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Abstract

Automatic word alignment is a key step in
training statistical machine translation sys-
tems. Despite much recent work on word
alignment methods, alignment accuracy in-
creases often produce little or no improve-
ments in machine translation quality. In
this work we analyze a recently proposed
agreement-constrained EM algorithm for un-
supervised alignment models. We attempt to
tease apart the effects that this simple but ef-
fective modification has on alignment preci-
sion and recall trade-offs, and how rare and
common words are affected across several lan-
guage pairs. We propose and extensively eval-
uate a simple method for using alignment
models to produce alignments better-suited
for phrase-based MT systems, and show sig-
nificant gains (as measured by BLEU score)
in end-to-end translation systems for six lan-
guages pairs used in recent MT competitions.

1 Introduction

The typical pipeline for a machine translation (MT)
system starts with a parallel sentence-aligned cor-
pus and proceeds to align the words in every sen-
tence pair. The word alignment problem has re-
ceived much recent attention, but improvements in
standard measures of word alignment performance
often do not result in better translations. Fraser and
Marcu (2007) note that none of the tens of papers
published over the last five years has shown that
significant decreases in alignment error rate (AER)
result in significant increases in translation perfor-
mance. In this work, we show that by changing
the way the word alignment models are trained and

used, we can get not only improvements in align-
ment performance, but also in the performance of
the MT system that uses those alignments.

We present extensive experimental results evalu-
ating a new training scheme for unsupervised word
alignment models: an extension of the Expecta-
tion Maximization algorithm that allows effective
injection of additional information about the desired
alignments into the unsupervised training process.
Examples of such information include “one word
should not translate to many words” or that direc-
tional translation models should agree. The gen-
eral framework for the extended EM algorithm with
posterior constraints of this type was proposed by
(Graça et al., 2008). Our contribution is a large scale
evaluation of this methodology for word alignments,
an investigation of how the produced alignments dif-
fer and how they can be used to consistently improve
machine translation performance (as measured by
BLEU score) across many languages on training cor-
pora with up to hundred thousand sentences. In 10
out of 12 cases we improve BLEU score by at least 1

4
point and by more than 1 point in 4 out of 12 cases.

After presenting the models and the algorithm in
Sections 2 and 3, in Section 4 we examine how
the new alignments differ from standard models, and
find that the new method consistently improves word
alignment performance, measured either as align-
ment error rate or weighted F-score. Section 5 ex-
plores how the new alignments lead to consistent
and significant improvement in a state of the art
phrase base machine translation by using posterior
decoding rather than Viterbi decoding. We propose
a heuristic for tuning posterior decoding in the ab-
sence of annotated alignment data and show im-
provements over baseline systems for six different
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language pairs used in recent MT competitions.

2 Statistical word alignment

Statistical word alignment (Brown et al., 1994) is
the task identifying which words are translations of
each other in a bilingual sentence corpus. Figure
2 shows two examples of word alignment of a sen-
tence pair. Due to the ambiguity of the word align-
ment task, it is common to distinguish two kinds of
alignments (Och and Ney, 2003). Sure alignments
(S), represented in the figure as squares with bor-
ders, for single-word translations and possible align-
ments (P), represented in the figure as alignments
without boxes, for translations that are either not ex-
act or where several words in one language are trans-
lated to several words in the other language. Possi-
ble alignments can can be used either to indicated
optional alignments, such as the translation of an
idiom, or disagreement between annotators. In the
figure red/black dots indicates correct/incorrect pre-
dicted alignment points.

