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Abstract

Statistical machine translation systems are
usually trained on large amounts of bilin-
gual text and monolingual text in the tar-
get language. In this paper we explore the
use of transductive semi-supervised meth-
ods for the effective use of monolingual data
from the source language in order to im-
prove translation quality. We propose sev-
eral algorithms with this aim, and present the
strengths and weaknesses of each one. We
present detailed experimental evaluations on
the French–English EuroParl data set and on
data from the NIST Chinese–English large-
data track. We show a significant improve-
ment in translation quality on both tasks.

1 Introduction

In statistical machine translation (SMT), translation
is modeled as a decision process. The goal is to find
the translationt of source sentences which maxi-
mizes the posterior probability:

arg max
t
p(t | s) = arg max

t
p(s| t) · p(t) (1)

This decomposition of the probability yields two dif-
ferent statistical models which can be trained in-
dependently of each other: the translation model
p(s| t) and the target language modelp(t).

State-of-the-art SMT systems are trained on large
collections of text which consist of bilingual corpora
(to learn the parameters ofp(s| t)), and of monolin-
gual target language corpora (forp(t)). It has been
shown that adding large amounts of target language
text improves translation quality considerably. How-
ever, the availability of monolingual corpora in the
source language does not help improve the system’s

performance. We will show how such corpora can
be used to achieve higher translation quality.

Even if large amounts of bilingual text are given,
the training of the statistical models usually suffers
from sparse data. The number of possible events,
i.e. phrase pairs or pairs of subtrees in the two lan-
guages, is too big to reliably estimate a probabil-
ity distribution over such pairs. Another problem is
that for many language pairs the amount of available
bilingual text is very limited. In this work, we will
address this problem and propose a general frame-
work to solve it. Our hypothesis is that adding infor-
mation from source language text can also provide
improvements. Unlike adding target language text,
this hypothesis is a natural semi-supervised learn-
ing problem. To tackle this problem, we propose
algorithms for transductive semi-supervised learn-
ing. By transductive, we mean that we repeatedly
translate sentences from the development set or test
set and use the generated translations to improve the
performance of the SMT system. Note that the eval-
uation step is still done just once at the end of our
learning process. In this paper, we show that such
an approach can lead to better translations despite
the fact that the development and test data are typi-
cally much smaller in size than typical training data
for SMT systems.

Transductive learning can be seen as a means to
adapt the SMT system to a new type of text. Say a
system trained on newswire is used to translate we-
blog texts. The proposed method adapts the trained
models to the style and domain of the new input.

2 Baseline MT System

The SMT system we applied in our experiments is
PORTAGE. This is a state-of-the-art phrase-based
translation system which has been made available
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to Canadian universities for research and education
purposes. We provide a basic description here; for a
detailed description see (Ueffing et al., 2007).

The models (or features) which are employed by
the decoder are: (a) one or several phrase table(s),
which model the translation directionp(s| t), (b) one
or severaln-gram language model(s) trained with
the SRILM toolkit (Stolcke, 2002); in the experi-
ments reported here, we used 4-gram models on the
NIST data, and a trigram model on EuroParl, (c)
a distortion model which assigns a penalty based
on the number of source words which are skipped
when generating a new target phrase, and (d) a word
penalty. These different models are combined log-
linearly. Their weights are optimized w.r.t. BLEU
score using the algorithm described in (Och, 2003).
This is done on a development corpus which we will
call dev1 in this paper. The search algorithm imple-
mented in the decoder is a dynamic-programming
beam-search algorithm.

After the main decoding step, rescoring with ad-
ditional models is performed. The system generates
a 5,000-best list of alternative translations for each
source sentence. These lists are rescored with the
following models: (a) the different models used in
the decoder which are described above, (b) two dif-
ferent features based on IBM Model 1 (Brown et al.,
1993), (c) posterior probabilities for words, phrases,
n-grams, and sentence length (Zens and Ney, 2006;
Ueffing and Ney, 2007), all calculated over theN -
best list and using the sentence probabilities which
the baseline system assigns to the translation hy-
potheses. The weights of these additional models
and of the decoder models are again optimized to
maximize BLEU score. This is performed on a sec-
ond development corpus, dev2.

