
Proceedings of the 45th Annual Meeting of the Association of Computational Linguistics, pages 648–655,
Prague, Czech Republic, June 2007. c©2007 Association for Computational Linguistics

Collapsed Consonant and Vowel Models: New Approaches for
English-Persian Transliteration and Back-Transliteration

Sarvnaz Karimi Falk Scholer Andrew Turpin
School of Computer Science and Information Technology

RMIT University, GPO Box 2476V, Melbourne 3001, Australia
{sarvnaz,fscholer,aht}@cs.rmit.edu.au

Abstract

We propose a novel algorithm for English
to Persian transliteration. Previous meth-
ods proposed for this language pair apply
a word alignment tool for training. By
contrast, we introduce an alignment algo-
rithm particularly designed for translitera-
tion. Our new model improves the English
to Persian transliteration accuracy by 14%
over ann-gram baseline. We also propose
a novel back-transliteration method for this
language pair, a previously unstudied prob-
lem. Experimental results demonstrate that
our algorithm leads to an absolute improve-
ment of 25% over standard transliteration
approaches.

1 Introduction

Translation of a text from a source language to
a target language requires dealing with technical
terms and proper names. These occur in almost
any text, but rarely appear in bilingual dictionar-
ies. The solution is the transliteration of suchout-of-
dictionary terms: a word from the source language
is transformed to a word in the target language, pre-
serving its pronunciation. Recovering the original
word from the transliterated target is called back-
transliteration. Automatic transliteration is impor-
tant for many different applications, including ma-
chine translation, cross-lingual information retrieval
and cross-lingual question answering.

Transliteration methods can be categorized into
grapheme-based (AbdulJaleel and Larkey, 2003; Li

et al., 2004), phoneme-based (Knight and Graehl,
1998; Jung et al., 2000), and combined (Bilac and
Tanaka, 2005) approaches. Grapheme-based meth-
ods perform a direct orthographical mapping be-
tween source and target words, while phoneme-
based approaches use an intermediate phonetic rep-
resentation. Both grapheme- or phoneme-based
methods usually begin by breaking the source word
into segments, and then use a source segment to tar-
get segment mapping to generate the target word.
The rules of this mapping are obtained by aligning
already available transliterated word pairs (training
data); alternatively, such rules can be handcrafted.
From this perspective, past work is roughly divided
into those methods which apply a word alignment
tool such asGIZA++ (Och and Ney, 2003), and ap-
proaches that combine the alignment step into their
main transliteration process.

Transliteration is language dependent, and meth-
ods that are effective for one language pair may
not work as well for another. In this paper, we
investigate the English-Persian transliteration prob-
lem. Persian (Farsi) is an Indo-European language,
written in Arabic script from right to left, but with
an extended alphabet and different pronunciation
from Arabic. Our previous approach to English-
Persian transliteration introduced the grapheme-
basedcollapsed-vowel method, employingGIZA++
for source to target alignment (Karimi et al., 2006).
We propose a new transliteration approach that ex-
tends thecollapsed-vowel method. To meet Per-
sian language transliteration requirements, we also
propose a novel alignment algorithm in our training
stage, which makes use of statistical information of

648

the corpus, transliteration specifications, and simple
language properties. This approach handles possi-
ble consequences of elision (omission of sounds to
make the word easier to read) and epenthesis (adding
extra sounds to a word to make it fluent) in written
target words that happen due to the change of lan-
guage. Our method shows an absolute accuracy im-
provement of 14.2% over ann-gram baseline.

In addition, we investigate the problem of back-
transliteration from Persian to English. To our
knowledge, this is the first report of such a study.
There are two challenges in Persian to English
transliteration that makes it particularly difficult.
First, written Persian omits short vowels, while only
long vowels appear in texts. Second, monophthon-
gization (changing diphthongs to monophthongs) is
popular among Persian speakers when adapting for-
eign words into their language. To take these into
account, we propose a novel method to form trans-
formation rules by changing the normal segmenta-
tion algorithm. We find that this method signifi-
cantly improves the Persian to English translitera-
tion effectiveness, demonstrating an absolute perfor-
mance gain of 25.1% over standard transliteration
approaches.