2.1 Baseline word alignment models
We focus on the hidden Markov model (HMM) for
alignment proposed by (Vogel et al., 1996). This is
a generalization of IBM models 1 and 2 (Brown et
al., 1994), where the transition probabilities have a
first-order Markov dependence rather than a zeroth-
order dependence. The model is an HMM, where the
hidden states take values from the source language
words and generate target language words according
to a translation table. The state transitions depend on
the distance between the source language words. For
source sentence s the probability of an alignment a
and target sentence t can be expressed as:

p(t,a | s) =
∏
j

pd(aj |aj − aj−1)pt(tj |saj ), (1)

where aj is the index of the hidden state (source lan-
guage index) generating the target language word at
index j. As usual, a “null” word is added to the
source sentence. Figure 1 illustrates the mapping be-
tween the usual HMM notation and the HMM align-
ment model.

2.2 Baseline training
All word alignment models we consider are nor-
mally trained using the Expectation Maximization

s1 s1 s2 s3

we know the way

sabemos       el       camino      null

usual HMM word alignment meaning
Si (hidden) source language word i

Oj (observed) target language word j

aij (transition) distortion model
bij (emission) translation model

Figure 1: Illustration of an HMM for word alignment.

(EM) algorithm (Dempster et al., 1977). The EM
algorithm attempts to maximize the marginal likeli-
hood of the observed data (s, t pairs) by repeatedly
finding a maximal lower bound on the likelihood and
finding the maximal point of the lower bound. The
lower bound is constructed by using posterior proba-
bilities of the hidden alignments (a) and can be opti-
mized in closed form from expected sufficient statis-
tics computed from the posteriors. For the HMM
alignment model, these posteriors can be efficiently
calculated by the Forward-Backward algorithm.

3 Adding agreement constraints

Graça et al. (2008) introduce an augmentation of the
EM algorithm that uses constraints on posteriors to
guide learning. Such constraints are useful for sev-
eral reasons. As with any unsupervised induction
method, there is no guarantee that the maximum
likelihood parameters correspond to the intended
meaning for the hidden variables, that is, more accu-
rate alignments using the resulting model. Introduc-
ing additional constraints into the model often re-
sults in intractable decoding and search errors (e.g.,
IBM models 4+). The advantage of only constrain-
ing the posteriors during training is that the model
remains simple while respecting more complex re-
quirements. For example, constraints might include
“one word should not translate to many words” or
that translation is approximately symmetric.

The modification is to add a KL-projection step
after the E-step of the EM algorithm. For each sen-
tence pair instance x = (s, t), we find the posterior
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distribution pθ(z|x) (where z are the alignments). In
regular EM, pθ(z|x) is used to complete the data and
compute expected counts. Instead, we find the distri-
bution q that is as close as possible to pθ(z|x) in KL
subject to constraints specified in terms of expected
values of features f(x, z)

arg min
q

KL(q(z) || pθ(z|x)) s.t. Eq[f(x, z)] ≤ b.

(2)
The resulting distribution q is then used in place
of pθ(z|x) to compute sufficient statistics for the
M-step. The algorithm converges to a local maxi-
mum of the log of the marginal likelihood, pθ(x) =∑

z pθ(z,x), penalized by the KL distance of the
posteriors pθ(z|x) from the feasible set defined by
the constraints (Graça et al., 2008):

Ex[log pθ(x)− min
q:Eq [f(x,z)]≤b

KL(q(z) || pθ(z|x))],

where Ex is expectation over the training data. They
suggest how this framework can be used to encour-
age two word alignment models to agree during
training. We elaborate on their description and pro-
vide details of implementation of the projection in
Equation 2.

3.1 Agreement
Most MT systems train an alignment model in each
direction and then heuristically combine their pre-
dictions. In contrast, Graça et al. encourage the
models to agree by training them concurrently. The
intuition is that the errors that the two models make
are different and forcing them to agree rules out
errors only made by one model. This is best ex-
hibited in the rare word alignments, where one-
sided “garbage-collection” phenomenon often oc-
curs (Moore, 2004). This idea was previously pro-
posed by (Matusov et al., 2004; Liang et al., 2006)
although the the objectives differ.

