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Abstract 

Words of foreign origin are referred to as 
borrowed words or loanwords. A loanword 
is usually imported to Chinese by phonetic 
transliteration if a translation is not easily 
available. Semantic transliteration is seen 
as a good tradition in introducing foreign 
words to Chinese. Not only does it preserve 
how a word sounds in the source language, 
it also carries forward the word’s original 
semantic attributes. This paper attempts to 
automate the semantic transliteration 
process for the first time. We conduct an 
inquiry into the feasibility of semantic 
transliteration and propose a probabilistic 
model for transliterating personal names in 
Latin script into Chinese. The results show 
that semantic transliteration substantially 
and consistently improves accuracy over 
phonetic transliteration in all the 
experiments. 

1 Introduction 

The study of Chinese transliteration dates back to 
the seventh century when Buddhist scriptures were 
translated into Chinese. The earliest bit of Chinese 
translation theory related to transliteration may be 
the principle of “Names should follow their 
bearers, while things should follow Chinese.” In 
other words, names should be transliterated, while 
things should be translated according to their 
meanings. The same theory still holds today.  

Transliteration has been practiced in several 
ways, including phonetic transliteration and 
phonetic-semantic transliteration. By phonetic 

transliteration, we mean rewriting a foreign word 
in native grapheme such that its original 
pronunciation is preserved. For example, London 
becomes 伦敦  /Lun-Dun/1 which does not carry 
any clear connotations. Phonetic transliteration 
represents the common practice in transliteration. 
Phonetic-semantic transliteration, hereafter 
referred to as semantic transliteration for short, is 
an advanced translation technique that is 
considered as a recommended translation practice 
for centuries. It translates a foreign word by 
preserving both its original pronunciation and 
meaning. For example, Xu Guangqi 2  translated 
geo- in geometry into Chinese as 几何  /Ji-He/, 
which carries the pronunciation of geo- and 
expresses the meaning of “a science concerned 
with measuring the earth”.  

Many of the loanwords exist in today’s Chinese 
through semantic transliteration, which has been 
well received (Hu and Xu, 2003; Hu, 2004) by the 
people because of many advantages. Here we just 
name a few. (1) It brings in not only the sound, but 
also the meaning that fills in the semantic blank 
left by phonetic transliteration. This also reminds 
people that it is a loanword and avoids misleading; 
(2) It provides etymological clues that make it easy 
to trace back to the root of the words. For example, 
a transliterated Japanese name will maintain its 
Japanese identity in its Chinese appearance; (3) It 
evokes desirable associations, for example, an 
English girl’s name is transliterated with Chinese 
characters that have clear feminine association, 
thus maintaining the gender identity. 

                                                 
1 Hereafter, Chinese characters are also denoted in Pinyin ro-
manization system, for ease of reference.  
2 Xu Quangqi (1562–1633) translated The Original Manu-
script of Geometry to Chinese jointly with Matteo Ricci. 
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Unfortunately, most of the reported work in the 
area of machine transliteration has not ventured 
into semantic transliteration yet. The Latin-scripted 
personal names are always assumed to 
homogeneously follow the English phonic rules in 
automatic transliteration (Li et al., 2004). 
Therefore, the same transliteration model is 
applied to all the names indiscriminatively. This 
assumption degrades the performance of 
transliteration because each language has its own 
phonic rule and the Chinese characters to be 
adopted depend on the following semantic 
attributes of a foreign name. 
(1) Language of origin: An English word is not 
necessarily of pure English origin. In English news 
reports about Asian happenings, an English 
personal name may have been originated from 
Chinese, Japanese or Korean. The language origin 
affects the phonic rules and the characters to be 
used in transliteration3. For example, a Japanese 
name Matsumoto should be transliterated as 松本 
/Song-Ben/, instead of 马茨莫托 /Ma-Ci-Mo-Tuo/ 
as if it were an English name. 
(2) Gender association: A given name typically 
implies a clear gender association in both the 
source and target languages. For example, the 
Chinese transliterations of Alice and Alexandra 
are 爱丽丝 /Ai-Li-Si/ and 亚历山大 /Ya-Li-Shan-
Da/ respectively, showing clear feminine and 
masculine characteristics. Transliterating Alice as 
埃里斯  /Ai-Li-Si/ is phonetically correct, but 
semantically inadequate due to an improper gender 
association. 
(3) Surname and given name: The Chinese name 
system is the original pattern of names in Eastern 
Asia such as China, Korea and Vietnam, in which 
a limited number of characters 4  are used for 
surnames while those for given names are less 
restrictive. Even for English names, the character 
set for given name transliterations are different 
from that for surnames. 