2 Background

In general, transliteration consists of a training stage
(running on a bilingual training corpus), and a gen-
eration – also called testing – stage.

The training step of a transliteration develops
transformation rules mapping characters in the
source to characters in the target language using
knowledge of corresponding characters in translit-
erated pairs provided by an alignment. For example,
for the source-target word pair (pat,H� � �H), an align-

ment may map “p” to “H� ” and “a” to “ �”, and the

training stage may develop the rulepa → �, with “ �”
as the transliteration of “a” in the context of “pa”.
The generation stage applies these rules on a seg-
mented source word, transforming it to a word in
the target language.

Previous work on transliteration either employs a
word alignment tool (usuallyGIZA++), or develops
specific alignment strategies. Transliteration meth-
ods that useGIZA++ as their word pair aligner (Ab-
dulJaleel and Larkey, 2003; Virga and Khudanpur,

2003; Karimi et al., 2006) have based their work on
the assumption that the provided alignments are re-
liable. Gao et al. (2004) argue that precise align-
ment can improve transliteration effectiveness, ex-
perimenting on English-Chinese data and compar-
ing IBM models (Brown et al., 1993) with phoneme-
based alignments using direct probabilities.

Other transliteration systems focus on alignment
for transliteration, for example the joint source-
channel model suggested by Li et al. (2004). Their
method outperforms the noisy channel model in
direct orthographical mapping for English-Chinese
transliteration. Li et al. also find that grapheme-
based methods that use the joint source-channel
model are more effective than phoneme-based meth-
ods due to removing the intermediate phonetic
transformation step. Alignment has also been in-
vestigated for transliteration by adopting Coving-
ton’s algorithm on cognate identification (Coving-
ton, 1996); this is a character alignment algorithm
based on matching or skipping of characters, with
a manually assigned cost of association. Coving-
ton considers consonant to consonant and vowel to
vowel correspondence more valid than consonant to
vowel. Kang and Choi (2000) revise this method for
transliteration where a skip is defined as inserting a
null in the target string when two characters do not
match based on their phonetic similarities or their
consonant and vowel nature. Oh and Choi (2002)
revise this method by introducingbinding, in which
many to many correspondences are allowed. How-
ever, all of these approaches rely on the manually
assigned penalties that need to be defined for each
possible matching.

In addition, some recent studies investigate dis-
criminative transliteration methods (Klementiev and
Roth, 2006; Zelenko and Aone, 2006) in which each
segment of the source can be aligned to each seg-
ment of the target, where some restrictive conditions
based on the distance of the segments and phonetic
similarities are applied.

3 The Proposed Alignment Approach

We propose an alignment method based on segment
occurrence frequencies, thereby avoiding predefined
matching patterns and penalty assignments. We also
apply the observed tendency of aligning consonants

649

to consonants, and vowels to vowels, as a substi-
tute for phonetic similarities. Many to many, one to
many, one to null and many to one alignments can
be generated.

3.1 Formulation

Our alignment approach consists of two steps: the
first is based on the consonant and vowel nature
of the word’s letters, while the second uses a
frequency-based sequential search.

Definition 1 A bilingual corpus B is the set
{(S, T)}, where S = s1..sℓ, T = t1..tm, si is a
letter in the source language alphabet, and tj is a
letter in the target language alphabet.

Definition 2 Given some word, w, the consonant-
vowel sequence p = (C|V)+ for w is obtained
by replacing each consonant with C and each vowel
with V .

Definition 3 Given some consonant-vowel se-
quence, p, a reduced consonant-vowel sequence q

replaces all runs of C’s with C, and all runs of V ’s
with V; hence q = q′|q′′, q′ = V(CV)∗(C|ǫ)
and q′′ = C(VC)∗(V|ǫ).

For each natural language word, we can determine
the consonant-vowel sequence (p) from which the
reduced consonant-vowel sequence (q) can be de-
rived, giving a common notation between two dif-
ferent languages, no matter which script either of
them use. To simplify, semi-vowels and approxi-
mants (sounds intermediate between consonants and
vowels, such as “w” and “y” in English) are treated
according to their target language counterparts.