3 The Framework

3.1 The Algorithm

Our transductive learning algorithm, Algorithm 1,
is inspired by the Yarowsky algorithm (Yarowsky,
1995; Abney, 2004). The algorithm works as fol-
lows: First, the translation model is estimated based
on the sentence pairs in the bilingual training dataL.
Then, a set of source language sentences,U , is trans-
lated based on the current model. A subset of good
translations and their sources,Ti, is selected in each

iteration and added to the training data. These se-
lected sentence pairs are replaced in each iteration,
and only the original bilingual training data,L, is
kept fixed throughout the algorithm. The process
of generating sentence pairs, selecting a subset of
good sentence pairs, and updating the model is con-
tinued until a stopping condition is met. Note that
we run this algorithm in a transductive setting which
means that the set of sentencesU is drawn either
from a development set or the test set that will be
used eventually to evaluate the SMT system or from
additional data which is relevant to the development
or test set. In Algorithm 1, changing the definition
of Estimate, ScoreandSelectwill give us the dif-
ferent semi-supervised learning algorithms we will
discuss in this paper.

Given the probability modelp(t | s), consider the
distribution over all possible valid translationst for
a particular input sentences. We can initialize
this probability distribution to the uniform distribu-
tion for each sentences in the unlabeled dataU .
Thus, this distribution over translations of sentences
from U will have the maximum entropy. Under
certain precise conditions, as described in (Abney,
2004), we can analyze Algorithm 1 as minimizing
the entropy of the distribution over translations ofU .
However, this is true only when the functionsEsti-
mate, ScoreandSelecthave very prescribed defini-
tions. In this paper, rather than analyze the conver-
gence of Algorithm 1 we run it for a fixed number
of iterations and instead focus on finding useful def-
initions for Estimate, ScoreandSelectthat can be
experimentally shown to improve MT performance.

3.2 The Estimate Function

We consider the following different definitions for
Estimate in Algorithm 1:
Full Re-training (of all translation models): If
Estimate(L, T ) estimates the model parameters
based onL ∪ T , then we have a semi-supervised al-
gorithm that re-trains a model on the original train-
ing dataL plus the sentences decoded in the last it-
eration. The size ofL can be controlled byfiltering
the training data (see Section 3.5).
Additional Phrase Table: If, on the other hand, a
new phrase translation table is learned onT only
and then added as a new component in the log-linear
model, we have an alternative to the full re-training
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Algorithm 1 Transductive learning algorithm for statistical machine translation

1: Input: training setL of parallel sentence pairs. // Bilingual training data.
2: Input: unlabeled setU of source text. // Monolingual source language data.
3: Input: number of iterationsR, and size of n-best listN .
4: T−1 := {}. // Additional bilingual training data.
5: i := 0. // Iteration counter.
6: repeat
7: Training step: π(i) := Estimate(L, Ti−1).
8: Xi := {}. // The set of generated translations for this iteration.
9: for sentences∈ U do

10: Labeling step: Decodesusingπ(i) to obtainN best sentence pairs with their scores
11: Xi := Xi ∪ {(tn, s, π(i)(tn | s))Nn=1}
12: end for
13: Scoring step: Si := Score(Xi) // Assign a score to sentence pairs(t, s) fromX.
14: Selection step: Ti := Select(Xi, Si) // Choose a subset ofgoodsentence pairs(t, s) fromX.
15: i := i+ 1.
16: until i > R

of the model on labeled and unlabeled data which
can be very expensive ifL is very large (as on the
Chinese–English data set). This additional phrase
table is small and specific to the development or
test set it is trained on. It overlaps with the origi-
nal phrase tables, but also contains many new phrase
pairs (Ueffing, 2006).
Mixture Model: Another alternative forEstimate
is to create a mixture model of the phrase table prob-
abilities with new phrase table probabilities

p(s| t) = λ · Lp(s| t) + (1− λ) · Tp(s| t) (2)

whereLp andTp are phrase table probabilities esti-
mated onL andT , respectively. In cases where new
phrase pairs are learned fromT , they get added into
the merged phrase table.