Here are two examples of semantic 
transliteration for personal names.  George Bush 

                                                 
3 In the literature (Knight  and  Graehl,1998; Qu et al., 2003), 
translating romanized Japanese or Chinese names to Chinese 
characters is also known as back-transliteration. For simplic-
ity, we consider all conversions from Latin-scripted words to 
Chinese as transliteration in this paper. 
4 The 19 most common surnames cover 55.6% percent of the 
Chinese population (Ning and Ning 1995). 

and Yamamoto Akiko are transliterated into 乔治 �

布什 and 山本  亚喜子  that arouse to the 
following associations: 乔治  /Qiao-Zhi/ - male 
given name, English origin; 布 什  /Bu-Shi/ - 
surname, English origin; 山 本  /Shan-Ben/ - 
surname, Japanese origin; 亚喜子 /Ya-Xi-Zi/ - 
female given name, Japanese origin. 

 In Section 2, we summarize the related work. In 
Section 3, we discuss the linguistic feasibility of 
semantic transliteration for personal names. 
Section 4 formulates a probabilistic model for 
semantic transliteration.  Section 5 reports the 
experiments. Finally, we conclude in Section 6. 

2 Related Work 

In general, computational studies of transliteration 
fall into two categories: transliteration modeling 
and extraction of transliteration pairs. In 
transliteration modeling, transliteration rules are 
trained from a large, bilingual transliteration 
lexicon (Lin and Chen, 2002; Oh and Choi, 2005), 
with the objective of translating unknown words 
on the fly in an open, general domain. In the 
extraction of transliterations, data-driven methods 
are adopted to extract actual transliteration pairs 
from a corpus, in an effort to construct a large, up-
to-date transliteration lexicon (Kuo et al., 2006; 
Sproat et al., 2006).  

Phonetic transliteration can be considered as an 
extension to the traditional grapheme-to-phoneme 
(G2P) conversion (Galescu and Allen, 2001), 
which has been a much-researched topic in the 
field of speech processing. If we view the 
grapheme and phoneme as two symbolic 
representations of the same word in two different 
languages, then G2P is a transliteration task by 
itself. Although G2P and phonetic transliteration 
are common in many ways, transliteration has its 
unique challenges, especially as far as E-C 
transliteration is concerned. E-C transliteration is 
the conversion between English graphemes, 
phonetically associated English letters, and 
Chinese graphemes, characters which represent 
ideas or meanings. As a Chinese transliteration can 
arouse to certain connotations, the choice of 
Chinese characters becomes a topic of interest (Xu 
et al., 2006). 

Semantic transliteration can be seen as a subtask 
of statistical machine translation (SMT) with 
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monotonic word ordering. By treating a 
letter/character as a word and a group of 
letters/characters as a phrase or token unit in SMT, 
one can easily apply the traditional SMT models, 
such as the IBM generative model (Brown et al., 
1993) or the phrase-based translation model (Crego 
et al., 2005) to transliteration. In transliteration, we 
face similar issues as in SMT, such as lexical 
mapping and alignment. However, transliteration is 
also different from general SMT in many ways. 
Unlike SMT where we aim at optimizing the 
semantic transfer, semantic transliteration needs to 
maintain the phonetic equivalence as well. 