In general, for all the word pairs(S, T) in a corpus
B, an alignment can be achieved using the function

f : B → A; (S, T) 7→ (Ŝ, T̂ , r).

The functionf maps the word pair(S, T) ∈ B to
the triple (Ŝ, T̂ , r) ∈ A where Ŝ and T̂ are sub-
strings ofS andT respectively. The frequency of
this correspondence is denoted byr. A represents a
set of substring alignments, and we use a per word
alignment notation ofa

e2p
when aligning English to

Persian anda
p2e

for Persian to English.

3.2 Algorithm Details

Our algorithm consists of two steps.

Step 1 (Consonant-Vowel based)

For any word pair(S, T) ∈ B, the corresponding
reduced consonant-vowel sequences,q

S
andq

T
, are

generated. If the sequences match, then the aligned
consonant clusters and vowel sequences are added
to the alignment setA. If q

S
does not match with

q
T

, the word pair remains unaligned inStep 1.
The assumption in this step is that transliteration

of each vowel sequence of the source is a vowel se-
quence in the target language, and similarly for con-
sonants. However, consonants do not always map to
consonants, or vowels to vowels (for example, the
English letter “s” may be written as “��” in Persian
which consists of one vowel and one consonant). Al-
ternatively, they might be omitted altogether, which
can be specified as the null string,ε. We therefore
require a second step.

Step 2 (Frequency based)

For most natural languages, the maximum length
of corresponding phonemes of each grapheme is a
digraph (two letters) or at most a trigraph. Hence,
alignment can be defined as a search problem that
seeks for units with a maximum length of two or
three in both strings that need to be aligned. In our
approach, we search based on statistical occurrence
data available fromStep 1.

In Step 2, only those words that remain unaligned
at the end ofStep 1 need to be considered. For each
pair of words(S, T), matching proceeds from left to
right, examining one of the three possible options of
transliteration: single letter to single letter, digraph
to single letter and single letter to digraph. Trigraphs
are unnecessary in alignment as they can be effec-
tively captured during transliteration generation, as
we explain below.

We define four different valid alignments for the
source (S = s

1
s

2
. . . s

i
. . . s

l
) and target (T =

t
1
t
2
. . . t

j
. . . tm) strings: (s

i
, t

j
, r), (s

i
s

i+1, tj
, r),

(s
i
, t

j
t
j+1, r) and (s

i
, ε, r). These four options are

considered as the only possible valid alignments,
and the most frequently occurring alignment (high-
estr) is chosen. These frequencies are dynamically
updated after successfully aligning a pair. For ex-
ceptional situations, where there is no character in
the target string to match with the source character
s

i
, it is aligned with the empty string.
It is possible that none of the four valid alignment

650

options have occurred previously (that is,r = 0
for each). This situation can arise in two ways:
first, such a tuple may simply not have occurred in
the training data; and, second, the previous align-
ment in the current string pair may have been incor-
rect. To account for this second possibility, a par-
tial backtracking is considered. Most misalignments
are derived from the simultaneous comparison of
alignment possibilities, giving the highest priority to
the most frequent. For example ifS=bbc,T=H. �
andA = {(b,H. ,100),(bb,H. ,40),(c,�,60)}, starting
from the initial positions

1
andt

1
, the first alignment

choice is (b,H. ,101). However immediately after, we
face the problem of aligning the second “b”. There
are two solutions: insertingε and adding the triple
(b,ε,1), or backtracking the previous alignment and
substituting that with the less frequent but possible
alignment of (bb,H. ,41). The second solution is a
better choice as it adds less ambiguous alignments
containingε. At the end, the alignment set is up-
dated asA = {(b,H. ,100),(bb,H. ,41),(c,�,61)}.

In case of equal frequencies, we check possible
subsequent alignments to decide on which align-
ment should be chosen. For example, if (b,H. ,100)

and (bb,H. ,100) both exist as possible options, we
consider if choosing the former leads to a subse-
quentε insertion. If so, we opt for the latter.