3.3 The Scoring Function

In Algorithm 1, theScorefunction assigns a score to
each translation hypothesist. We used the following
scoring functions in our experiments:
Length-normalized Score: Each translated sen-
tence pair(t, s) is scored according to the model
probabilityp(t | s) normalized by the length|t| of the
target sentence:

Score(t, s) = p(t | s) 1
|t| (3)

Confidence Estimation:The confidence estimation
which we implemented follows the approaches sug-
gested in (Blatz et al., 2003; Ueffing and Ney, 2007):

The confidence score of a target sentencet is cal-
culated as a log-linear combination of phrase pos-
terior probabilities, Levenshtein-based word poste-
rior probabilities, and a target language model score.
The weights of the different scores are optimized
w.r.t. classification error rate (CER).

The phrase posterior probabilities are determined
by summing the sentence probabilities of all trans-
lation hypotheses in theN -best list which contain
this phrase pair. The segmentation of the sentence
into phrases is provided by the decoder. This sum
is then normalized by the total probability mass of
theN -best list. To obtain a score for the whole tar-
get sentence, the posterior probabilities of all target
phrases are multiplied. The word posterior proba-
bilities are calculated on basis of the Levenshtein
alignment between the hypothesis under consider-
ation and all other translations contained in theN -
best list. For details, see (Ueffing and Ney, 2007).
Again, the single values are multiplied to obtain a
score for the whole sentence. For NIST, the lan-
guage model score is determined using a 5-gram
model trained on the English Gigaword corpus, and
on French–English, we use the trigram model which
was provided for the NAACL 2006 shared task.

3.4 The Selection Function

TheSelectfunction in Algorithm 1 is used to create
the additional training dataTi which will be used in
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the next iterationi + 1 by Estimate to augment the
original bilingual training data. We use the follow-
ing selection functions:
Importance Sampling: For each sentences in the
set of unlabeled sentencesU , the Labeling step in
Algorithm 1 generates anN -best list of translations,
and the subsequent Scoring step assigns a score for
each translationt in this list. The set of generated
translations for all sentences inU is the event space
and the scores are used to put a probability distri-
bution over this space, simply by renormalizing the
scores described in Section 3.3. We use importance
sampling to selectK translations from this distri-
bution. Sampling is done with replacement which
means that the same translation may be chosen sev-
eral times. TheseK sampled translations and their
associated source sentences make up the additional
training dataTi.
Selection using a Threshold: This method com-
pares the score of each single-best translation to a
threshold. The translation is considered reliable and
added to the setTi if its score exceeds the thresh-
old. Else it is discarded and not used in the addi-
tional training data. The threshold is optimized on
the development beforehand. Since the scores of the
translations change in each iteration, the size ofTi
also changes.
Keep All: This method does not perform any fil-
tering at all. It is simply assumed that all transla-
tions in the setXi are reliable, and none of them are
discarded. Thus, in each iteration, the result of the
selection step will beTi = Xi. This method was
implemented mainly for comparison with other se-
lection methods.

3.5 Filtering the Training Data

In general, having more training data improves the
quality of the trained models. However, when it
comes to the translation of a particular test set, the
question is whetherall of the available training data
are relevant to the translation task or not. Moreover,
working with large amounts of training data requires
more computational power. So if we can identify a
subset of training data which are relevant to the cur-
rent task and use only this to re-train the models, we
can reduce computational complexity significantly.

We propose toFilter the training data, either
bilingual or monolingual text, to identify the parts

corpus use sentences
EuroParl phrase table+LM 688K
train100k phrase table 100K
train150k phrase table 150K
dev06 dev1 2,000
test06 test 3,064

Table 1: French–English corpora

corpus use sentences
non-UN phrase table+LM 3.2M
UN phrase table+LM 5.0M
English Gigaword LM 11.7M
multi-p3 dev1 935
multi-p4 dev2 919
eval-04 test 1,788
eval-06 test 3,940

Table 2: NIST Chinese–English corpora

which are relevant w.r.t. the test set. This filtering
is based onn-gram coverage. For a source sentence
s in the training data, itsn-gram coverage over the
sentences in the test set is computed. The average
over severaln-gram lengths is used as a measure
of relevance of this training sentence w.r.t. the test
corpus. Based on this, we select the topK source
sentences or sentence pairs.

4 Experimental Results

4.1 Setting

We ran experiments on two different corpora: one
is the French–English translation task from the Eu-
roParl corpus, and the other one is Chinese–English
translation as performed in the NIST MT evaluation
(www.nist.gov/speech/tests/mt).