In computational linguistic literature, much 
effort has been devoted to phonetic transliteration, 
such as English-Arabic, English-Chinese (Li et al., 
2004), English-Japanese (Knight and Graehl, 
1998) and English-Korean. In G2P studies, Font 
Llitjos and Black (2001) showed how knowledge 
of language of origin may improve conversion 
accuracy. Unfortunately semantic transliteration, 
which is considered as a good tradition in 
translation practice (Hu and Xu, 2003; Hu, 2004), 
has not been adequately addressed computationally 
in the literature. Some recent work (Li et al., 2006; 
Xu et al., 2006) has attempted to introduce 
preference into a probabilistic framework for 
selection of Chinese characters in phonetic 
transliteration. However, there is neither analytical 
result nor semantic-motivated transliteration 
solution being reported. 

3 Feasibility of Semantic Transliteration 

A Latin-scripted personal name is written in letters, 
which represent the pronunciations closely, 
whereas each Chinese character represents not only 
the syllables, but also the semantic associations. 
Thus, character rendering is a vital issue in trans-
literation. Good transliteration adequately projects 
semantic association while an inappropriate one 
may lead to undesirable interpretation. 

Is semantic transliteration possible? Let’s first 
conduct an inquiry into the feasibility of semantic 
transliteration on 3 bilingual name corpora, which 
are summarizied in Table 1 and will be used in 
experiments. E-C corpus is an augmented version 
of Xinhua English to Chinese dictionary  for 
English names (Xinhua, 1992). J-C corpus is a 
romanized Japanese to Chinese dictionary for 
Japanese names. The C-C corpus is a Chinese 

Pinyin to character dictionary for Chinese names. 
The entries are classified into surname, male and 
female given name categories. The E-C corpus also 
contains some entries without gender/surname 
labels, referred to as unclassified. 

 

 E-C J-C5 C-C6 
Surname (S) 12,490 36,352 569,403 
Given name (M) 3,201 35,767 345,044 
Given name (F) 4,275 11,817 122,772 
Unclassified 22,562 - - 
All 42,528 83,936 1,972,851 

Table 1: Number of entries in 3 corpora 
 

Phonetic transliteration has not been a problem 
as Chinese has over 400 unique syllables that are 
enough to approximately transcribe all syllables in 
other languages. Different Chinese characters may 
render into the same syllable and form a range of 
homonyms. Among the homonyms, those arousing 
positive meanings can be used for personal names. 
As discussed elsewhere (Sproat et al., 1996), out of 
several thousand common Chinese characters, a 
subset of a few hundred characters tends to be used 
overwhelmingly for transliterating English names 
to Chinese, e.g. only 731 Chinese characters are 
adopted in the E-C corpus. Although the character 
sets are shared across languages and genders, the 
statistics in Table 2 show that each semantic 
attribute is associated with some unique characters. 
In the C-C corpus, out of the total of 4,507 
characters, only 776 of them are for surnames. It is 
interesting to find that female given names are 
represented by a smaller set of characters than that 
for male across 3 corpora.     

 
 E-C J-C C-C All 

S 327 2,129 776 2,612 (19.2%)
M 504 1,399 4,340 4,995 (20.0%)
F 479 1,178 1,318 2,192 (26.3%)

All 731 
(44.2%)

2,533 
(46.2%)

4,507 
(30.0%) 5,779 (53.6%)

Table 2: Chinese character usage in 3 corpora. The 
numbers in brackets indicate the percentage of 
characters that are shared by at least 2 corpora. 

 
Note that the overlap of Chinese characters 

usage across genders is higher than that across 
languages. For instance, there is a 44.2% overlap 

                                                 
5 http://www.cjk.org 
6 http://technology.chtsai.org/namelist 
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across gender for the transcribed English names; 
but only 19.2% overlap across languages for the 
surnames. 

In summary, the semantic attributes of personal 
names are characterized by the choice of characters, 
and therefore their n-gram statistics as well. If the 
attributes are known in advance, then the semantic 
transliteration is absolutely feasible. We may 
obtain the semantic attributes from the context 
through trigger words. For instance, from “Mr 
Tony Blair”, we realize “Tony” is a male given 
name while “Blair” is a surname; from  “Japanese 
Prime Minister Koizumi”, we resolve that 
“Koizumi” is a Japanese surname. In the case 
where contextual trigger words are not available, 
we study detecting the semantic attributes from the 
personal names themselves in the next section. 