In particular, consider a feature that takes on value
1 whenever source word i aligns to target word j in
the forward model and -1 in the backward model. If
this feature has expected value 0 under the mixture
of the two models, then the forward model and back-
ward model agree on how likely source word i is to
align to target word j. More formally denote the for-
ward model−→p (z) and backward model←−p (z) where
−→p (z) = 0 for z /∈

−→
Z and ←−p (z) = 0 for z /∈

←−
Z

(
−→
Z and

←−
Z are possible forward and backward align-

ments). Define a mixture p(z) = 1
2
−→p (z) + 1

2
←−p (z)

for z ∈
←−
Z ∪

−→
Z . Restating the constraints that en-

force agreement in this setup: Eq[f(x, z)] = 0 with

fij(x, z) =

8><>:
1 z ∈

−→
Z and zij = 1

−1 z ∈
←−
Z and zij = 1

0 otherwise

.

3.2 Implementation
EM training of hidden Markov models for word

alignment is described elsewhere (Vogel et al.,
1996), so we focus on the projection step:

arg min
q

KL(q(z) || pθ(z|x)) s.t. Eq[f(x, z)] = 0.

(3)
The optimization problem in Equation 3 can be effi-
ciently solved in its dual formulation:

arg min
λ

log
∑
z

pθ(z | x) exp {λ>f(x, z)} (4)

where we have solved for the primal variables q as:

qλ(z) = pθ(z | x) exp{λ>f(x, z)}/Z, (5)

with Z a normalization constant that ensures q sums
to one. We have only one dual variable per con-
straint, and we optimize them by taking a few gra-
dient steps. The partial derivative of the objective
in Equation 4 with respect to feature i is simply
Eqλ

[fi(x, z)]. So we have reduced the problem to
computing expectations of our features under the
model q. It turns out that for the agreement fea-
tures, this reduces to computing expectations under
the normal HMM model. To see this, we have by the
definition of qλ and pθ,

qλ(z) =
−→p (z | x) +←−p (z | x)

2
exp{λ>f(x, z)}/Z

=
−→q (z) +←−q (z)

2
.

(To make the algorithm simpler, we have assumed
that the expectation of the feature f0(x, z) =
{1 if z ∈

−→
Z ; −1 if z ∈

←−
Z} is set to zero to

ensure that the two models −→q ,←−q are each properly
normalized.) For −→q , we have: (←−q is analogous)

−→p (z | x)eλ>f(x,z)

=
∏
j

−→p d(aj |aj − aj−1)−→p t(tj |saj )
∏
ij

eλijfij(x,zij)

=
∏

j,i=aj

−→p d(i|i− aj−1)−→p t(tj |si)eλijfij(x,zij)

=
∏

j,i=aj

−→p d(i|i− aj−1)−→p ′
t(tj |si).
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Where we have let −→p ′t(tj |si) = −→p t(tj |si)eλij , and
retained the same form for the model. The final pro-
jection step is detailed in Algorithm1.

Algorithm 1 AgreementProjection(−→p ,←−p )
1: λij ← 0 ∀i, j
2: for T iterations do
3: −→p ′t(j|i)← −→p t(tj |si)eλij ∀i, j
4: ←−p ′t(i|j)←←−p t(si|tj)e−λij ∀i, j
5: −→q ← forwardBackward(−→p ′t,−→p d)
6: ←−q ← forwardBackward(←−p ′t,←−p d)
7: λij ← λij −E−→q [ai = j] + E←−q [aj = i] ∀i, j
8: end for
9: return (−→q ,←−q )

3.3 Decoding
After training, we want to extract a single alignment
from the distribution over alignments allowable for
the model. The standard way to do this is to find
the most probable alignment, using the Viterbi al-
gorithm. Another alternative is to use posterior de-
coding. In posterior decoding, we compute for each
source word i and target word j the posterior prob-
ability under our model that i aligns to j. If that
probability is greater than some threshold, then we
include the point i− j in our final alignment. There
are two main differences between posterior decod-
ing and Viterbi decoding. First, posterior decod-
ing can take better advantage of model uncertainty:
when several likely alignment have high probabil-
ity, posteriors accumulate confidence for the edges
common to many good alignments. Viterbi, by con-
trast, must commit to one high-scoring alignment.
Second, in posterior decoding, the probability that a

