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Abstract

We present an Earley-style dynamic pro-
gramming algorithm for parsing sentence
pairs from a parallel corpus simultane-
ously, building up two phrase structure
trees and a correspondence mapping be-
tween the nodes. The intended use of
the algorithm is in bootstrapping gram-
mars for less studied languages by using
implicit grammatical information in par-
allel corpora. Therefore, we presuppose a
given (statistical) word alignment under-
lying in the synchronous parsing task; this
leads to a significant reduction of the pars-
ing complexity. The theoretical complex-
ity results are corroborated by a quantita-
tive evaluation in which we ran an imple-
mentation of the algorithm on a suite of
test sentences from the Europarl parallel
corpus.

1 Introduction

The technical results presented in this paper1 are
motivated by the following considerations: It is con-
ceivable to use sentence pairs from a parallel corpus
(along with the tentative word correspondences from
a statistical word alignment) as training data for a
grammar induction approach. The goal is to induce
monolingual grammars for the languages under con-
sideration; but the implicit information about syn-
tactic structure gathered from typical patterns in the
alignment goes beyond what can be obtained from
unlabeled monolingual data. Consider for instance
the sentence pair from the Europarl corpus (Koehn,
2002) in fig. 1 (shown with a hand-labeled word
alignment): distributional patterns over this and sim-
ilar sentences may show that in English, the subject

1This work was in part supported by the German Research
Foundation DFG in the context of the author’s Emmy Noether
research group at Saarland University.

(the word block “the situation”) is in a fixed struc-
tural position, whereas in German, it can appear in
various positions; similarly, the finite verb in Ger-
man (here: stellt) systematically appears in second
position in main clauses. In a way, the translation
of sentences into other natural languages serves as
an approximation of a (much more costly) manual
structural or semantic annotation – one might speak
of automatic indirect supervision in learning. The
technique will be most useful for low-resource lan-
guages and languages for which there is no funding
for treebanking activities. The only requirement will
be that a parallel corpus exist for the language under
consideration and one or more other languages.2

Induction of grammars from parallel corpora is
rarely viewed as a promising task in its own right;
in work that has addressed the issue directly (Wu,
1997; Melamed, 2003; Melamed, 2004), the syn-
chronous grammar is mainly viewed as instrumental
in the process of improving the translation model in
a noisy channel approach to statistical MT.3 In the
present paper, we provide an important prerequisite
for parallel corpus-based grammar induction work:
an efficient algorithm for synchronous parsing of
sentence pairs, given a word alignment. This work
represents a second pilot study (after (Kuhn, 2004))
for the longer-term PTOLEMAIOS project at Saar-
land University4 with the goal of learning linguis-
tic grammars from parallel corpora (compare (Kuhn,
2005)). The grammars should be robust and assign a

2In the present paper we use examples from English/German
for illustration, but the approach is of course independent of the
language pair under consideration.

3Of course, there is related work (e.g., (Hwa et al., 2002; Lü
et al., 2002)) using aligned parallel corpora in order to “project”
bracketings or dependency structures from English to another
language and exploit them for training a parser for the other
language. But note the conceptual difference: the “parse projec-
tion” approach departs from a given monolingual parser, with a
particular style of analysis, whereas our project will explore to
what extent it may help to design the grammar topology specifi-
cally for the parallel corpus case. This means that the emerging
English parser may be different from all existing ones.

4http://www.coli.uni-saarland.de/˜jonask/PTOLEMAIOS/
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Heute stellt sich die Lage jedoch völlig anders dar

The situation now however is radically different

Figure 1: Word-aligned German/English sentence pair from the Europarl corpus

predicate-argument-modifier (or dependency) struc-
ture to sentences, such that they can be applied in
the context of multilingual information extraction or
question answering.