4 Formulation of Transliteration Model  

Let S and T denote the name written in the source 
and target writing systems respectively. Within a 
probabilistic framework, a transliteration system 
produces the optimum target name, T*, which 
yields the highest posterior probability given the 
source name, S, i.e. 

)|(maxarg* STPT
T ST∈

=  (1) 

where ST  is the set of all possible transliterations 
for the source name, S. The alignment between S 
and T is assumed implicit in the above formulation.  
In a standard phonetic transliteration system, 

)|( STP , the posterior probability of the hypothe-
sized transliteration, T, given the source name, S, is 
directly modeled without considering any form of 
semantic information. On the other hand, semantic 
transliteration described in this paper incorporates 
language of origin and gender information to cap-
ture the semantic structure. To do so, )|( STP  is 
rewritten as 

( | )P T S  = ∑
∈∈ GL GL

SGLTP
,

)|,,(  (2) 

 = ∑
∈∈ GL GL

SGLPGLSTP
,

)|,(),,|(  (3) 

where ( | , , )P T S L G  is the transliteration probabil-
ity from source S to target T, given the language of 
origin (L) and gender (G) labels. L  and G denote 
the sets of languages and genders respectively. 

)|,( SGLP  is the probability of the language and 
the gender given the source, S. 

Given the alignment between S and T, the 
transliteration probability given L and G may be 
written as  

),,|( GLSTP = 1
1 1

1

( | , )
I

i i
i

i

P t T S−

=
∏  (4)

 ≈ 1 1
1

( | , , )
I

i i i i
i

P t t s s− −
=
∏  (5)

where is  and it are the ith token of S and T respec-
tively and I is the total number of tokens in both S 
and T. k

jS  and k
jT  represent the sequence of tokens 

( )1, , ,j j ks s s+ K  and ( )1, , ,j j kt t t+ K  respectively. Eq. 
(4) is in fact the n-gram likelihood of the token pair 

,i it s〈 〉  sequence and Eq. (5) approximates this 
probability using a bigram language model. This 
model is conceptually similar to the joint source-
channel model (Li et al., 2004) where the target to-
ken it  depends on not only its source token is but 
also the history 1it − and 1is − . Each character in the 
target name forms a token. To obtain the source 
tokens, the source and target names in the training 
data are aligned using the EM algorithm. This 
yields a set of possible source tokens and a map-
ping between the source and target tokens. During 
testing, each source name is first segmented into 
all possible token sequences given the token set. 
These source token sequences are mapped to the 
target sequences to yield an N-best list of translit-
eration candidates. Each candidate is scored using 
an n-gram language model given by Eqs. (4) or (5). 

As in Eq. (3), the transliteration also greatly 
depends on the prior knowledge, )|,( SGLP . 
When no prior knowledge is available, a uniform 
probability distribution is assumed. By expressing 

)|,( SGLP  in the following form, 
)|(),|()|,( SLPSLGPSGLP =  (6) 

prior knowledge about language and gender may 
be incorporated. For example, if the language of S 
is known as sL , we have 

1
( | )

0
s

s

L L
P L S

L L
=⎧

= ⎨ ≠⎩
 (7) 

Similarly, if the gender information for S is known 
as sG , then, 
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1
( | , )

0
s

s

G G
P G L S

G G
=⎧

= ⎨ ≠⎩
 (8) 

Note that personal names have clear semantic 
associations. In the case where the semantic 
attribute information is not available, we propose 
learning semantic information from the names 
themselves. Using Bayes’ theorem, we have 

)(
),(),|()|,(

SP
GLPGLSPSGLP =  (9) 

( | , )P S L G  can be modeled using an n-gram lan-
guage model for the letter sequence of all the 
Latin-scripted names in the training set. The prior 
probability, ),( GLP , is typically uniform. )(SP  
does not depend on L and G, thus can be omitted. 