At the end of a string, if just one character in the
target string remains unaligned while the last align-
ment is aε insertion, that final alignment will be sub-
stituted forε. This usually happens when the align-
ment of final characters is not yet registered in the
alignment set, mainly because Persian speakers tend
to transliterate the final vowels to consonants to pre-
serve their existence in the word. For example, in
the word “Jose” the final “e” might be transliterated
to “ è” which is a consonant (“h”) and therefore is not
captured inStep 1.

Backparsing

The process of aligning words explained above
can handle words with already known components
in the alignment setA (the frequency of occurrence
is greater than zero). However, when this is not the
case, the system may repeatedly insertε while part
or all of the target characters are left intact (unsuc-
cessful alignment). In such cases, processing the
source and target backwards helps to find the prob-

lematic substrings:backparsing.

The poorly aligned substrings of the source and
target are taken as new pairs of strings, which are
then reintroduced into the system as new entries.
Note that they themselves are not subject to back-
parsing. Most strings of repeating nulls can be bro-
ken up this way, and in the worst case will remain as
one tuple in the alignment set.

To clarify, consider the example given in Figure 1.
For the word pair (patricia,H� �HPø ��ø�), where an

association between “c” and “��” is not yet regis-
tered. Forward parsing, as shown in the figure, does
not resolve all target characters; after the incorrect
alignment of “c” with “ε”, subsequent characters are
also aligned with null, and the substring “��ø�” re-
mains intact. Backward parsing, shown in the next
line of the figure, is also not successful. It is able to
correctly align the last two characters of the string,
before generating repeated null alignments. There-
fore, the central region — substrings of the source
and target which remained unaligned plus one extra
aligned segment to the left and right — is entered
as a new pair to the system (ici,ø ��ø), as shown
in the line labelledInput 2 in the figure. This new
input meetsStep 1 requirements, and is aligned suc-
cessfully. The resulting tuples are then merged with
the alignment setA.

An advantage of our backparsing strategy is that
it takes care of casual transliterations happening due
to elision and epenthesis (adding or removing ex-
tra sounds). It is not only in translation that people
may add extra words to make fluent target text; for
transliteration also, it is possible that spurious char-
acters are introduced for fluency. However, this of-
ten follows patterns, such as adding vowels to the
target form. These irregularities are consistently
covered in the backparsing strategy, where they re-
main connected to their previous character.

4 Transliteration Method

Transliteration algorithms use aligned data (the out-
put from the alignment process,a

e2p
or a

p2e
align-

ment tuples) for training to derive transformation
rules. These rules are then used to generate a tar-
get wordT given a new input source wordS.

651

Initial alignment set:
A = {(p,H� ,42),(a,�,320),(a,ε,99),(a,�ø,10),(a,ø,35),(r,P,200),(i,ø,60),(i,ε,5),(c,�,80),(c,h� ,25),(t, �H,51)}

Input: (patricia,H� �HPø ��ø�) q
S

= CVCVCV q
T

= CVCV

Step 1: q
S
6= q

T

Forward alignment: (p,H� ,43), (a,ε,100), (t, �H,52), (r,P,201), (i,ø,61), (c,ε,1), (i,ε,6), (a,ε,100)

Backward alignment: (a,�,321), (i,ø,61), (c,ε,1), (i,ε,6), (r,ε,1), (t,ε,1), (a,ε,100), (p,ε,1)
Input 2: (ici,ø ��ø) q

S
= VCV q

T
= VCV

Step 1: (i,ø,61),(c, ��,1), (i,ø,61)

Final Alignment: a
e2p

= ((p,H�),(a,ε),(t, �H),((r,P),(i,ø),(c, ��),(i,ø),(a,�))
Updated alignment set:
A = {(p,H� ,43),(a,�,321),(a,ε,100),(a,�ø,10),(a,ø,35),(r,P,201),(i,ø,62),(i,ε,5),(c,�,80),(c,h� ,25),(c, ��,1),(t, �H,52)}

Figure 1: A backparsing example. Note middle tuples in forward and backward parsings are not merged in
A till the alignment is successfully completed.

