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Abstract

We present first results using paraphrase as well as
textual entailment data to test the language univer-
sal constraint posited by Wu’s (1995, 1997) Inver-
sion Transduction Grammar (ITG) hypothesis. In
machine translation and alignment, the ITG Hypoth-
esis provides a strong inductive bias, and has been
shown empirically across numerous language pairs
and corpora to yield both efficiency and accuracy
gains for various language acquisition tasks. Mono-
lingual paraphrase and textual entailment recogni-
tion datasets, however, potentially facilitate closer
tests of certain aspects of the hypothesis than bilin-
gual parallel corpora, which simultaneously exhibit
many irrelevant dimensions of cross-lingual varia-
tion. We investigate this using simple generic Brack-
eting ITGs containing no language-specific linguis-
tic knowledge. Experimental results on the MSR
Paraphrase Corpus show that, even in the absence
of any thesaurus to accommodate lexical variation
between the paraphrases, an uninterpolated aver-
age precision of at least 76% is obtainable from
the Bracketing ITG’s structure matching bias alone.
This is consistent with experimental results on the
Pascal Recognising Textual Entailment Challenge
Corpus, which show surpisingly strong results for a
number of the task subsets.

1 Introduction

TheInversion Transduction Grammaror ITG formalism,
which historically was developed in the context of trans-
lation and alignment, hypothesizes strong expressiveness
restrictions that constrain paraphrases to vary word or-
der only in certain allowable nested permutations of ar-
guments (Wu, 1997). The ITG Hypothesis has been more
extensively studied across different languages, but newly
available paraphrase datasets provide intriguing opportu-
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nities for meaningful analysis of the ITG Hypothesis in a
monolingual setting.

The strong inductive bias imposed by the ITG Hypoth-
esis has been repeatedly shown empirically to yield both
efficiency and accuracy gains for numerous language ac-
quisition tasks, across a variety of language pairs and
tasks. For example, Zens and Ney (2003) show that
ITG constraints yield significantly better alignment cov-
erage than the constraints used in IBM statistical ma-
chine translation models on both German-English (Verb-
mobil corpus) and French-English (Canadian Hansards
corpus). Zhang and Gildea (2004) find that unsuper-
vised alignment using Bracketing ITGs produces signif-
icantly lower Chinese-English alignment error rates than
a syntactically supervised tree-to-string model (Yamada
and Knight, 2001). With regard to translation rather than
alignment accuracy, Zenset al. (2004) show that decod-
ing under ITG constraints yields significantly lower word
error rates and BLEU scores than the IBM constraints.

We are conducting a series of investigations motivated
by the following observation: the empirically demon-
strated suitability of ITG paraphrasing constraints across
languages should hold, if anything, even more strongly
in the monolingual case. The monolingual case allows in
some sense closer testing of various implications of the
ITG hypothesis, without irrelevant dimensions of varia-
tion arising from other cross-lingual phenomena.

Asymmetric textual entailment recognition (RTE)
datasets, in particular the Pascal Recognising Textual En-
tailment Challenge Corpus (Daganet al., 2005), provide
testbeds that abstract over many tasks, including infor-
mation retrieval, comparable documents, reading com-
prehension, question answering, information extraction,
machine translation, and paraphrase acquisition.

At the same time, the emergence of paraphrasing
datasets presents an opportunity for complementary ex-
periments on the task of recognizing symmetric bidirec-
tional entailment rather than asymmetric directional en-
tailment. In particular, for this study we employ the MSR
Paraphrase Corpus (Quirket al., 2004).
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2 Inversion Transduction Grammars

Formally, ITGs can be defined as the restricted subset of
syntax-directed transduction grammars or SDTGs Lewis
and Stearns (1968) where all of the rules are either of
straight or invertedorientation. Ordinary SDTGs allow
any permutation of the symbols on the right-hand side to
be specified when translating from the input language to
the output language. In contrast, ITGs only allow two out
of the possible permutations. If a rule is straight, the or-
der of its right-hand symbols must be the same for both
language. On the other hand, if a rule is inverted, then the
order is left-to-right for the input language and right-to-
left for the output language. Since inversion is permitted
at any level of rule expansion, a derivation may intermix
productions of either orientation within the parse tree.
The ability to compose multiple levels of straight and in-
verted constituents gives ITGs much greater expressive-
ness than might seem at first blush.