0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8
0 · · · · · · · · · 0 · · · · · · · · · it
1 · · · · · · · · · 1 · · · · · · · · · was
2 · · • · · · · · · 2 · · • · · · · · · an
3 · · · · • · · · · 3 • · · · • · · · · animated
4 · · · · · • · · · 4 · · · · · • · · · ,
5 · · • · · · • · · 5 · · · · · · • · · very
6 • · · • • • · • · 6 · · · · · · · • · convivial
7 • · · · · · · · · 7 • · · · · · · · · game
8 · · · · · · · · • 8 · · · · · · · · • .

jugaban

de una
manera

animada

y muy
cordial

. jugaban

de una
manera

animada

y muy
cordial

.

Figure 2: An example of the output of HMM trained on
100k the EPPS data. Left: Baseline training. Right: Us-
ing agreement constraints.

target word aligns to none or more than one word is
much more flexible: it depends on the tuned thresh-
old.

4 Word alignment results

We evaluated the agreement HMM model on two
corpora for which hand-aligned data are widely
available: the Hansards corpus (Och and Ney, 2000)
of English/French parliamentary proceedings and
the Europarl corpus (Koehn, 2002) with EPPS an-
notation (Lambert et al., 2005) of English/Spanish.
Figure 2 shows two machine-generated alignments
of a sentence pair. The black dots represent the ma-
chine alignments and the shading represents the hu-
man annotation (as described in the previous sec-
tion), on the left using the regular HMM model and
on the right using our agreement constraints. The
figure illustrates a problem known as garbage collec-
tion (Brown et al., 1993), where rare source words
tend to align to many target words, since the prob-
ability mass of the rare word translations can be
hijacked to fit the sentence pair. Agreement con-
straints solve this problem, because forward and
backward models cannot agree on the garbage col-
lection solution.

Graça et al. (2008) show that alignment error rate
(Och and Ney, 2003) can be improved with agree-
ment constraints. Since AER is the standard metric
for alignment quality, we reproduce their results us-
ing all the sentences of length at most 40. For the
Hansards corpus we improve from 15.35 to 7.01 for
the English → French direction and from 14.45 to
6.80 for the reverse. For English→ Spanish we im-
prove from 28.20 to 19.86 and from 27.54 to 19.18
for the reverse. These values are competitive with
other state of the art systems (Liang et al., 2006).

Unfortunately, as was shown by Fraser and Marcu
(2007) AER can have weak correlation with transla-
tion performance as measured by BLEU score (Pa-
pineni et al., 2002), when the alignments are used
to train a phrase-based translation system. Conse-
quently, in addition to AER, we focus on precision
and recall.

Figure 3 shows the change in precision and re-
call with the amount of provided training data for
the Hansards corpus. We see that agreement con-
straints improve both precision and recall when we
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Figure 3: Effect of posterior constraints on precision
(left) and recall (right) learning curves for Hansards
En→Fr.
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Figure 4: Left: Precision. Right: Recall. Learning curves
for Hansards En→Fr split by rare (at most 5 occurances)
and common words.

use Viterbi decoding, with larger improvements for
small amounts of training data. We see a similar im-
provement on the EPPS corpus.

Motivated by the garbage collection problem, we
also analyze common and rare words separately.
Figure 4 shows precision and recall learning curves
for rare and common words. We see that agreement
constraints improve precision but not recall of rare
words and improve recall but not precision of com-
mon words.

As described above an alternative to Viterbi de-
coding is to accept all alignments that have probabil-
ity above some threshold. By changing the thresh-
old, we can trade off precision and recall. Figure
5 compares this tradeoff for the baseline and agree-
ment model. We see that the precision/recall curve
for agreement is entirely above the baseline curve,
so for any recall value we can achieve higher preci-
sion than the baseline for either corpus. In Figure 6
we break down the same analysis into rare and non
rare words.