Method Intermediate Sequence Segment(Pattern) Backoff
Bigram N/A #s, sh, he, el, ll , le, ey s,h,e,l,e,y
CV-MODEL1 CCVCCV sh(CC), hel(CVC), ll (CC), lley(CV) s(C), h(C), e(V), l(C), e(V), y(V)
CV-MODEL2 CCVCCV sh(CC), e(CVC), ll(CC), ey(CV) As Above.
CV-MODEL3 CVCV #sh(C), e(CVC), ll (C), ey(CV) sh(C), s(C), h(C), e(V), l(C), e(V), y(V)

Figure 2: An example of transliteration for the word pair (shelley, ��Èø). Underlined characters are actually
transliterated for each segment.

4.1 Baseline

Most transliteration methods reported in the litera-
ture — either grapheme- or phoneme-based — use
n-grams (AbdulJaleel and Larkey, 2003; Jung et al.,
2000). Then-gram-based methods differ mainly in
the way that words are segmented, both for train-
ing and transliteration generation. A simplen-
gram based method works only on single charac-
ters (unigram) and transformation rules are defined
as si → tj, while an advanced method may take
the surrounding context into account (Jung et al.,
2000). We found that using one past symbol (bigram
model) works better than othern-gram based meth-
ods for English to Persian transliteration (Karimi et
al., 2006).

Our collapsed-vowel methods consider language
knowledge to improve the string segmentation of
n-gram techniques (Karimi et al., 2006). The pro-
cess begins by generating theconsonant-vowel se-
quence (Definition 2) of a source word. For ex-
ample, the word “shelley” is represented by the se-
quencep = CCV CCV V . Then, following the col-
lapsed vowel concept (Definition 3), this sequence
becomes “CCVCCV”. These approaches, which
we refer to asCV-MODEL1 and CV-MODEL2 re-
spectively, partition these sequences using basic pat-
terns (C andV) and main patterns (CC, CVC, VC

andCV). In the training phase, transliteration rules
are formed according to the boundaries of the de-
fined patterns and their aligned counterparts (based
onae2p or ap2e) in the target language wordT . Simi-
lar segmentation is applied during the transliteration
generation stage.

4.2 The Proposed Transliteration Approach

The restriction on the context length of consonants
imposed byCV-MODEL1 and CV-MODEL2 makes
the transliteration of consecutive consonants map-
ping to a particular character in the target language
difficult. For example, “ght” in English maps to
only one character in Persian: “�H”. Dealing with
languages which have different alphabets, and for
which the number of characters in their alphabets
also differs (such as26 and32 for English and Per-
sian), increases the possibility of facing these cases,
especially when moving from the language with
smaller alphabet size to the one with a larger size.
To more effectively address this, we propose acol-
lapsed consonant and vowel method (CV-MODEL3)
which uses the full reduced sequence (Definition 3),
rather than simply reduced vowel sequences. Al-
though recognition of consonant segments is based
on the vowel positions, consonants are considered as
independent blocks in each string. Conversely, vow-
els are transliterated in the context of surrounding

652

consonants, as demonstrated in the example below.
A special symbol is used to indicate the start

and/or end of each word if the beginning and end
of the word is a consonant respectively. Therefore,
for the words starting or ending with consonants, the
symbol “#” is added, which is treated as a consonant
and therefore grouped in the consonant segment.
An example of applying this technique is shown in
Figure 2 for the string “shelley”. In this example,
“sh” and “ll” are treated as two consonant segments,
where the transliteration of individual characters in-
side a segment is dependent on the other members
but not the surrounding segments. However, this is
not the case for vowel sequences which incorporate
a level of knowledge about any segment neighbours.
Therefore, for the example “shelley”, the first seg-
ment is “sh” which belongs toC pattern. During
transliteration, if “#sh” does not appear in any ex-
isting rules, a backoff splits the segment to smaller
segments: “#” and “sh”, or “s”and “h”. The second
segment contains the vowel “e”. Since this vowel
is surrounded by consonants, the segment pattern is
CVC. In this case, backoff only applies for vowels as
consonants are supposed to be part of their own in-
dependent segments. That is, if search in the rules of
patternCVC was unsuccessful, it looks for “e” inV
pattern. Similarly, segmentation for this word con-
tinues with “ll” in C pattern and “ey” inCV pattern
(“y” is an approximant, and therefore considered as
a vowel when transliterating English to Persian).