2 Synchronous grammars

For the purpose of grammar induction from parallel
corpora, we assume a fairly straightforward exten-
sion of context-free grammars to the synchronous
grammar case (compare the transduction grammars
of (Lewis II and Stearns, 1968)): Firstly, the termi-
nal and non-terminal categories are pairs of sym-
bols, one for each language; as a special case, one
of the two symbols can be NIL for material realized
in only one of the languages. Secondly, the linear
sequence of daughter categories that is specified in
the rules can differ for the two languages; therefore,
an explicit numerical ranking is used for the linear
precedence in each language. We use a compact
rule notation with a numerical ranking for the lin-
ear precedence in each language. The general form
of a grammar rule for the case of two parallel lan-
guages is N0/M0 → N1:i1/M1:j1 . . . Nk:ik/Mk:jk,
where Nl,Ml are NIL or a terminal or nonterminal
symbol for language L1 and L2, respectively, and
il, jl are natural numbers for the rank of the phrase
in the sequence for L1 and L2 respectively (for NIL

categories a special rank 0 is assumed).5 Since linear
ordering of daughters in both languages is explic-
itly encoded by the rank indices, the specification
sequence in the rule is irrelevant from a declarative
point of view. To facilitate parsing we assume a nor-
mal form in which the right-hand side is ordered by
the rank in L1, with the exception that the categories
that are NIL in L1 come last. If there are several such

5Note that in the probabilistic variants of these grammars,
we will typically expect that any ordering of the right-hand side
symbols is possible (but that the probability will of course vary
– in a maximum entropy or log-linear model, the probability
will be estimated based on a variety of learning features). This
means that in parsing, the right-hand side categories will be ac-
cepted as they come in, and the relevant probability parameters
are looked up accordingly.

NIL categories in the same rule, they are viewed as
unordered with respect to each other.6

Fig. 2 illustrates our simple synchronous gram-
mar formalism with some rules of a sample grammar
and their application on a German/English sentence
pair. Derivation with a synchronous grammar gives
rise to a multitree, which combines classical phrase
structure trees for the languages involved and also
encodes the phrase level correspondence across the
languages. Note that the two monolingual trees in
fig. 2 for German and English are just two ways of
unfolding the common underlying multitree.

Note that the simple formalism goes along with
the continuity assumption that every complete con-
stituent is continuous in both languages. Various re-
cent studies in the field of syntax-based Statistical
MT have shown that such an assumption is problem-
atic when based on typical treebank-style analyses.
As (Melamed, 2003) discusses for instance, in the
context of binary branching structures even simple
examples like the English/French pair a gift for you
from France ↔ un cadeau de France pour vouz [a
gift from France for you] lead to discontinuity of a
“synchronous phrase” in one of the two languages.
(Gildea, 2003) and (Galley et al., 2004) discuss dif-
ferent ways of generalizing the tree-level crosslin-
guistic correspondence relation, so it is not confined
to single tree nodes, thereby avoiding a continuity
assumption. We believe that in order to obtain full
coverage on real parallel corpora, some mechanism
along these lines will be required.

However, if the typical rich phrase structure anal-
yses (with fairly detailed fine structure) are replaced
by flat, multiply branching analyses, most of the
highly frequent problematic cases are resolved.7 In

6This detail will be relevant for the parsing inference rule
(5) below.

7Compare the systematic study for English-French align-
ments by (Fox, 2002), who compared (i) treebank-parser style
analyses, (ii) a variant with flattened VPs, and (iii) dependency
structures. The degree of cross-linguistic phrasal cohesion in-
creases from (i) to (iii). With flat clausal trees, we will come
close to dependency structures with respect to cohesion.
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Synchronous grammar rules:
S/S → NP:1/NP:2 Vfin:2/Vfin:3 Adv:3/Adv:1

NP:4/PP:5 Vinf:5/Vinf:4
NP/NP → Pron:1/Pron:1
NP/PP → Det:1/Det:2 N:2/N:4 NIL:0/P:1 NIL:0/Adj:3
Pron/Pron → wir:1/we:1
Vfin/Vfin → müssen:1/must:1
Adv/Adv → deshalb:1/so:1
NIL/P → NIL:0/at:1
Det/Det → die:1/the:1
NIL/Adj → NIL:0/agricultural:1
N/N → Agrarpolitik:1/policy:1
Vinf/Vinf → prüfen:1/look:1

German tree:
S

NP Vfin Adv NP Vinf

Pron Det N

Wir müssen deshalb die Agrarpolitik prüfen
we must therefore the agr. policy examine

English tree:
S

Adv NP Vfin Vinf PP

Pron P Det Adj N

So we must look at the agricultural policy
Multitree:

S/S

NP:1/NP:2 Vfin:2/Vfin:3 Adv:3/Adv:1 NP:4/PP:5 Vinf:5/Vinf:4

Pron:1/Pron:1 NIL:0/P:1 Det:1/Det:2 NIL:0/Adj:3 N:2/N:4

Wir/we müssen/must deshalb/so NIL/at die/the NIL/agricultural Agrarpolitik/policy prüfen/look

Figure 2: Sample rules and analysis for a synchronous grammar

the flat representation that we assume, a clause is
represented in a single subtree of depth 1, with all
verbal elements and the argument/adjunct phrases
(NPs or PPs) as immediate daughters of the clause
node. Similarly, argument/adjunct phrases are flat
internally. Such a flat representation is justified
both from the point of view of linguistic learning
and from the point of view of grammar application:
(i) Language-specific principles of syntactic struc-
ture (e.g., the strong configurationality of English),
which are normally captured linguistically by the
richer phrase structure, are available to be induced
in learning as systematic patterns in the relative or-
dering of the elements of a clause. (ii) The predicate-
argument-modifier structure relevant for application
of the grammars, e.g., in information extraction can
be directly read off the flat clausal representation.

It is a hypothesis of our longer-term project that
a word alignment-based consensus structure which
works with flat representations and under the con-
tinuity assumption is a very effective starting point
for learning the basic language-specific constraints
required for a syntactic grammar. Linguistic phe-
nomena that fall outside what can be captured in this
confined framework (in particular unbounded de-
pendencies spanning more than one clause and dis-
continuous argument phrases) will then be learned
in a later bootstrapping step that provides a richer
set of operations. We are aware of a number of open

practical questions, e.g.: Will the fact that real paral-
lel corpora often contain rather free translations un-
dermine our idea of using the consensus structure
for learning basic syntactic constraints? Statistical
alignments are imperfect – can the constraints im-
posed by the word alignment be relaxed accordingly
without sacrificing tractability and the effect of indi-
rect supervision?8

3 Alignment-guided synchronous parsing

Our dynamic programming algorithm can be de-
scribed as a variant of standard Earley-style chart
parsing (Earley, 1970) and generation (Shieber,
1988; Kay, 1996). The chart is a data structure
which stores all sub-analyses that cover part of the
input string (in parsing) or meaning representation
(in generation). Memoizing such partial results has
the standard advantage of dynamic programming
techniques – it helps one to avoid unnecessary re-
computation of partial results. The chart structure
for context-free parsing is also exploited directly in
dynamic programming algorithms for probabilistic
context-free grammars (PCFGs): (i) the inside (or
outside) algorithm for summing over the probabil-
ities for every possible analysis of a given string,
(ii) the Viterbi algorithm for determining the most
likely analysis of a given string, and (iii) the in-

8Ultimately, bootstrapping of not only the grammars, but
also of the word alignment should be applied.
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side/outside algorithm for re-estimating the param-
eters of the PCFG in an Expectation-Maximization
approach (i.e., for iterative training of a PCFG on
unlabeled data). This aspect is important for the in-
tended later application of our parsing algorithm in
a grammar induction context.

A convenient way of describing Earley-style pars-
ing is by inference rules. For instance, the central
completion step in Earley parsing can be described
by the rule9

(1) 〈X → α • Y β, [i, j]〉, 〈Y → γ •, [j, k]〉
〈X → α Y • β, [i, k]〉

Synchronous parsing. The input in synchronous
parsing is not a one-dimensional string, but a pair of
sentences, i.e., a two-dimensional array of possible
word pairs (or a multidimensional array if we are
looking at a multilingual corpus), as illustrated in
fig. 3.

policy •
agricultural
the •
at
look •
must •
we •
So •

0 1 2 3 4 5 6

L
2
:

L1: Wir müssen deshalb die Agrar- prüfen
politik

Figure 3: Synchronous parsing: two-dimensional in-
put (with word alignment marked)

The natural way of generalizing context-free pars-
ing to synchronous grammars is thus to control the
inference rules by string indices in both dimensions.
Graphically speaking, parsing amounts to identify-
ing rectangular crosslinguistic constituents – by as-
sembling smaller rectangles that will together cover
the full string spans in both dimensions (compare
(Wu, 1997; Melamed, 2003)). For instance in fig. 4,
the NP/NP rectangle [i1, j1, j2, k2] can be combined
with the Vinf/Vinf rectangle [j1, k1, i2, j2] (assum-
ing there is an appropriate rule in the grammar).