Figure 7 shows an example of the same sentence,
using the same model where in one case Viterbi de-
coding was used and in the other case Posterior de-
coding tuned to minimize AER on a development set
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Figure 5: Precision and recall trade-off for posterior de-
coding with varying threshold. Left: Hansards En→Fr.
Right: EPPS En→Es.
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Figure 6: Precision and recall trade-off for posterior on
Hansards En→Fr. Left: rare words only. Right: common
words only.

was used. An interesting difference is that by using
posterior decoding one can have n-n alignments as
shown in the picture.

A natural question is how to tune the threshold in
order to improve machine translation quality. In the
next section we evaluate and compare the effects of
the different alignments in a phrase based machine
translation system.

5 Phrase-based machine translation

In this section we attempt to investigate whether our
improved alignments produce improved machine

0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8
0 • • • · · · · · · 0 • • • · · · · · · firstly
1 · · · • · · · · · 1 · · · • · · · · · ,
2 · · · · • · · · · 2 · · · · • · · · · we
3 · · · · • · · · · 3 · · · · • · · · · have
4 · · · · · • · · · 4 · · · · · • · · · a
5 · · · · · · · • · 5 · · · · · · · • · legal
6 · · · · · · • · · 6 · · · · · · • · · framework
8 · · · · · · · · • 8 · · · · · · · · • .

en primero

lugar
, tenemos

un marco
jurı́dico

. en primero

lugar
, tenemos

un marco
jurı́dico

.

Figure 7: An example of the output of HMM trained on
100k the EPPS data using agreement HMM. Left: Viterbi
decoding. Right: Posterior decoding tuned to minimize
AER. The addition is en-firstly and tenemos-have.
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translation. In particular we fix a state of the art
machine translation system1 and measure its perfor-
mance when we vary the supplied word alignments.
The baseline system uses GIZA model 4 alignments
and the open source Moses phrase-based machine
translation toolkit2, and performed close to the best
at the competition last year.

For all experiments the experimental setup is as
follows: we lowercase the corpora, and train lan-
guage models from all available data. The reason-
ing behind this is that even if bilingual texts might
be scarce in some domain, monolingual text should
be relatively abundant. We then train the com-
peting alignment models and compute competing
alignments using different decoding schemes. For
each alignment model and decoding type we train
Moses and use MERT optimization to tune its pa-
rameters on a development set. Moses is trained us-
ing the grow-diag-final-and alignment symmetriza-
tion heuristic and using the default distance base
distortion model. We report BLEU scores using a
script available with the baseline system. The com-
peting alignment models are GIZA Model 4, our im-
plementation of the baseline HMM alignment and
our agreement HMM. We would like to stress that
the fair comparison is between the performance of
the baseline HMM and the agreement HMM, since
Model 4 is more complicated and can capture more
structure. However, we will see that for moderate
sized data the agreement HMM performs better than
both its baseline and GIZA Model 4.

5.1 Corpora

In addition to the Hansards corpus and the Europarl
English-Spanish corpus, we used four other corpora
for the machine translation experiments. Table 1
summarizes some statistics of all corpora. The Ger-
man and Finnish corpora are also from Europarl,
while the Czech corpus contains news commentary.
All three were used in recent ACL workshop shared
tasks and are available online3. The Italian corpus
consists of transcribed speech in the travel domain
and was used in the 2007 workshop on spoken lan-
guage translation4. We used the development and

1www.statmt.org/wmt07/baseline.html
2www.statmt.org/moses/
3http://www.statmt.org
4http://iwslt07.itc.it/

Corpus Train Len Test Rare (%) Unk (%)
En, Fr 1018 17.4 1000 0.3, 0.4 0.1, 0.2
En, Es 126 21.0 2000 0.3, 0.5 0.2, 0.3
En, Fi 717 21.7 2000 0.4, 2.5 0.2, 1.8
En, De 883 21.5 2000 0.3, 0.5 0.2, 0.3
En, Cz 57 23.0 2007 2.3, 6.6 1.3, 3.9
En, It 20 9.4 500 3.1, 6.2 1.4, 2.9

Table 1: Statistics of the corpora used in MT evaluation.
The training size is measured in thousands of sentences
and Len refers to average (English) sentence length. Test
is the number of sentences in the test set. Rare and Unk
are the percentage of tokens in the test set that are rare
and unknown in the training data, for each language.