Incorporating )|,( SGLP into Eq. (3) can be 
viewed as performing a soft decision of the 
language and gender semantic attributes. By 
contrast, hard decision may also be performed 
based on maximum likelihood approach: 

arg max ( | )s
L

L P S L
∈

=
L

 (10) 

arg max ( | , )s
G

G P S L G
∈

=
G

 (11) 

where sL  and sG are the detected language and 
gender of S respectively. Therefore, for hard deci-
sion, )|,( SGLP  is obtained by replacing sL  and 

sG  in Eq. (7) and (8) with sL  and sG respec-
tively. Although hard decision eliminates the need 
to compute the likelihood scores for all possible 
pairs of L and G, the decision errors made in the 
early stage will propagate to the transliteration 
stage. This is potentially bad if a poor detector is 
used (see Table 9 in Section 5.3). 

If we are unable to model the prior knowledge 
of semantic attributes )|,( SGLP , then a more 
general model will be used for ( | , , )P T S L G  by 
dropping the dependency on the information that is 
not available. For example, Eq. (3) is reduced 
to ( | , ) ( | )

L
P T S L P L S

∈∑ L
 if the gender information 

is missing. Note that when both language and 
gender are unknown, the system simplifies to the 
baseline phonetic transliteration system. 

5 Experiments 

This section presents experiments on database of 3 

language origins (Japanese, Chinese and English) 
and gender information (surname7, male and fe-
male). In the experiments of determining the lan-
guage origin, we used the full data set for the 3 lan-
guages as in shown in Table 1. The training and test 
data for semantic transliteration are the subset of 
Table 1 comprising those with surnames, male and 
female given names labels. In this paper, J, C and 
E stand for Japanese, Chinese and English; S, M 
and F represent Surname, Male and Female given 
names, respectively.  

 
# unique entries L Data 

set S M F All 
Train 21.7k 5.6k 1.7k 27.1k J 
Test 2.6k 518 276 2.9k 
Train 283 29.6k 9.2k 31.5k C 
Test 283 2.9k 1.2k 3.1k 
Train 12.5k 2.8k 3.8k 18.5k E 
Test 1.4k 367 429 2.1k 

Table 3: Number of unique entries in training and 
test sets, categorized by semantic attributes 

 
Table 3 summarizes the number of unique8 name 
entries used in training and testing. The test sets 
were randomly chosen such that the amount of test 
data is approximately 10-20% of the whole corpus. 
There were no overlapping entries between the 
training and test data. Note that the Chinese sur-
names are typically single characters in a small set; 
we assume there is no unseen surname in the test 
set. All the Chinese surname entries are used for 
both training and testing. 

5.1 Language of Origin 

For each language of origin, a 4-gram language 
model was trained for the letter sequence of the 
source names, with a 1-letter shift. 

 
Japanese Chinese English All 

96.46 96.44 89.90 94.81 
Table 4: Language detection accuracies (%) using 
a 4-gram language model for the letter sequence of 

the source name in Latin script. 

                                                 
7 In this paper, surnames are treated as a special class of gen-
der. Unlike given names, they do not have any gender associa-
tion. Therefore, they fall into a third category which is neither 
male nor female.  
8 By contrast, Table 1 shows the total number of name exam-
ples available. For each unique entry, there may be multiple 
examples. 
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Table 4 shows the language detection accuracies 

for all the 3 languages using Eq. (10). The overall 
detection accuracy is 94.81%. The corresponding 
Equal Error Rate (EER)9 is 4.52%. The detection 
results may be used directly to infer the semantic 
information for transliteration. Alternatively, the 
language model likelihood scores may be 
incorporated into the Bayesian framework to 
improve the transliteration performance, as 
described in Section 4. 

5.2 Gender Association 

Similarly, gender detection 10  was performed by 
training a 4-gram language model for the letter se-
quence of the source names for each language and 
gender pair.  

 

Language Male Female All 
Japanese 90.54 80.43 87.03 
Chinese 64.34 71.66 66.52 
English 75.20 72.26 73.62 

Table 5: Gender detection accuracies (%) using a 
4-gram language model for the letter sequence of 

the source name in Latin script. 
 

Table 5 summarizes the gender detection accura-
cies using Eq. (11) assuming language of origin is 
known, arg max ( | , )s s

G
G P S L L G

∈
= =

G
. The overall 

detection accuracies are 87.03%, 66.52% and 
73.62% for Japanese, Chinese and English respec-
tively. The corresponding EER are 13.1%, 21.8% 
and 19.3% respectively. Note that gender detection 
is generally harder than language detection. This is 
because the tokens (syllables) are shared very 
much across gender categories, while they are 
quite different from one language to another.  

