
Proceedings of ACL-08: HLT, pages 577–585,
Columbus, Ohio, USA, June 2008. c©2008 Association for Computational Linguistics

A New String-to-Dependency Machine Translation Algorithm
with a Target Dependency Language Model

Libin Shen
BBN Technologies

Cambridge, MA 02138, USA
lshen@bbn.com

Jinxi Xu
BBN Technologies

Cambridge, MA 02138, USA
jxu@bbn.com

Ralph Weischedel
BBN Technologies

Cambridge, MA 02138, USA
weisched@bbn.com

Abstract

In this paper, we propose a novel string-to-
dependency algorithm for statistical machine
translation. With this new framework, we em-
ploy a target dependency language model dur-
ing decoding to exploit long distance word
relations, which are unavailable with a tra-
ditional n-gram language model. Our ex-
periments show that the string-to-dependency
decoder achieves 1.48 point improvement in
BLEU and 2.53 point improvement in TER
compared to a standard hierarchical string-to-
string system on the NIST 04 Chinese-English
evaluation set.

1 Introduction

In recent years, hierarchical methods have been suc-
cessfully applied to Statistical Machine Translation
(Graehl and Knight, 2004; Chiang, 2005; Ding and
Palmer, 2005; Quirk et al., 2005). In some language
pairs, i.e. Chinese-to-English translation, state-of-
the-art hierarchical systems show significant advan-
tage over phrasal systems in MT accuracy. For ex-
ample, Chiang (2007) showed that the Hiero system
achieved about 1 to 3 point improvement in BLEU
on the NIST 03/04/05 Chinese-English evaluation
sets compared to a start-of-the-art phrasal system.

Our work extends the hierarchical MT approach.
We propose a string-to-dependency model for MT,
which employs rules that represent the source side
as strings and the target side as dependency struc-
tures. We restrict the target side to the so called well-
formed dependency structures, in order to cover a
large set of non-constituent transfer rules (Marcu et
al., 2006), and enable efficient decoding through dy-
namic programming. We incorporate a dependency

language model during decoding, in order to exploit
long-distance word relations which are unavailable
with a traditional n-gram language model on target
strings.

For comparison purposes, we replicated the Hiero
decoder (Chiang, 2005) as our baseline. Our string-
to-dependency decoder shows 1.48 point improve-
ment in BLEU and 2.53 point improvement in TER
on the NIST 04 Chinese-English MT evaluation set.

In the rest of this section, we will briefly dis-
cuss previous work on hierarchical MT and de-
pendency representations, which motivated our re-
search. In section 2, we introduce the model of
string-to-dependency decoding. Section 3 illustrates
of the use of dependency language models. In sec-
tion 4, we describe the implementation details of our
MT system. We discuss experimental results in sec-
tion 5, compare to related work in section 6, and
draw conclusions in section 7.

1.1 Hierarchical Machine Translation

Graehl and Knight (2004) proposed the use of target-
tree-to-source-string transducers (xRS) to model
translation. In xRS rules, the right-hand-side(rhs)
of the target side is a tree with non-terminals(NTs),
while the rhs of the source side is a string with
NTs. Galley et al. (2006) extended this string-to-tree
model by using Context-Free parse trees to represent
the target side. A tree could represent multi-level
transfer rules.

The Hiero decoder (Chiang, 2007) does not re-
quire explicit syntactic representation on either side
of the rules. Both source and target are strings with
NTs. Decoding is solved as chart parsing. Hiero can
be viewed as a hierarchical string-to-string model.

Ding and Palmer (2005) and Quirk et al. (2005)

577



itwill

find

boy

the

interesting

Figure 1: The dependency tree for sentence the boy will
find it interesting

followed the tree-to-tree approach (Shieber and Sch-
abes, 1990) for translation. In their models, depen-
dency treelets are used to represent both the source
and the target sides. Decoding is implemented as
tree transduction preceded by source side depen-
dency parsing. While tree-to-tree models can rep-
resent richer structural information, existing tree-to-
tree models did not show advantage over string-to-
tree models on translation accuracy due to a much
larger search space.