 26

 28

 30

 32

 34

 36

 10000  100000  1e+06

Training data size (sentences)

Agreement Post-pts
Model 4

Baseline Viterbi

Figure 8: BLEU score as the amount of training data is
increased on the Hansards corpus for the best decoding
method for each alignment model.

tests sets from the workshops when available. For
Italian corpus we used dev-set 1 as development and
dev-set 2 as test. For Hansards we randomly chose
1000 and 500 sentences from test 1 and test 2 to be
testing and development sets respectively.

Table 1 summarizes the size of the training corpus
in thousands of sentences, the average length of the
English sentences as well as the size of the testing
corpus. We also report the percentage of tokens in
the test corpus that are rare or not encountered in the
training corpus.

5.2 Decoding

Our initial experiments with Viterbi decoding and
posterior decoding showed that for our agreement
model posterior decoding could provide better align-
ment quality. When labeled data is available, we can
tune the threshold to minimize AER. When labeled
data is not available we use a different heuristic to

991



tune the threshold: we choose a threshold that gives
the same number of aligned points as Viterbi decod-
ing produces. In principle, we would like to tune
the threshold by optimizing BLEU score on a devel-
opment set, but that is impractical for experiments
with many pairs of languages. We call this heuristic
posterior-points decoding. As we shall see, it per-
forms well in practice.

5.3 Training data size

The HMM alignment models have a smaller param-
eter space than GIZA Model 4, and consequently we
would expect that they would perform better when
the amount of training data is limited. We found that
this is generally the case, with the margin by which
we beat model 4 slowly decreasing until a crossing
point somewhere in the range of 105 - 106 sentences.
We will see in section 5.3.1 that the Viterbi decoding
performs best for the baseline HMM model, while
posterior decoding performs best for our agreement
HMM model. Figure 8 shows the BLEU score for
the baseline HMM, our agreement model and GIZA
Model 4 as we vary the amount of training data from
104 - 106 sentences. For all but the largest data sizes
we outperform Model 4, with a greater margin at
lower training data sizes. This trend continues as we
lower the amount of training data further. We see a
similar trend with other corpora.

5.3.1 Small to Medium Training Sets
Our next set of experiments look at our perfor-

mance in both directions across our 6 corpora, when
we have small to moderate amounts of training data:
for the language pairs with more than 100,000 sen-
tences, we use only the first 100,000 sentences. Ta-
ble 2 shows the performance of all systems on these
datasets. In the table, post-pts and post-aer stand
for posterior-points decoding and posterior decod-
ing tuned for AER. With the notable exception of
Czech and Italian, our system performs better than
or comparable to both baselines, even though it uses
a much more limited model than GIZA’s Model 4.
The small corpora for which our models do not per-
form as well as GIZA are the ones with a lot of rare
words. We suspect that the reason for this is that we
do not implement smoothing, which has been shown
to be important, especially in situations with a lot of
rare words.