9A chart item is specified through a position (•) in a pro-
duction and a string span ([l1, l2]). 〈X → α • Y β, [i, j]〉
means that between string position i and j, the beginning of
an X phrase has been found, covering α, but still missing Y β.
Chart items for which the dot is at the end of a production (like
〈Y → γ•, [j, k]〉) are called passive items, the others active.

Vinf/Vinf

NP/NP

i1 j1 k1

k2

j2

i2

her

interview

sie interviewen

Figure 4: Completion in two-dimensional chart:
parsing part of Can I interview her?/Kann ich sie
interviewen?

More generally, we get the inference rules (2) and
(3) (one for the case of parallel sequencing, one for
crossed order across languages).

(2) 〈X1/X2 → α • Y1:r1/Y2:r2 β, [i1, j1, i2, j2]〉,
〈Y1/Y2 → γ •, [j1, k1, j2, k2]〉

〈X1/X2 → α Y1:r1/Y2:r2 • β, [i1, k1, i2, k2]〉

(3) 〈X1/X2 → α • Y1:r1/Y2:r2 β, [i1, j1, j2, k2]〉,
〈Y1/Y2 → γ •, [j1, k1, i2, j2]〉

〈X1/X2 → α Y1:r1/Y2:r2 • β, [i1, k1, i2, k2]〉

Since each inference rule contains six free vari-
ables over string positions (i1, j1, k1, i2, j2, k2), we
get a parsing complexity of order O(n6) for unlexi-
calized grammars (where n is the number of words
in the longer of the two strings from language L1 and
L2) (Wu, 1997; Melamed, 2003). For large-scale
learning experiments this may be problematic, es-
pecially when one moves to lexicalized grammars,
which involve an additional factor of n4.10

As a further issue, we observe that the inference
rules are insufficient for multiply branching rules,
in which partial constituents may be discontinuous
in one dimension (only complete constituents need
to be continuous in both dimensions). For instance,
by parsing the first two words of the German string
in fig. 1 (Heute stellt), we should get a partial chart
item for a sentence, but the English correspondents
for the two words (now and is) are discontinuous, so
we couldn’t apply rule (2) or (3).

Correspondence-guided parsing. As an alterna-
tive to the standard “rectangular indexing” approach

10The assumption here (following (Melamed, 2003)) is that
lexicalization is not considered as just affecting the grammar
constant, but that in parsing, every terminal symbol has to be
considered as the potential head of every phrase of which it is
a part. Melamed demonstrates: If the number of different cat-
egory symbols is taken into consideration as l, we get O(l2n6)
for unlexicalized grammars, and O(l6n10) for lexicalized gram-
mars; however there are some possible optimizations.
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to synchronous parsing we propose a conceptually
very simple asymmetric approach. As we will show
in sec. 4 and 5, this algorithm is both theoretically
and practically efficient when applied to sentence
pairs for which a word alignment has previously
been determined. The approach is asymmetric in
that one of the languages is viewed as the “master
language”, i.e., indexing in parsing is mainly based
on this language (the “primary index” is the string
span in L1 as in monolingual parsing). The other
language contributes a secondary index, which is
mainly used to guide parsing in the master language
– i.e., certain options are eliminated. The choice of
the master language is in principle arbitrary, but for
efficiency considerations it is better to pick the one
that has more words without a correspondent.

A way of visualizing correspondence-guided
parsing is that standard Earley parsing is applied to
L1, with primary indexing by string position; as the
chart items are assembled, the synchronous gram-
mar and the information from the word alignment
is used to check whether the string in L2 could be
generated (essentially using chart-based generation
techniques; cf. (Shieber, 1988; Neumann, 1998)).
The index for chart items consists of two compo-
nents: the string span in L1 and a bit vector for the
words in L2 which are covered. For instance, based
on fig. 3, the noun compound Agrarpolitik corre-
sponding to agricultural policy in English will have
the index 〈[4, 5], [0, 0, 0, 0, 0, 0, 1, 1]〉 (assuming for
illustrative purposes that German is the master lan-
guage in this case).