4.3 Rules for Back-Transliteration

Written Persian ignores short vowels, and only long
vowels appear in text. This causes most English
vowels to disappear when transliterating from En-
glish to Persian; hence, these vowels must be re-
stored during back-transliteration.

When the initial transliteration happens from En-
glish to Persian, the transliterator (whether hu-
man or machine) uses the rules of transliterat-
ing from English as the source language. There-
fore, transliterating back to the original language
should consider the original process, to avoid los-
ing essential information. In terms of segmenta-
tion in collapsed-vowel models, different patterns
define segment boundaries in which vowels are
necessary clues. Although we do not have most
of these vowels in the transliteration generation

phase, it is possible to benefit from their existence
in the training phase. For example, usingCV-
MODEL3, the pair (�P¸È,merkel) with q

S
=C and

a
p2e

=((�,me),(P,r),(¸,ke),(È,l)), produces just one

transformation rule “�P¸È → merkel” based on a
C pattern. That is, the Persian string contains no
vowel characters. If, during the transliteration gen-
eration phase, a source word “É¿QÓ” (S=�P¸È) is
entered, there would be one and only one output
of “merkel”, while an alternative such as “mercle”
might be required instead. To avoid overfitting the
system by long consonant clusters, we perform seg-
mentation based on the Englishq sequence, but cate-
gorise the rules based on their Persian segment coun-
terparts. That is, for the pair (�P¸È,merkel) with

a
e2p

=((m,�),(e,ε),(r,P),(k,¸),(e,ε),(l,È)), these rules
are generated (with category patterns given in paren-
thesis): � → m (C), P¸ → rk (C), È → l (C), �P¸
→merk (C),P¸È→ rkel (C). We call the suggested
training approachreverse segmentation.

Reverse segmentation avoids clustering all the
consonants in one rule, since many English words
might be transliterated to all-consonant Persian
words.

4.4 Transliteration Generation and Ranking

In the transliteration generation stage, the source
word is segmented following the same process of
segmenting words in training stage, and a probabil-
ity is computed for each generated target word:

P (T |S) =

|K|
Y

k=1

P (T̂k|Ŝk),

where |K| is the number of distinct source seg-
ments. P (T̂k|Ŝk) is the probability of theŜk→T̂k

transformation rule, as obtained from the training
stage:

P (T̂k|Ŝk) =
frequency ofŜk → T̂k

frequency ofŜk

,

where frequency ofŜk is the number of its oc-
currence in the transformation rules. We apply a
tree structure, following Dijkstra’sα-shortest path,
to generate theα highest scoring (most probable)
transliterations, ranked based on their probabilities.

653

Corpus
Baseline CV-MODEL3

Bigram CV-MODEL1 CV-MODEL2 GIZA++ New Alignment
Small Corpus

TOP-1 58.0 (2.2) 61.7 (3.0) 60.0 (3.9) 67.4 (5.5) 72.2 (2.2)
TOP-5 85.6 (3.4) 80.9 (2.2) 86.0 (2.8) 90.9 (2.1) 92.9 (1.6)
TOP-10 89.4 (2.9) 82.0 (2.1) 91.2 (2.5) 93.8 (2.1) 93.5 (1.7)

Large Corpus
TOP-1 47.2 (1.0) 50.6 (2.5) 47.4 (1.0) 55.3 (0.8) 59.8 (1.1)
TOP-5 77.6 (1.4) 79.8 (3.4) 79.2 (1.0) 84.5 (0.7) 85.4 (0.8)
TOP-10 83.3 (1.5) 84.9 (3.1) 87.0 (0.9) 89.5 (0.4) 92.6 (0.7)

Table 1: Mean (standard deviation) word accuracy (%) for English to Persian transliteration.