A simple example may be useful to fix ideas. Consider
the following pair of parse trees for sentence translations:

[[[The Authority]NP [will [[be accountable]VV [to
[the [[Financial Secretary]NN ]NNN ]NP ]PP ]VP
]VP ]SP .]S

[[[�®Û]NP [RÌ [[5 [[[cu�]NN ]NNN ]NP ]PP
[�	]VV ]VP ]VP ]SP �]S

Even though the order of constituents under the inner
VP is inverted between the languages, an ITG can cap-
ture the common structure of the two sentences. This is
compactly shown by writing the parse tree together for
both sentences with the aid of an〈〉 angle bracket no-
tation marking parse tree nodes that instantiate rules of
inverted orientation:

[[[ The/úAuthority/� ® Û]NP [will/R Ì

〈[be/úaccountable/� 	]VV [to/5 [the/ú
[[Financial/cuSecretary/�]NN ]NNN ]NP ]PP

〉VP ]VP ]SP./�]S

In a weighted or stochastic ITG (SITG), a weight or a
probability is associated with each rewrite rule. Follow-
ing the standard convention, we usea and b to denote
probabilities for syntactic and lexical rules, respectively.

For example, the probability of the rule NN
0.4→ [A N] is

aNN→[A N] = 0.4. The probability of a lexical rule A
0.001→

x/y is bA(x, y) = 0.001. Let W1,W2 be the vocabulary
sizes of the two languages, andN = {A1, . . . , AN} be
the set of nonterminals with indices1, . . . , N .

Wu (1997) also showed that ITGs can be equivalently
be defined in two other ways. First, ITGs can be defined
as the restricted subset of SDTGs where all rules are of
rank 2. Second, ITGs can also be defined as the restricted
subset of SDTGs where all rules are of rank 3.

Polynomial-time algorithms are possible for various
tasks including translation using ITGs, as well as bilin-
gual parsing orbiparsing, where the task is to build the
highest-scored parse tree given an input bi-sentence.

For present purposes we can employ the special case of
Bracketing ITGs, where the grammar employs only one
single, undistinguished “dummy” nonterminal category
for any non-lexical rule. Designating this categoryA, a
Bracketing ITG has the following form (where, as usual,
lexical transductions of the formA → e/f may possibly
be singletons of the formA → e/ε or A → ε/f ).

A → [AA]
A → 〈AA〉
A → ε, ε

A → e1/f1

. . .

A → ei/fj

The simplest class of ITGs,Bracketing ITGs, are
particularly interesting in applications like paraphras-
ing, because they impose ITG constraints in language-
independent fashion, and in the simplest case do not re-
quire any language-specific linguistic grammar or train-
ing. In Bracketing ITGs, the grammar uses only a
single, undifferentiated non-terminal (Wu, 1995). The
key modeling property of Bracketing ITGs that is most
relevant to paraphrase recognition is that they assign
strong preference to candidate paraphrase pairs in which
nested constituent subtrees can be recursively aligned
with a minimum of constituent boundary violations. Un-
like language-specific linguistic approaches, however, the
shape of the trees are driven in unsupervised fashion by
the data. One way to view this is that the trees are
hidden explanatory variables. This not only provides
significantly higher robustness than more highly con-
strained manually constructed grammars, but also makes
the model widely applicable across languages in econom-
ical fashion without a large investment in manually con-
structed resources.

Moreover, for reasons discussed by Wu (1997), ITGs
possess an interesting intrinsic combinatorial property of
permitting roughly up to four arguments of any frame to
be transposed freely, but not more. This matches supris-
ingly closely the preponderance of linguistic verb frame
theories from diverse linguistic traditions that all allow
up to four arguments per frame. Again, this property
emerges naturally from ITGs in language-independent
fashion, without any hardcoded language-specific knowl-
edge. This further suggests that ITGs should do well
at picking out paraphrase pairs where the order of up
to four arguments per frame may vary freely between
the two strings. Conversely, ITGs should do well at re-
jecting pairs where (1) too many words in one sentence
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find no correspondence in the other, (2) frames do not
nest in similar ways in the candidate sentence pair, or
(3) too many arguments must be transposed to achieve an
alignment—all of which would suggest that the sentences
probably express different ideas.