For the French–English translation task, we used
the EuroParl corpus as distributed for the shared task
in the NAACL 2006 workshop on statistical ma-
chine translation. The corpus statistics are shown
in Table 1. Furthermore we filtered the EuroParl
corpus, as explained in Section 3.5, to create two
smaller bilingual corpora (train100k and train150k
in Table 1). The development set is used to optimize
the model weights in the decoder, and the evaluation
is done on the test set provided for the NAACL 2006
shared task.

For the Chinese–English translation task, we used
the corpora distributed for the large-data track in the
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setting EuroParl NIST
full re-training w/ filtering ∗ ∗∗
full re-training ∗∗ †
mixture model ∗ †
new phrase table ff:

keep all ∗∗ ∗
imp. sampling norm. ∗∗ ∗

conf. ∗∗ ∗
threshold norm. ∗∗ ∗

conf. ∗∗ ∗
Table 3: Feasibility of settings for Algorithm 1

2006 NIST evaluation (see Table 2). We used the
LDC segmenter for Chinese. The multiple transla-
tion corpora multi-p3 and multi-p4 were used as de-
velopment corpora. Evaluation was performed on
the 2004 and 2006 test sets. Note that the train-
ing data consists mainly of written text, whereas the
test sets comprise three and four different genres:
editorials, newswire and political speeches in the
2004 test set, and broadcast conversations, broad-
cast news, newsgroups and newswire in the 2006
test set. Most of these domains have characteristics
which are different from those of the training data,
e.g., broadcast conversations have characteristics of
spontaneous speech, and the newsgroup data is com-
paratively unstructured.

Given the particular data sets described above, Ta-
ble 3 shows the various options for theEstimate,
ScoreandSelectfunctions (see Section 3). The ta-
ble provides a quick guide to the experiments we
present in this paper vs. those we did not attempt due
to computational infeasibility. We ran experiments
corresponding to all entries marked with∗ (see Sec-
tion 4.2). For those marked∗∗ the experiments pro-
duced only minimal improvement over the baseline
and so we do not discuss them in this paper. The en-
tries marked as† were not attempted because they
are not feasible (e.g. full re-training on the NIST
data). However, these were run on the smaller Eu-
roParl corpus.

Evaluation Metrics

We evaluated the generated translations using
three different evaluation metrics: BLEU score (Pa-
pineni et al., 2002), mWER (multi-reference word
error rate), and mPER (multi-reference position-

independent word error rate) (Nießen et al., 2000).
Note that BLEU score measures quality, whereas
mWER and mPER measure translation errors. We
will present 95%-confidence intervals for the base-
line system which are calculated using bootstrap re-
sampling. The metrics are calculated w.r.t. one and
four English references: the EuroParl data comes
with one reference, the NIST 2004 evaluation set
and the NIST section of the 2006 evaluation set
are provided with four references each, whereas the
GALE section of the 2006 evaluation set comes
with one reference only. This results in much lower
BLEU scores and higher error rates for the transla-
tions of the GALE set (see Section 4.2). Note that
these values do not indicate lower translation qual-
ity, but are simply a result of using only one refer-
ence.

4.2 Results

EuroParl

We ran our initial experiments on EuroParl to ex-
plore the behavior of the transductive learning algo-
rithm. In all experiments reported in this subsec-
tion, the test set was used as unlabeled data. The
selection and scoring was carried out using impor-
tance sampling with normalized scores. In one set
of experiments, we used the 100K and 150K train-
ing sentences filtered according ton-gram coverage
over the test set. We fully re-trained the phrase ta-
bles on these data and 8,000 test sentence pairs sam-
pled from 20-best lists in each iteration. The results
on the test set can be seen in Figure 1. The BLEU
score increases, although with slight variation, over
the iterations. In total, it increases from 24.1 to 24.4
for the 100K filtered corpus, and from 24.5 to 24.8
for 150K, respectively. Moreover, we see that the
BLEU score of the system using 100K training sen-
tence pairs and transductive learning is the same as
that of the one trained on 150K sentence pairs. So
the information extracted from untranslated test sen-
tences is equivalent to having an additional 50K sen-
tence pairs.