5 Experiments

To investigate the effectiveness ofCV-MODEL3 and
the new alignment approach on transliteration, we
first compareCV-MODEL3 with baseline systems,
employingGIZA++ for alignment generation during
system training. We then evaluate the same sys-
tems, using our new alignment approach. Back-
transliteration is also investigated, applying both
alignment systems andreverse segmentation. In all
our experiments, we used ten-fold cross-validation.
The statistical significance of different performance
levels are evaluated using a paired t-test. The no-
tation TOP-X indicates the firstX transliterations
prodcued by the automatic methods.

We used two corpora of word pairs in English
and Persian: the first, calledLarge, contains 16,670
word pairs; the second,Small, contains 1,857 word
pairs, and are described fully in our previous paper
(Karimi et al., 2006).

The results of transliteration experiments are eval-
uated using word accuracy (Kang and Choi, 2000)
which measures the proportion of transliterations
that are correct out of the test corpus.

5.1 Accuracy of Transliteration Approaches

The results of our experiments for transliterating En-
glish to Persian, usingGIZA++ for alignment gen-
eration, are shown in Table 1.CV-MODEL3 out-
performs all three baseline systems significantly in
TOP-1 andTOP-5 results, for both Persian corpora.
TOP-1 results were improved by 9.2% to 16.2%
(p<0.0001, paired t-test) relative to the baseline sys-
tems for theSmall corpus. For theLarge corpus,
CV-MODEL3 was 9.3% to 17.2% (p<0.0001) more
accurate relative to the baseline systems.

The results of applying our new alignment al-
gorithm are presented in the last column of Ta-
ble 1, comparing word accuracy ofCV-MODEL3 us-

ing GIZA++ and the new alignment for English to
Persian transliteration. Transliteration accuracy in-
creases inTOP-1 for both corpora (a relative increase
of 7.1% (p=0.002) for theSmall corpus and 8.1%
(p<0.0001) for theLarge corpus). TheTOP-10 re-
sults of the Large corpus again show a relative in-
crease of 3.5% (p=0.004). Although the new align-
ment also increases the performance forTOP-5 and
TOP-10 of theSmall corpus, these increases are not
statistically significant.

5.2 Accuracy of Back-Transliteration

The results of back-transliteration are shown in Ta-
ble 2. We first consider performance improvements
gained from usingCV-MODEL3: CV-MODEL3 using
GIZA++ outperforms Bigram,CV-MODEL1 andCV-
MODEL2 by 12.8% to 40.7% (p<0.0001) inTOP-
1 for the Small corpus. The corresponding im-
provement for theLarge corpus is 12.8% to 74.2%
(p<0.0001).

The fifth column of the table shows the perfor-
mance increase when usingCV-MODEL3 with the
new alignment algorithm: for theLarge corpus, the
new alignment approach gives a relative increase in
accuracy of 15.5% forTOP-5 (p<0.0001) and 10%
for TOP-10 (p=0.005). The new alignment method
does not show a significant difference usingCV-
MODEL3 for theSmall corpus.

The final column of Table 2 shows the perfor-
mance of theCV-MODEL3 with the new reverse seg-
mentation approach. Reverse segmentation leads to
a significant improvement over the new alignment
approach inTOP-1 results for theSmall corpus by
40.1% (p<0.0001), and 49.4% (p<0.0001) for the
Large corpus.

654

Corpus Bigram CV-MODEL1 CV-MODEL2
CV-MODEL3

GIZA++ New Alignment Reverse
Small Corpus

TOP-1 23.1 (2.0) 28.8 (4.6) 24.9 (2.8) 32.5 (3.6) 34.4 (3.8) 48.2(2.9)
TOP-5 40.8 (3.1) 51.0 (4.8) 52.9 (3.4) 56.0 (3.5) 54.8 (3.7) 68.1(4.9)
TOP-10 50.1 (4.1) 58.2 (5.3) 63.2 (3.1) 64.2 (3.2) 63.8 (3.6) 75.7 (4.2)

Large Corpus
TOP-1 10.1 (0.6) 15.6 (1.0) 12.0 (1.0) 17.6 (0.8) 18.0 (1.2) 26.9(0.7)
TOP-5 20.6 (1.2) 31.7 (0.9) 28.0 (0.7) 36.2 (0.5) 41.8 (1.2) 41.3(1.7)
TOP-10 27.2 (1.0) 40.1 (1.1) 37.4 (0.8) 46.0 (0.8) 50.6 (1.1) 49.3 (1.6)

Table 2: Comparison of mean (standard deviation) word accuracy (%) for Persian to English transliteration.