The completion step in correspondence-guided
parsing can be formulated as the following single in-
ference rule:11

(4) 〈X1/X2 → α • Y1:r1/Y2:r2 β, 〈[i, j], v〉〉,
〈Y1/Y2 → γ •, 〈[j, k],w〉〉

〈X1/X2 → α Y1:r1/Y2:r2 • β, 〈[i, k], u〉〉
where

(i) j 6= k;
(ii) OR(v,w) = u;
(iii) w is continuous (i.e., it contains maximally

one subsequence of 1’s).

Condition (iii) excludes discontinuity in passive
chart items, i.e., complete constituents; active items

11We use the bold-faced variables v,w,u for bit vectors; the
function OR performs bitwise disjunction on the vectors (e.g.,
OR([0, 1, 1, 0, 0], [0, 0, 1, 0, 1]) = [0, 1, 1, 0, 1]).

(i.e., partial constituents) may well contain discon-
tinuities. The success condition for parsing a string
with N words in L1 is that a chart item with index
〈[0, N ],1〉 has been found for the start category pair
of the grammar.

Words in L2 with no correspondent in L1 (let’s
call them “L1-NIL”s for short), for example the
words at and agricultural in fig. 3,12 can in princi-
ple appear between any two words of L1. Therefore
they are represented with a “variable” empty L1-
string span like for instance in 〈[i, i], [0, 0, 1, 0, 0]〉.
At first blush, such L1-NILs seem to introduce an
extreme amount of non-determinism into the algo-
rithm. Note however that due to the continuity as-
sumption for complete constituents, the distribution
of the L1-NILs is constrained by the other words in
L2. This is exploited by the following inference rule,
which is the only way of integrating L1-NILs into the
chart:

(5) 〈X1/X2 → α • NIL:0/Y2:r2 β, 〈[i, j], v〉〉,
〈NIL/Y2 → γ •, 〈[j, j], w〉〉

〈X1/X2 → α NIL:0/Y2:r2 • β, 〈[i, j], u〉〉
where

(i) w is adjacent to v (i.e., unioning vectors w
and v does not lead to more 0-separated 1-
sequences than v contains already);

(ii) OR(v,w) = u.

The rule has the effect of finalizing a cross-
linguistic constituent (i.e., rectangle in the two-
dimensional array) after all the parts that have corre-
spondents in both languages have been found. 13

4 Complexity

We assume that the two-dimensional chart is ini-
tialized with the correspondences following from a
word alignment. Hence, for each terminal that is
non-empty in L1, both components of the index are
known. When two items with known secondary in-
dices are combined with rule (4), the new secondary

12It is conceivable that a word alignment would list agricul-
tural as an additional correspondent for Agrarpolitik; but we
use the given alignment for illustrative purposes.

13For instance, the L1-NILs in fig. 3 – NIL/at and
NIL/agricultural – have to be added to incomplete NP/PP
constituent in the L1-string span from 3 to 5, consist-
ing of the Det/Det die/the and the N/N Agrarpolitik/policy.
With two applications of rule (5), the two L1-NILs can be
added. Note that the conditions are met, and that as a re-
sult, we will have a continuous NP/PP constituent with index
〈[3, 5], [0, 0, 0, 0, 1, 1, 1, 1]〉, which can be used as a passive
item Y1/Y2 in rule (4).
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index can be determined by bitwise disjunction of
the bit vectors. This operation is linear in the length
of the L2-string (which is of the same order as the
length of the L1-string) and has a very small con-
stant factor.14 Since parsing with a simple, non-
lexicalized context-free grammar has a time com-
plexity of O(n3) (due to the three free variables
for string positions in the completion rule), we get
O(n4) for synchronous parsing of sentence pairs
without any L1-NILs. Note that words from L1 with-
out a correspondent in L2 (which we would have to
call L2-NILs) do not add to the complexity, so the
language with more correspondent-less words can
be selected as L1.