In a second set of experiments, we used the whole
EuroParl corpus and the sampled sentences for fully
re-training the phrase tables in each iteration. We
ran the algorithm for three iterations and the BLEU
score increased from 25.3 to 25.6. Even though this
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Figure 1: Translation quality for importance sampling with full re-training on train100k (left) and train150k
(right). EuroParl French–English task.

is a small increase, it shows that the unlabeled data
contains some information which can be explored in
transductive learning.

In a third experiment, we applied the mixture
model idea as explained in Section 3.2. The initially
learned phrase table was merged with the learned
phrase table in each iteration with a weight ofλ =
0.1. This value forλ was found based on cross val-
idation on a development set. We ran the algorithm
for 20 iterations and BLEU score increased from
25.3 to 25.7. Since this is very similar to the re-
sult obtained with the previous method, but with an
additional parameterλ to optimize, we did not use
mixture models on NIST.

Note that the single improvements achieved here
are slightly below the 95%-significance level. How-
ever, we observe them consistently in all settings.

NIST

Table 4 presents translation results on NIST with
different versions of the scoring and selection meth-
ods introduced in Section 3. In these experiments,
the unlabeled dataU for Algorithm 1 is the develop-
ment or test corpus. For this corpusU , 5,000-best
lists were generated using the baseline SMT system.
Since re-training the full phrase tables is not feasi-
ble here, a (small) additional phrase table, specific to
U , was trained and plugged into the SMT system as
an additional model. The decoder weights thus had
to be optimized again to determine the appropriate
weight for this new phrase table. This was done on

the dev1 corpus, using the phrase table specific to
dev1. Every time a new corpus is to be translated,
an adapted phrase table is created using transductive
learning and used with the weight which has been
learned on dev1. In the first experiment presented
in Table 4, all of the generated 1-best translations
were kept and used for training the adapted phrase
tables. This method yields slightly higher transla-
tion quality than the baseline system. The second
approach we studied is the use of importance sam-
pling (IS) over 20-best lists, based either on length-
normalized sentence scores (norm.) or confidence
scores (conf.). As the results in Table 4 show, both
variants outperform the first method, with a consis-
tent improvement over the baseline across all test
corpora and evaluation metrics. The third method
uses a threshold-based selection method. Combined
with confidence estimation as scoring method, this
yields the best results. All improvements over the
baseline are significant at the 95%-level.

Table 5 shows the translation quality achieved on
the NIST test sets when additional source language
data from the Chinese Gigaword corpus compris-
ing newswire text is used for transductive learning.
These Chinese sentences were sorted according to
their n-gram overlap (see Section 3.5) with the de-
velopment corpus, and the top 5,000 Chinese sen-
tences were used. The selection and scoring in Al-
gorithm 1 were performed using confidence estima-
tion with a threshold. Again, a new phrase table was
trained on these data. As can be seen in Table 5, this
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select score BLEU[%] mWER[%] mPER[%]
eval-04(4 refs.)
baseline 31.8±0.7 66.8±0.7 41.5±0.5
keep all 33.1 66.0 41.3
IS norm. 33.5 65.8 40.9

conf. 33.2 65.6 40.4
thr norm. 33.5 65.9 40.8

conf. 33.5 65.3 40.8
eval-06 GALE (1 ref.)
baseline 12.7±0.5 75.8±0.6 54.6±0.6
keep all 12.9 75.7 55.0
IS norm. 13.2 74.7 54.1

conf. 12.9 74.4 53.5
thr norm. 12.7 75.2 54.2

conf. 13.6 73.4 53.2
eval-06 NIST(4 refs.)
baseline 27.9±0.7 67.2±0.6 44.0±0.5
keep all 28.1 66.5 44.2
IS norm. 28.7 66.1 43.6

conf. 28.4 65.8 43.2
thr norm. 28.3 66.1 43.5

conf. 29.3 65.6 43.2

Table 4: Translation quality using an additional
adapted phrase table trained on the dev/test sets.
Different selection and scoring methods. NIST
Chinese–English, best results printed in boldface.

system outperforms the baseline system on all test
corpora. The error rates are significantly reduced in
all three settings, and BLEU score increases in all
cases. A comparison with Table 4 shows that trans-
ductive learning on the development set and test cor-
pora, adapting the system to their domain and style,
is more effective in improving the SMT system than
the use of additional source language data.