5.3 Semantic Transliteration 

The performance was measured using the Mean 
Reciprocal Rank (MRR) metric (Kantor and Voor-
hees, 2000), a measure that is commonly used in 
information retrieval, assuming there is precisely 
one correct answer. Each transliteration system 
generated at most 50-best hypotheses for each 

                                                 
9 EER is defined as the error of false acceptance and false re-
jection when they are equal. 
10 In most writing systems, the ordering of surname and 
given name is known. Therefore, gender detection is 
only performed for male and female classes. 

word when computing MRR. The word and char-
acter accuracies of the top best hypotheses are also 
reported.  

We used the phonetic transliteration system as 
the baseline to study the effects of semantic 
transliteration. The phonetic transliteration system 
was trained by pooling all the available training 
data from all the languages and genders to estimate 
a language model for the source-target token pairs. 
Table 6 compares the MRR performance of the 
baseline system using unigram and bigram 
language models for the source-target token pairs. 

 

 J C E All 
Unigram 0.5109 0.4869 0.2598 0.4443 
Bigram 0.5412 0.5261 0.3395 0.4895 

Table 6:  MRR performance of phonetic translit-
eration for 3 corpora using unigram and bigram 

language models. 
 

The MRR performance for Japanese and Chinese 
is in the range of 0.48-0.55. However, due to the 
small amount of training and test data, the MRR 
performance of the English name transliteration is 
slightly poor (approximately 0.26-0.34). In general, 
a bigram language model gave an overall relative 
improvement of 10.2% over a unigram model.  
 

L G Set J C E 
S 0.5366 0.7426 0.4009 
M 0.5992 0.5184 0.2875 
F 0.4750 0.4945 0.1779   

All 0.5412 0.5261 0.3395 
S 0.6500 0.7971 0.7178 
M 0.6733 0.5245 0.4978 
F 0.5956 0.5191 0.4115  

All 0.6491 0.5404 0.6228 
S 0.6822 0.9969 0.7382 
M 0.7267 0.6466 0.4319 
F 0.5856 0.7844 0.4340 

 

 

All 0.6811 0.7075 0.6294 
S 0.6541 0.6733 0.7129 
M 0.6974 0.5362 0.4821 
F 0.5743 0.6574 0.4138 

  

All 0.6477 0.5764 0.6168 
Table 7: The effect of language and gender in-

formation on the overall MRR performance of 
transliteration (L=Language, G=Gender, 
=unknown, =known, =soft decision). 

 

Next, the scenarios with perfect language and/or 
gender information were considered. This com-
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parison is summarized in Table 7. All the MRR re-
sults are based on transliteration systems using bi-
gram language models. The table clearly shows 
that having perfect knowledge, denoted by “ ”, of 
language and gender helps improve the MRR per-
formance; detecting semantic attributes using soft 
decision, denoted by “ ”, has a clear win over the 
baseline, denoted by “ ”, where semantic informa-
tion is not used. The results strongly recommend 
the use of semantic transliteration for personal 
names in practice. 

Next let’s look into the effects of automatic 
language and gender detection on the performance. 

 

 J C E All 
 0.5412 0.5261 0.3395 0.4895 
 0.6292 0.5290 0.5780 0.5734 
 0.6162 0.5301 0.6088 0.5765 
 0.6491 0.5404 0.6228 0.5952 

Table 8: The effect of language detection 
schemes on MRR using bigram language models 

and unknown gender information (hereafter, 
=unknown, =known, =hard decision, =soft 

decision). 
 

Table 8 compares the MRR performance of the 
semantic transliteration systems with different 
prior information, using bigram language models. 
Soft decision refers to the incorporation of the lan-
guage model scores into the transliteration process 
to improve the prior knowledge in Bayesian infer-
ence. Overall, both hard and soft decision methods 
gave similar MRR performance of approximately 
0.5750, which was about 17.5% relatively im-
provement compared to the phonetic transliteration 
system with 0.4895 MRR. The hard decision 
scheme owes its surprisingly good performance to 
the high detection accuracies (see Table 4). 