For the average complexity of correspondence-
guided parsing of sentence pairs without L1-NILs we
note an advantage over monolingual parsing: cer-
tain hypotheses for complete constituents that would
have to be considered when parsing only L1, are ex-
cluded because the secondary index reveals a dis-
continuity. An example from fig. 3 would be the se-
quence müssen deshalb, which is adjacent in L1, but
doesn’t go through as a continuous rectangle when
L2 is taken into consideration (hence it cannot be
used as a passive item in rule (4)).

The complexity of correspondence-guided pars-
ing is certainly increased by the presence of L1-
NILs, since with them the secondary index can no
longer be uniquely determined. However, with the
adjacency condition ((i) in rule (5)), the number of
possible variants in the secondary index is a func-
tion of the number of L1-NILs. Let us say there are
m L1-NILs, i.e., the bit vectors contain m elements
that we have to flip from 0 to 1 to obtain the final bit
vector. In each application of rule (5) we pick a vec-
tor v, with a variable for the leftmost and rightmost
L1-NIL element (since this is not fully determined
by the primary index). By the adjacency condition,

14Note that the operation does not have to be repeated when
the completion rule is applied on additional pairs of items with
identical indices. This means that the extra time complexity fac-
tor of n doesn’t go along with an additional factor of the gram-
mar constant (which we are otherwise ignoring in the present
considerations). In practical terms this means that changes in
the size of the grammar are much more noticable than moving
from monolingual parsing to alignment-guided parsing.

An additional advantage is that in an Expectation Maximiza-
tion approach to grammar induction (with a fixed word align-
ment), the bit vectors have to be computed only in the first iter-
ation of parsing the training corpus, later iterations are cubic.

either the leftmost or rightmost marks the boundary
for adding the additional L1-NIL element NIL/Y2 –
hence we need only one new variable for the newly
shifted boundary among the L1-NILs. So, in addition
to the n4 expense of parsing non-nil words, we get
an expense of m3 for parsing the L1-NILs, and we
conclude that for unlexicalized synchronous pars-
ing, guided by an initial word alignment the com-
plexity class is O(n4m3) (where n is the total num-
ber of words appearing in L1, and m is the number
of words appearing in L2, without a correspondent
in L1). Recall that the complexity for standard syn-
chronous parsing is O(n6).

Since typically the number of correspondent-less
words is significantly lower than the total number of
words (at least for one of the two languages), these
results are encouraging for medium-to-large-scale
grammar learning experiments using a synchronous
parsing algorithm.

5 Empirical Evaluation

In order to validate the theoretical complexity results
empirically, we implemented the algorithm and ran
it on sentence pairs from the Europarl parallel cor-
pus. At the present stage, we are interested in quan-
titative results on parsing time, rather than qualita-
tive results of parsing accuracy (for which a more
extensive training of the rule parameters would be
required).
Implementation. We did a prototype implementa-
tion of the correspondence-guided parsing algorithm
in SWI Prolog.15 Chart items are asserted to the
knowledge base and efficiently retrieved using in-
dexing by a hash function. Besides chart construc-
tion, the Viterbi algorithm for selecting the most
probable analysis has been implemented, but for the
current quantitative results only chart construction
was relevant.
Sample grammar extraction. The initial prob-
ablistic grammar for our experiments was ex-
tracted from a small “multitree bank” of 140 Ger-
man/English sentence pairs (short examples from
the Europarl corpus). The multitree bank was an-
notated using the MMAX2 tool16 and a specially

15http://www.swi-prolog.org – The advantage of using Pro-
log is that it is very easy to experiment with various conditions
on the inference rules in parsing.

16http://mmax.eml-research.de
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tailored annotation scheme for flat correspondence
structures as described in sec. 2. A German and En-
glish part-of-speech tagger was used to determine
word categories; they were mapped to a reduced cat-
egory set and projected to the syntactic constituents.

To obtain parameters for a probabilistic grammar,
we used maximum likelihood estimation from the
small corpus, based on a rather simplistic genera-
tive model,17 which for each local subtree decides
(i) what categories will be the two heads, (ii) how
many daughters there will be, and for each non-
head sister (iii) whether it will be a nonterminal or
a terminal (and in that case, what category pair),
and (iv) in which position relative to the head to
place it in both languages. In order to obtain a
realistically-sized grammar, we applied smoothing
to all parameters; so effectively, every sequence of
terminals/nonterminals of arbitrary length was pos-
sible in parsing.