In all experiments on NIST, Algorithm 1 was run
for one iteration. We also investigated the use of an
iterative procedure here, but this did not yield any
improvement in translation quality.

5 Previous Work

Semi-supervised learning has been previously ap-
plied to improve word alignments. In (Callison-
Burch et al., 2004), a generative model for word
alignment is trained using unsupervised learning on
parallel text. In addition, another model is trained on
a small amount of hand-annotated word alignment
data. A mixture model provides a probability for

system BLEU[%] mWER[%] mPER[%]
eval-04(4 refs.)
baseline 31.8±0.7 66.8±0.7 41.5±0.5
add Chin. data 32.8 65.7 40.9
eval-06 GALE (1 ref.)
baseline 12.7±0.5 75.8±0.6 54.6±0.6
add Chin. data 13.1 73.9 53.5
eval-06 NIST(4 refs.)
baseline 27.9±0.7 67.2±0.6 44.0±0.5
add Chin. data 28.1 65.8 43.2

Table 5: Translation quality using an additional
phrase table trained on monolingual Chinese news
data. Selection step using threshold on confidence
scores. NIST Chinese–English.

word alignment. Experiments showed that putting a
large weight on the model trained on labeled data
performs best. Along similar lines, (Fraser and
Marcu, 2006) combine a generative model of word
alignment with a log-linear discriminative model
trained on a small set of hand aligned sentences. The
word alignments are used to train a standard phrase-
based SMT system, resulting in increased translation
quality .

In (Callison-Burch, 2002) co-training is applied
to MT. This approach requires several source lan-
guages which are sentence-aligned with each other
and all translate into the same target language. One
language pair creates data for another language pair
and can be naturally used in a (Blum and Mitchell,
1998)-style co-training algorithm. Experiments on
the EuroParl corpus show a decrease in WER. How-
ever, the selection algorithm applied there is actually
supervised because it takes the reference translation
into account. Moreover, when the algorithm is run
long enough, large amounts of co-trained data in-
jected too much noise and performance degraded.

Self-training for SMT was proposed in (Ueffing,
2006). An existing SMT system is used to translate
the development or test corpus. Among the gener-
ated machine translations, the reliable ones are au-
tomatically identified using thresholding on confi-
dence scores. The work which we presented here
differs from (Ueffing, 2006) as follows:

• We investigated different ways of scoring and
selecting the reliable translations and compared
our method to this work. In addition to the con-
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fidence estimation used there, we applied im-
portance sampling and combined it with confi-
dence estimation for transductive learning.

• We studied additional ways of exploring the
newly created bilingual data, namely re-
training the full phrase translation model or cre-
ating a mixture model.

• We proposed an iterative procedure which
translates the monolingual source language
data anew in each iteration and then re-trains
the phrase translation model.

• We showed how additional monolingual
source-language data can be used in transduc-
tive learning to improve the SMT system.

6 Discussion

It is not intuitively clear why the SMT system can
learn something from its own output and is improved
through semi-supervised learning. There are two
main reasons for this improvement: Firstly, the se-
lection step provides important feedback for the sys-
tem. The confidence estimation, for example, dis-
cards translations with low language model scores or
posterior probabilities. The selection step discards
bad machine translations and reinforces phrases of
high quality. As a result, the probabilities of low-
quality phrase pairs, such as noise in the table or
overly confident singletons, degrade. Our experi-
ments comparing the various settings for transduc-
tive learning shows that selection clearly outper-
forms the method which keeps all generated transla-
tions as additional training data. The selection meth-
ods investigated here have been shown to be well-
suited to boost the performance of semi-supervised
learning for SMT.

Secondly, our algorithm constitutes a way of
adapting the SMT system to a new domain or style
without requiring bilingual training or development
data. Those phrases in the existing phrase tables
which are relevant for translating the new data are
reinforced. The probability distribution over the
phrase pairs thus gets more focused on the (reliable)
parts which are relevant for the test data. For an anal-
ysis of the self-trained phrase tables, examples of
translated sentences, and the phrases used in trans-
lation, see (Ueffing, 2006).
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