 

 S M F All 
 0.6825 0.5422 0.5062 0.5952 
 0.7216 0.4674 0.5162 0.5855 
 0.7216 0.5473 0.5878 0.6267 
 0.7216 0.6368 0.6786 0.6812 

Table 9: The effect of gender detection schemes 
on MRR using bigram language  

models with perfect language information. 
 

Similarly, the effect of various gender detection 
methods used to obtain the prior information is 
shown in Table 9. The language information was 
assumed known a-priori. Due to the poorer 
detection accuracy for the Chinese male given 

names (see Table 5), hard decision of gender had 
led to deterioration in MRR performance of the 
male names compared to the case where no prior 
information was assumed. Soft decision of gender 
yielded further gains of 17.1% and 13.9% relative 
improvements for male and female given names 
respectively, over the hard decision method. 

 

Overall Accuracy (%) L G MRR Word Character 
  0.4895 36.87 58.39 

 0.5952 46.92 65.18   0.6812 58.16 70.76 
0.5824 47.09 66.84 

  0.6122 49.38 69.21 
Table 10: Overall transliteration performance 

using bigram language model with various lan-
guage and gender information. 

 

Finally, Table 10 compares the performance of 
various semantic transliteration systems using bi-
gram language models. The baseline phonetic 
transliteration system yielded 36.87% and 58.39% 
accuracies at word and character levels respec-
tively; and 0.4895 MRR. It can be conjectured 
from the results that semantic transliteration is sub-
stantially superior to phonetic transliteration. In 
particular, knowing the language information im-
proved the overall MRR performance to 0.5952; 
and with additional gender information, the best 
performance of 0.6812 was obtained. Furthermore, 
both hard and soft decision of semantic informa-
tion improved the performance, with the latter be-
ing substantially better. Both the word and charac-
ter accuracies improvements were consistent and 
have similar trend to that observed for MRR.  

The performance of the semantic transliteration 
using soft decisions (last row of Table 10) 
achieved 25.1%, 33.9%, 18.5% relative improve-
ment in MRR, word and character accuracies 
respectively over that of the phonetic 
transliteration (first row of Table 10). In addition, 
soft decision also presented 5.1%, 4.9% and 3.5% 
relative improvement over hard decision in MRR, 
word and character accuracies respectively. 

5.4 Discussions 

It was found that the performance of the baseline 
phonetic transliteration may be greatly improved 
by incorporating semantic information such as the 
language of origin and gender. Furthermore, it was 
found that the soft decision of language and gender 
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outperforms the hard decision approach. The soft 
decision method incorporates the semantic scores 

( , | )P L G S with transliteration scores ( | , , )P T S L G , 
involving all possible semantic specific models in 
the decoding process.  

In this paper, there are 9 such models (3 
languages× 3 genders). The hard decision relies on 
Eqs. (10) and (11) to decide language and gender, 
which only involves one semantic specific model 
in the decoding. Neither soft nor hard decision 
requires any prior information about the names. It 
provides substantial performance improvement 
over phonetic transliteration at a reasonable 
computational cost. If the prior semantic 
information is known, e.g. via trigger words, then 
semantic transliteration attains its best performance. 

6 Conclusion 

Transliteration is a difficult, artistic human en-
deavor, as rich as any other creative pursuit. Re-
search on automatic transliteration has reported 
promising results for regular transliteration, where 
transliterations follow certain rules. The generative 
model works well as it is designed to capture regu-
larities in terms of rules or patterns. This paper ex-
tends the research by showing that semantic trans-
literation of personal names is feasible and pro-
vides substantial performance gains over phonetic 
transliteration.  This paper has presented a success-
ful attempt towards semantic transliteration using 
personal name transliteration as a case study. It 
formulates a mathematical framework that incor-
porates explicit semantic information (prior 
knowledge), or implicit one (through soft or hard 
decision) into the transliteration model. Extending 
the framework to machine transliteration of named 
entities in general is a topic for further research. 
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