As an illustrative example, in common similarity mod-
els, the following pair of sentences (found in actual data
arising in our experiments below) would receive an inap-
propriately high score, because of the high lexical simi-
larity between the two sentences:

Chinese president Jiang Zemin arrived in Japan
today for a landmark state visit .

T�Ì R 4 t �ý ) )/6¯ { D  ¥)

)�Ìò .
(Jiang Zemin will be the first Chinese national
president to pay a state vist to Japan.)

However, the ITG based model is sensitive enough
to the differences in the constituent structure (reflecting
underlying differences in the predicate argument struc-
ture) so that our experiments show that it assigns a low
score. On the other hand, the experiments also show that
it successfully assigns a high score to other candidate bi-
sentences representing a true Chinese translation of the
same English sentence, as well as a true English transla-
tion of the same Chinese sentence.

We investigate a model for the paraphrase recognition
problem that employ simple generic Bracketing ITGs.
The experimental results show that, even in the absence
of any thesaurus to accommodate lexical variation be-
tween the two strings, the Bracketing ITG’s structure
matching bias alone produces a significant improvement
in average precision.

3 Scoring Method

All words of the vocabulary are included among the lex-
ical transductions, allowing exact word matches between
the two strings of any candidate paraphrase pair.

Each candidate pair of the test set was scored via the
ITG biparsing algorithm, which employs a dynamic pro-
gramming approach as follows.Let the input English sen-
tence bee1, . . . , eT and the corresponding input Chinese
sentence bec1, . . . , cV . As an abbreviation we writees..t

for the sequence of wordses+1, es+2, . . . , et, and simi-
larly for cu..v; also,es..s = ε is the empty string. It is
convenient to use a 4-tuple of the formq = (s, t, u, v)
to identify each node of the parse tree, where the sub-
stringses..t andcu..v both derive from the nodeq. De-
note the nonterminal label onq by `(q). Then for any
nodeq = (s, t, u, v), define

δq(i) = δstuv(i) = max
subtrees ofq

P [subtree ofq, `(q) = i, i
∗⇒ es..t/cu..v]

as the maximum probability of any derivation fromi that
successfully parses bothes..t and cu..v. Then the best
parse of the sentence pair has probabilityδ0,T,0,V (S).

The algorithm computesδ0,T,0,V (S) using the follow-
ing recurrences. Note that we generalizeargmax to the
case where maximization ranges over multiple indices,
by making it vector-valued. Also note that[ ] and〈〉 are
simply constants, written mnemonically. The condition
(S− s)(t−S)+ (U −u)(v−U) 6= 0 is a way to specify
that the substring in one but not both languages may be
split into an empty stringε and the substring itself; this
ensures that the recursion terminates, but permits words
that have no match in the other language to map to anε
instead.

1. Initialization

δt−1,t,v−1,v(i) = bi(et/cv),
1 ≤ t ≤ T
1 ≤ v ≤ V

δt−1,t,v,v(i) = bi(et/ε),
1 ≤ t ≤ T
0 ≤ v ≤ V

δt,t,v−1,v(i) = bi(ε/cv),
0 ≤ t ≤ T
1 ≤ v ≤ V

2.Recursion For alli, s, t, u, v such that

{
1≤i≤N

0≤s<t≤T
0≤u<v≤V

t−s+v−u>2

δstuv(i) = max[δ[ ]
stuv(i), δ〈〉stuv(i)]

θstuv(i) =
{

[ ] if δ
[ ]
stuv(i) ≥ δ

〈〉
stuv(i)

〈〉 otherwise

where

δ
[ ]
stuv(i) = max

1≤j≤N
1≤k≤N
s≤S≤t
u≤U≤v

(S−s)(t−S)+(U−u)(v−U) 6=0

ai→[jk] δsSuU (j) δStUv(k)


ι
[ ]
stuv(i)

κ
[ ]
stuv(i)

σ
[ ]
stuv(i)

υ
[ ]
stuv(i)

 = argmax
1≤j≤N
1≤k≤N
s≤S≤t
u≤U≤v

(S−s)(t−S)+(U−u)(v−U) 6=0

ai→[jk] δsSuU (j) δStUv(k)