X→ En En→ X
Base Agree Base Agree

GIZA M4 23.92 17.89
De Viterbi 24.08 23.59 18.15 18.13

post-pts 24.24 24.65(+) 18.18 18.45(+)

GIZA M4 18.29 11.05
Fi Viterbi 18.79 18.38 11.17 11.54

post-pts 18.88 19.45(++) 11.47 12.48(++)

GIZA M4 33.12 26.90
Fr Viterbi 32.42 32.15 25.85 25.48

post-pts 33.06 33.09(≈) 25.94 26.54(+)

post-aer 31.81 33.53(+) 26.14 26.68(+)

GIZA M4 30.24 30.09
Es Viterbi 29.65 30.03 29.76 29.85

post-pts 29.91 30.22(++) 29.71 30.16(+)

post-aer 29.65 30.34(++) 29.78 30.20(+)

GIZA M4 51.66 41.99
It Viterbi 52.20 52.09 41.40 41.28

post-pts 51.06 51.14(−−) 41.63 41.79(≈)

GIZA M4 22.78 12.75
Cz Viterbi 21.25 21.89 12.23 12.33

post-pts 21.37 22.51(++) 12.16 12.47(+)

Table 2: BLEU scores for all language pairs using up to
100k sentences. Results are after MERT optimization.
The marks (++)and (+)denote that agreement with poste-
rior decoding is better by 1 BLEU point and 0.25 BLEU
points respectively than the best baseline HMM model;
analogously for (−−), (−); while (≈)denotes smaller dif-
ferences.

5.3.2 Larger Training Sets
For four of the corpora we have more than 100

thousand sentences. The performance of the sys-
tems on all the data is shown in Table 3. German
is not included because MERT optimization did not
complete in time. We see that even on over a million
instances, our model sometimes performs better than
GIZA model 4, and always performs better than the
baseline HMM.

6 Conclusions

In this work we have evaluated agreement-
constrained EM training for statistical word align-
ment models. We carefully studied its effects on
word alignment recall and precision. Agreement
training has a different effect on rare and com-
mon words, probably because it fixes different types
of errors. It corrects the garbage collection prob-
lem for rare words, resulting in a higher preci-
sion. The recall improvement in common words
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X→ En En→ X
Base Agree Base Agree

GIZA M4 22.78 14.72
Fi Viterbi 22.92 22.89 14.21 14.09

post-pts 23.15 23.43 (+) 14.57 14.74 (≈)

GIZA M4 35.65 31.15
Fr Viterbi 35.19 35.17 30.57 29.97

post-pts 35.49 35.95 (+) 29.78 30.02 (≈)

post-aer 34.85 35.48 (+) 30.15 30.07 (≈)

GIZA M4 31.62 32.40
Es Viterbi 31.75 31.84 31.17 31.09

post-pts 31.88 32.19 (+) 31.16 31.56 (+)

post-aer 31.93 32.29 (+) 31.23 31.36 (≈)

Table 3: BLEU scores for all language pairs using all
available data. Markings as in Table 2.

can be explained by the idea that ambiguous com-
mon words are different in the two languages, so the
un-ambiguous choices in one direction can force the
choice for the ambiguous ones in the other through
agreement constraints.

To our knowledge this is the first extensive eval-
uation where improvements in alignment accuracy
lead to improvements in machine translation per-
formance. We tested this hypothesis on six differ-
ent language pairs from three different domains, and
found that the new alignment scheme not only per-
forms better than the baseline, but also improves
over a more complicated, intractable model. In or-
der to get the best results, it appears that posterior
decoding is required for the simplistic HMM align-
ment model. The success of posterior decoding us-
ing our simple threshold tuning heuristic is fortu-
nate since no labeled alignment data are needed:
Viterbi alignments provide a reasonable estimate of
aligned words needed for phrase extraction. The na-
ture of the complicated relationship between word
alignments, the corresponding extracted phrases and
the effects on the final MT system still begs for
better explanations and metrics. We have investi-
gated the distribution of phrase-sizes used in transla-
tion across systems and languages, following recent
investigations (Ayan and Dorr, 2006), but unfortu-
nately found no consistent correlation with BLEU
improvement. Since the alignments we extracted
were better according to all metrics we used, it
should not be too surprising that they yield better
translation performance, but perhaps a better trade-
off can be achieved with a deeper understanding of

the link between alignments and translations.
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