6 Conclusions

We have presented a new algorithm for English to
Persian transliteration, and a novel alignment al-
gorithm applicable for transliteration. Our new
transliteration method (CV-MODEL3) outperforms
the previous approaches for English to Persian, in-
creasing word accuracy by a relative 9.2% to 17.2%
(TOP-1), when usingGIZA++ for alignment in train-
ing. This method shows further 7.1% to 8.1% in-
crease in word accuracy (TOP-1) with our new align-
ment algorithm.

Persian to English back-transliteration is also in-
vestigated, withCV-MODEL3 significantly outper-
forming other methods. Enriching this model with
a new reverse segmentation algorithm gives rise to
further accuracy gains in comparison to directly ap-
plying English to Persian methods.

In future work we will investigate whether pho-
netic information can help refine ourCV-MODEL3,
and experiment with manually constructed rules as
a baseline system.

Acknowledgments

This work was supported in part by the Australian
government IPRS program (SK) and an ARC Dis-
covery Project Grant (AT).

References
Nasreen AbdulJaleel and Leah S. Larkey. 2003. Statistical

transliteration for English-Arabic cross language informa-
tion retrieval. InConference on Information and Knowledge
Management, pages 139–146.

Slaven Bilac and Hozumi Tanaka. 2005. Direct combination
of spelling and pronunciation information for robust back-
transliteration. InConferences on Computational Linguis-
tics and Intelligent Text Processing, pages 413–424.

Peter F. Brown, Vincent J. Della Pietra, Stephen A. Della Pietra,
and Robert L. Mercer. 1993. The mathematics of statisti-

cal machine translation: Parameter estimation.Computional
Linguistics, 19(2):263–311.

Michael A. Covington. 1996. An algorithm to align
words for historical comparison.Computational Linguistics,
22(4):481–496.

Wei Gao, Kam-Fai Wong, and Wai Lam. 2004. Improving
transliteration with precise alignment of phoneme chunks
and using contextual features. InAsia Information Retrieval
Symposium, pages 106–117.

Sung Young Jung, Sung Lim Hong, and Eunok Paek. 2000. An
English to Korean transliteration model of extended Markov
window. InConference on Computational Linguistics, pages
383–389.

Byung-Ju Kang and Key-Sun Choi. 2000. Automatic translit-
eration and back-transliteration by decision tree learning. In
Conference on Language Resources and Evaluation, pages
1135–1411.

Sarvnaz Karimi, Andrew Turpin, and Falk Scholer. 2006. En-
glish to Persian transliteration. InString Processing and In-
formation Retrieval, pages 255–266.

Alexandre Klementiev and Dan Roth. 2006. Weakly super-
vised named entity transliteration and discovery from mul-
tilingual comparable corpora. InAssociation for Computa-
tional Linguistics, pages 817–824.

Kevin Knight and Jonathan Graehl. 1998. Machine translitera-
tion. Computational Linguistics, 24(4):599–612.

Haizhou Li, Min Zhang, and Jian Su. 2004. A joint source-
channel model for machine transliteration. InAssociation
for Computational Linguistics, pages 159–166.

Franz Josef Och and Hermann Ney. 2003. A systematic com-
parison of various statistical alignment models.Computa-
tional Linguistics, 29(1):19–51.

Jong-Hoon Oh and Key-Sun Choi. 2002. An English-Korean
transliteration model using pronunciation and contextual
rules. InConference on Computational Linguistics.

Paola Virga and Sanjeev Khudanpur. 2003. Transliteration of
proper names in cross-language applications. InACM SIGIR
Conference on Research and Development on Information
Retrieval, pages 365–366.

Dmitry Zelenko and Chinatsu Aone. 2006. Discriminative
methods for transliteration. InProceedings of the 2006 Con-
ference on Empirical Methods in Natural Language Process-
ing., pages 612–617.

655