δ
〈〉
stuv(i) = max

1≤j≤N
1≤k≤N
s≤S≤t
u≤U≤v

(S−s)(t−S)+(U−u)(v−U) 6=0

ai→〈jk〉 δsSUv(j) δStuU (k)


ι
〈〉
stuv(i)

κ
〈〉
stuv(i)

σ
〈〉
stuv(i)

υ
〈〉
stuv(i)

 = argmax
1≤j≤N
1≤k≤N
s≤S≤t
u≤U≤v

(S−s)(t−S)+(U−u)(v−U) 6=0

ai→〈jk〉 δsSUv(j) δStuU (k)
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3. Reconstruction Initialize by setting the root of the
parse tree toq1 = (0, T, 0, V ) and its nonterminal la-
bel to `(q1) = S. The remaining descendants in the
optimal parse tree are then given recursively for any
q = (s, t, u, v) by:

LEFT(q) =
NIL if t−s+v−u≤2

(s, σ[ ]
q (`(q)), u, υ

[ ]
q (`(q))) if θq(`(q)) = [ ]

(s, σ〈〉q (`(q)), υ〈〉q (`(q))) if θq(`(q)) = 〈〉
RIGHT(q) =

NIL if t−s+v−u≤2

(σ[ ]
q (`(q)), t, υ[ ]

q (`(q)), v) if θq(`(q)) = [ ]
(σ〈〉q (`(q)), t, u, υ

〈〉
q (`(q))) if θq(`(q)) = 〈〉

`(LEFT(q)) = ιθq(`(q))
q (`(q))

`(RIGHT(q)) = κθq(`(q))
q (`(q))

As mentioned earlier, biparsing for ITGs can be ac-
complished efficiently in polynomial time, rather than the
exponential time required for classical SDTGs. The re-
sult in Wu (1997) implies that for the special case of
Bracketing ITGs, the time complexity of the algorithm
is Θ

(
T 3V 3

)
whereT andV are the lengths of the two

sentences. This is a factor ofV 3 more than monolingual
chart parsing, but has turned out to remain quite practical
for corpus analysis, where parsing need not be real-time.

The ITG scoring model can also be seen as a variant
of the approach described by Leuschet al. (2003), which
allows us to forego training to estimate true probabilities;
instead, rules are simply given unit weights. The ITG
scores can be interpreted as a generalization of classi-
cal Levenshtein string edit distance, where inverted block
transpositions are also allowed. Even without probability
estimation, Leuschet al. found excellent correlation with
human judgment of similarity between translated para-
phrases.

4 Experimental Results—Paraphrase
Recognition

Our objective here was to isolate the effect of the ITG
constraint bias. No training was performed with the avail-
able development sets. Rather, the aim was to establish
foundational baseline results, to see in this first round of
paraphrase recognition experiments what results could be
obtained with the simplest versions of the ITG models.

The MSR Paraphrase Corpus test set consists of 1725
candidate paraphrase string pairs, each annotated for se-
mantic equivalence by two or three human collectors.
Within the test set, 66.5% of the examples were annotated
as being semantically equivalent. The corpus was origi-
nally generated via a combination of automatic filtering

methods, making it difficult to make specific claims about
distributional neutrality, due to the arbitrary nature of the
example selection process.

The ITG scoring model produced an uninterpolated
average precision (also known as confidence weighted
score) of 76.1%. This represents an improvement of
roughly 10% over the random baseline. Note that this
improvement can be achieved with no thesaurus or lexi-
cal similarity model, and no parameter training.

5 Experimental Results—Textual
Entailment Recognition

The experimental procedure for the monolingual textual
entailment recognition task is the same as for paraphrase
recognition, except that one string serves as the Text and
the other serves as the Hypothesis.

Results on the textual entailment recognition task are
consistent with the above paraphrase recognition results.
For the PASCAL RTE challenge datasets, across all sub-
sets overall, the model produced a confidence-weighted
score of 54.97% (better than chance at the 0.05 level). All
examples were labeled, so precision, recall, and f-score
are equivalent; the accuracy was 51.25%.

For the RTE task we also investigated a second variant
of the model, in which a list of 172 words from a stoplist
was excluded from the lexical transductions. The moti-
vation for this model was to discount the effect of words
such as “the” or “of” since, more often than not, they
could be irrelevant to the RTE task.