Parsing sentences without NIL words
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Figure 5: Comparison of synchronous parsing with
and without exploiting constraints from L2

Results. To validate empirically that the pro-
posed correspondence-guided synchronous parsing
approach (CGSP) can effectively exploit L2 as a
guide, thereby reducing the search space of L1

parses that have to be considered, we first ran a
comparison on sentences without L1-NILs. The re-
sults (average parsing time for Viterbi parsing with
the sample grammar) are shown in fig. 5.18 The
parser we call “monolingual” cannot exploit any

17For our learning experiments we intend to use a Maximum
Entropy/log-linear model with more features.

18The experiments were run on a 1.4GHz Pentium M proces-
sor.

alignment-induced restrictions from L2.19 Note that
CGSP takes clearly less time.

Comparison wrt. # NIL words
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Figure 6: Synchronous parsing with a growing num-
ber of L1-NILs

Fig. 6 shows our comparative results for parsing
performance on sentences that do contain L1-NILs.
Here too, the theoretical results are corroborated that
with a limited number of L1-NILs, the CGSP is still
efficient.

The average chart size (in terms of the number of
entries) for sentences of length 8 (in L1) was 212
for CGSP (and 80 for “monolingual” parsing). The
following comparison shows the effect of L1-NILs
(note that the values for 4 and more L1-NILs are
based on only one or two cases):

(6) Chart size for sentences of length 8 (in L1)

Number of
L1-NILs

0 1 2 3 4 5 6

Avg. num-
ber of chart
items

77 121 175 256 (330) (435) (849)

We also simulated a synchronous parser which
does not take advantage of a given word alignment
(by providing an alignment link between any pair
of words, plus the option that any word could be a
NULL word). For sentences of length 5, this parser
took an average time of 22.3 seconds (largely inde-
pendent of the presence/absence of L1-NILs).20

19The “monolingual” parser used in this comparison parses
two identical copies of the same string synchronously, with a
strictly linear alignment.

20While our simulation may be significantly slower than a di-
rect implementation of the algorithm (especially when some of
the optimizations discussed in (Melamed, 2003) are taken into
account), the fact that it is orders of magnitude slower does in-
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Finally, we also ran an experiment in which the
continuity condition (condition (iii) in rule (4)) was
deactivated, i.e., complete constituents were allowed
to be discontinuous in one of the languages. The re-
sults in (7) underscore the importance of this condi-
tion – leaving it out leads to a tremendous increase
in parsing time.

(7) Average parsing time in seconds with and with-
out continuity condition

Sentence length (with no L1-
NILs)

4 5 6

Avg. parsing time with CGSP
(incl. continuity condition)

0.005 0.012 0.026

Avg. parsing time without the
continuity condition

0.035 0.178 1.025

6 Conclusion

We proposed a conceptually simple, yet efficient al-
gorithm for synchronous parsing in a context where
a word alignment can be assumed as given – for in-
stance in a bootstrapping learning scenario. One of
the two languages in synchronous parsing acts as the
master language, providing the primary string span
index, which is used as in classical Earley parsing.
The second language contributes a bit vector as a
secondary index, inspired by work on chart gener-
ation. Continuity assumptions make it possible to
constrain the search space significantly, to the point
that synchronous parsing for sentence pairs with few
“NULL words” (which lack correspondents) may be
faster than standard monolingual parsing. We dis-
cussed the complexity both theoretically and pro-
vided a quantitative evaluation based on a prototype
implementation.

The study we presented is part of the longer-term
PTOLEMAIOS project. The next step is to apply
the synchronous parsing algorithm with probabilis-
tic synchronous grammars in grammar induction ex-
periments on parallel corpora.
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sche Ressourcen. Beiträge zur GLDV-Tagung 2005 in Bonn,
pages 132–144, Frankfurt am Main. Peter Lang.

Philip M. Lewis II and Richard E. Stearns. 1968. Syntax-
directed transduction. Journal of the Association of Com-
puting Machinery, 15(3):465–488.
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