans-
late numbers, dates, names, etc.) It is reasonable to
expect that the performance of SDIG can be further
improved with such specific optimizations.

6 Discussions

We noticed that the SDIG system outputs tend to
be longer than those of the IBM Model 4 system,
and are closer to human translations in length.

Translation Type Human SDIG IBM-4
Avg. Sent. Len. 37.7 33.6 24.2

Figure 10. Average Sentence Word Count
This partly explains why the IBM Model 4 system
has slightly higher individual n-gram precision
scores (while the SDIG system outputs are still
better in terms of absolute matches).

547

The relative orders between the parent and child
ETs in the output tree is currently kept the same as
the orders in the input tree. Admittedly, we bene-
fited from the fact that both Chinese and English
are SVO languages, and that many of orderings
between the arguments and adjuncts can be kept
the same. However, we did notice that this simple
“ostrich” treatment caused outputs such as “foreign
financial institutions the president of”.

While statistical modeling of children reorder-
ing is one possible remedy for this problem, we
believe simple linguistic treatment is another, as
the output of the SDIG system is an English
dependency tree rather than a string of words.

7 Conclusions and Future Work

In this paper we presented a syntax-based statisti-
cal MT system based on a Synchronous Depend-
ency Insertion Grammar and a non-isomorphic
stochastic tree-to-tree transducer. A graphical
model for the transducer is defined and a polyno-
mial time decoding algorithm is introduced. The
results of our current implementation were evalu-
ated using the NIST and Bleu automatic MT
evaluation software. The evaluation shows that the
SDIG system outperforms an IBM Model 4 based
system in both speed and quality.

Future work includes a full-fledged version of
SDIG and a more sophisticated MT pipeline with
possibly a tri-gram language model for decoding.

References
Y. Al-Onaizan, J. Curin, M. Jahr, K. Knight, J. Lafferty,

I. D. Melamed, F. Och, D. Purdy, N. A. Smith, and D.
Yarowsky. 1999. Statistical machine translation.
Technical report, CLSP, Johns Hopkins University.

H. Alshawi, S. Bangalore, S. Douglas. 2000. Learning
dependency translation models as collections of finite
state head transducers. Comp. Linguistics, 26(1):45-60.

Daniel M. Bikel. 2002. Design of a multi-lingual, paral-
lel-processing statistical parsing engine. In HLT 2002.

Peter F. Brown, Stephen A. Della Pietra, Vincent J.
Della Pietra, and Robert Mercer. 1993. The mathe-
matics of statistical machine translation: parameter es-
timation. Computational Linguistics, 19(2): 263-311.

Michael John Collins. 1999. Head-driven Statistical
Models for Natural Language Parsing. Ph.D. thesis,
University of Pennsylvania, Philadelphia.

Ding and Palmer. 2004a. Automatic Learning of Paral-
lel Dependency Treelet Pairs. In First International
Joint Conference on NLP (IJCNLP-04).

Ding and Palmer. 2004b. Synchronous Dependency
Insertion Grammars: A Grammar Formalism for Syn-
tax Based Statistical MT. Workshop on Recent Ad-
vances in Dependency Grammars, COLING-04.

Bonnie J. Dorr. 1994. Machine translation divergences:
A formal description and proposed solution. Compu-
tational Linguistics, 20(4): 597-633.

Jason Eisner. 2003. Learning non-isomorphic tree map-
pings for machine translation. In ACL-03. (compan-
ion volume), Sapporo, July.

Heidi J. Fox. 2002. Phrasal cohesion and statistical ma-
chine translation. In Proceedings of EMNLP-02.

Ulrich Germann, Michael Jahr, Kevin Knight, Daniel
Marcu, and Kenji Yamada. 2001. Fast Decoding and
Optimal Decoding for Machine Translation. ACL-01.

Daniel Gildea. 2003. Loosely tree based alignment for
machine translation. ACL-03, Japan.

Jonathan Graehl and Kevin Knight. 2004. Training Tree
Transducers. In NAACL/HLT-2004

Jan Hajic, et al. 2002. Natural language generation in
the context of machine translation. Summer workshop
final report, Center for Language and Speech Process-
ing, Johns Hopkins University, Baltimore.

Rebecca Hwa, Philip S. Resnik, Amy Weinberg, and
Okan Kolak. 2002. Evaluating translational corre-
spondence using annotation projection. ACL-02

Ali Ibrahim, Boris Katz, and Jimmy Lin. 2003. Extract-
ing Structural Paraphrases from Aligned Monolin-
gual Corpora. In Proceedings of the Second
International Workshop on Paraphrasing (IWP 2003)

Dan Melamed. 2004. Statistical Machine Translation by
Parsing. In ACL-04, Barcelona, Spain.

Dan Melamed. 2003. Multitext Grammars and Synchro-
nous Parsers, In NAACL/HLT-2003.

K. Papineni, S. Roukos, T. Ward, and W. Zhu. 2002.
BLEU: a method for automatic evaluation of machine
translation. ACL-02, Philadelphia, USA.

Ryan McDonald, Koby Crammer and Fernando Pereira.
2005. Online Large-Margin Training of Dependency
Parsers. ACL-05.

Franz Josef Och and Hermann Ney. 2003. A Systematic
Comparison of Various Statistical Alignment Models.
Computational Linguistics, 29(1):19–51.

S. M. Shieber and Y. Schabes. 1990. Synchronous Tree-
Adjoining Grammars, Proceedings of the 13th
COLING, pp. 253-258, August 1990.

Dekai Wu. 1997. Stochastic inversion transduction
grammars and bilingual parsing of parallel corpora.
Computational Linguistics, 23(3):3-403.

Fei Xia. 2001. Automatic grammar generation from two
different perspectives. PhD thesis, U. of Pennsylvania.

Kenji Yamada and Kevin Knight. 2001. A syntax based
statistical translation model. ACL-01, France.

Kenji Yamada and Kevin Knight. 2002. A decoder for
syntax-based statistical MT. ACL-02, Philadelphia.

548