Surprisingly, the stoplisted model produced worse
results. The overall confidence-weighted score was
53.61%, and the accuracy was 50.50%. We discuss the
reasons below in the context of specific subsets.

As one might expect, the Bracketing ITG models per-
formed better on the subsets more closely approximat-
ing the tasks for which Bracketing ITGs were designed:
comparable documents (CD), paraphrasing (PP), and in-
formation extraction (IE). We will discuss some impor-
tant caveats on the machine translation (MT) and reading
comprehension (RC) subsets. The subsets least close to
the Bracketing ITG models are information retrieval (IR)
and question answering (QA).

5.1 Comparable Documents (CD)

The CD task definition can essentially be characterized as
recognition of noisy word-aligned sentence pairs. Among
all subsets, CD is perhaps closest to the noisy word align-
ment task for which Bracketing ITGs were originally de-
veloped, and indeed produced the best results for both
of the Bracketing ITG models. The basic model pro-
duced a confidence-weighted score of 79.88% (accuracy
71.33%), while the stoplisted model produced an essen-
tially unchanged confidence-weighted score of 79.83%
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(accuracy 70.00%).
The results on the RTE Challenge datasets closely re-

flect the larger-scale findings of Wu and Fung (2005),
who demonstrate that an ITG based model yields far
more accurate extraction of parallel sentences from quasi-
comparable non-parallel corpora than previous state-of-
the-art methods. Wu and Fung’s results also use the eval-
uation metric of uninterpolated average precision (i.e.,
confidence-weighted score).

Note also that we believe the results here are artificially
lowered by the absence of any thesaurus, and that signifi-
cantly further improvements would be seen with the addi-
tion of a suitable thesaurus, for reasons discussed below
under the MT subsection.

5.2 Paraphrase Acquisition (PP)

The PP task is also close to the task for which Brack-
eting ITGs were originally developed. For the PP task,
the basic model produced a confidence-weighted score of
57.26% (accuracy 56.00%), while the stoplisted model
produced a lower confidence-weighted score of 51.65%
(accuracy 52.00%). Unlike the CD task, the greater
importance of function words in determining equivalent
meaning between paraphrases appears to cause the degra-
dation in the stoplisted model.

The effect of the absence of a thesaurus is much
stronger for the PP task as opposed to the CD task. In-
spection of the datasets reveals much more lexical vari-
ation between paraphrases, and shows that cases where
lexis does not vary are generally handled accurately by
the Bracketing ITG models. The MT subsection below
discusses why a thesaurus should produce significant im-
provement.

5.3 Information Extraction (IE)

The IE task presents a slight issue of misfit for the
Bracketing ITG models, but yielded good results any-
how. The basic Bracketing ITG model attempts to align
all words/collocations between the two strings. However,
for the IE task in general, only a substring of the Text
should be aligned to the Hypothesis, and the rest should
be disregarded as “noise”. We approximated this by al-
lowing words to be discarded from the Text at little cost,
by using parameters that impose only a small penalty on
null-aligned words from the Text. (As a reasonable first
approximation, this characterization of the IE task ig-
nores the possibility of modals, negation, quotation, and
the like in the Text.)

Despite the slight modeling misfit, the Bracketing ITG
models produced good results for the IE subset. The basic
model produced a confidence-weighted score of 59.92%
(accuracy 55.00%), while the stoplisted model produced
a lower confidence-weighted score of 53.63% (accuracy
51.67%). Again, the lower score of the stoplisted model

appears to arise from the greater importance of function
words in ensuring correct information extraction, as com-
pared with the CD task.

5.4 Machine Translation (MT)

One exception to expectations is the machine translation
subset, a task for which Bracketing ITGs were devel-
oped. The basic model produced a confidence-weighted
score of 34.30% (accuracy 40.00%), while the stoplisted
model produced a comparable confidence-weighted score
of 35.96% (accuracy 39.17%).

However, the performance here on the machine trans-
lation subset cannot be directly interpreted, for two rea-
sons.

First, the task as defined in the RTE Challenge datasets
is not actually crosslingual machine translation, but rather
evaluation of monolingual comparability between an au-
tomatic translation and a gold standard human transla-
tion. This is in fact closer to the problem of defining a
good MT evaluation metric, rather than MT itself. Leusch
et al. (2003 and personal communication) found that
Bracketing ITGs as an MT evaluation metric show ex-
cellent correlation with human judgments.

Second, no translation lexicon or equivalent was used
in our model. Normally in translation models, includ-
ing ITG models, the translation lexicon accommodates
lexical ambiguity, by providing multiple possible lexi-
cal choices for each word or collocation being translated.
Here, there is no second language, so some substitute
mechanism to accommodate lexical ambiguity would be
needed.

The most obvious substitute for a translation lexicon
would be a monolingual thesaurus. This would allow
matching synonomous words or collocations between the
Text and the Hypothesis. Our original thought was to in-
corporate such a thesaurus in collaboration with teams fo-
cusing on creating suitable thesauri, but time limitations
prevented completion of these experiments. Based on our
own prior experiments and also on Leuschet al.’s expe-
riences, we believe this would bring performance on the
MT subset to excellent levels as well.

5.5 Reading Comprehension (RC)

The reading comprehension task is similar to the infor-
mation extraction task. As such, the Bracketing ITG
model could be expected to perform well for the RC sub-
set. However, the basic model produced a confidence-
weighted score of just 49.37% (accuracy 47.14%), and
the stoplisted model produced a comparable confidence-
weighted score of 47.11% (accuracy 45.00%).

The primary reason for the performance gap between
the RC and IE domains appears to be that RC is less
news-oriented, so there is less emphasis on exact lexical
choices such as named entities. This puts more weight on

29



the importance of a good thesaurus to recognize lexical
variation. For this reason, we believe the addition of a
thesaurus would bring performance improvements simi-
lar to the case of MT.

5.6 Information Retrieval (IR)

The IR task diverges significantly from the tasks for
which Bracketing ITGs were developed. The basic model
produced a confidence-weighted score of 43.14% (ac-
curacy 46.67%), while the stoplisted model produced a
comparable confidence-weighted score of 44.81% (accu-
racy 47.78%).

Bracketing ITGs seek structurally parallelizable sub-
strings, where there is reason to expect some degree of
generalization between the frames (heads and arguments)
of the two substrings from a lexical semantics standpoint.
In contrast, the IR task relies on unordered keywords, so
the effect of argument-head binding cannot be expected
to be strong.

5.7 Question Answering (QA)

The QA task is extremely free in the sense that ques-
tions can differ significantly from the answers in both
syntactic structure and lexis, and can also require a
significant degree of indirect complex inference us-
ing real-world knowledge. The basic model pro-
duced a confidence-weighted score of 33.20% (accuracy
40.77%), while the stoplisted model produced a signifi-
cantly better confidence-weighted score of 38.26% (ac-
curacy 44.62%).

Aside from adding a thesaurus, to properly model the
QA task, at the very least the Bracketing ITG models
would need to be augmented with somewhat more lin-
guistic rules that include a proper model forwh-words in
the Hypothesis, which otherwise cannot be aligned to the
Text. In the Bracketing ITG models, the stoplist appears
to help by normalizing out the effect of thewh-words.

6 Conclusion

The most serious omission in our experiments with
Bracketing ITG models was the absence of any thesaurus
model, allowing zero lexical variation between the two
strings of a candidate paraphrase pair (or Text and Hy-
pothesis, in the case of textual entailment recognition).
This forced the models to rely entirely on the Bracketing
ITG’s inherent tendency to optimize structural match be-
tween hypothesized nested argument-head substructures.
What we find highly interesting is the perhaps surpris-
ingly large effect obtainable from this structure matching
bias alone, which already produces good results on para-
phrasing as well as a number of the RTE subsets.

We plan to remedy the absence of a thesaurus as the
obvious next step. This can be expected to raise perfor-
mance significantly on all subsets.

Wu and Fung (2005) also discuss how to obtain any
desired tradeoff between precision and recall. This would
be another interesting direction to pursue in the context of
recognizing paraphrases or textual entailment.

Finally, using the development sets to train the param-
eters of the Bracketing ITG model would improve per-
formance. It would only be feasible to tune a few basic
parameters, however, given the small size of the develop-
ment sets.
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