One of the motivations of our work is to achieve
desirable trade-off between model capability and
search space through the use of the so called well-
formed dependency structures in rule representation.

1.2 Dependency Trees

Dependency trees reveal long-distance relations be-
tween words. For a given sentence, each word has a
parent word which it depends on, except for the root
word.

Figure 1 shows an example of a dependency tree.
Arrows point from the child to the parent. In this
example, the word find is the root.

Dependency trees are simpler in form than CFG
trees since there are no constituent labels. However,
dependency relations directly model semantic struc-
ture of a sentence. As such, dependency trees are a
desirable prior model of the target sentence.

1.3 Motivations for Well-Formed Dependency
Structures

We restrict ourselves to the so-called well-formed
target dependency structures based on the following
considerations.

Dynamic Programming

In (Ding and Palmer, 2005; Quirk et al., 2005),
there is no restriction on dependency treelets used in
transfer rules except for the size limit. This may re-
sult in a high dimensionality in hypothesis represen-

tation and make it hard to employ shared structures
for efficient dynamic programming.

In (Galley et al., 2004), rules contain NT slots and
combination is only allowed at those slots. There-
fore, the search space becomes much smaller. Fur-
thermore, shared structures can be easily defined
based on the labels of the slots.

In order to take advantage of dynamic program-
ming, we fixed the positions onto which another an-
other tree could be attached by specifying NTs in
dependency trees.

Rule Coverage

Marcu et al. (2006) showed that many useful
phrasal rules cannot be represented as hierarchical
rules with the existing representation methods, even
with composed transfer rules (Galley et al., 2006).
For example, the following rule
• <(hong)Chinese, (DT(the) JJ(red))English>

is not a valid string-to-tree transfer rule since the red
is a partial constituent.

A number of techniques have been proposed to
improve rule coverage. (Marcu et al., 2006) and
(Galley et al., 2006) introduced artificial constituent
nodes dominating the phrase of interest. The bi-
narization method used by Wang et al. (2007) can
cover many non-constituent rules also, but not all of
them. For example, it cannot handle the above ex-
ample. DeNeefe et al. (2007) showed that the best
results were obtained by combing these methods.

In this paper, we use well-formed dependency
structures to handle the coverage of non-constituent
rules. The use of dependency structures is due to the
flexibility of dependency trees as a representation
method which does not rely on constituents (Fox,
2002; Ding and Palmer, 2005; Quirk et al., 2005).
The well-formedness of the dependency structures
enables efficient decoding through dynamic pro-
gramming.

2 String-to-Dependency Translation

2.1 Transfer Rules with Well-Formed
Dependency Structures

A string-to-dependency grammar G is a 4-tuple
G =< R, X, Tf , Te >, where R is a set of transfer
rules. X is the only non-terminal, which is similar
to the Hiero system (Chiang, 2007). Tf is a set of

578



terminals in the source language, and Te is a set of
terminals in the target language1 .

A string-to-dependency transfer rule R ∈ R is a
4-tuple R =< Sf , Se, D,A >, where Sf ∈ (Tf ∪
{X})+ is a source string, Se ∈ (Te ∪ {X})

+ is a
target string, D represents the dependency structure
for Se, and A is the alignment between Sf and Se.
Non-terminal alignments in A must be one-to-one.

In order to exclude undesirable structures, we
only allow Se whose dependency structure D is
well-formed, which we will define below. In addi-
tion, the same well-formedness requirement will be
applied to partial decoding results. Thus, we will be
able to employ shared structures to merge multiple
partial results.

Based on the results in previous work (DeNeefe
et al., 2007), we want to keep two kinds of depen-
dency structures. In one kind, we keep dependency
trees with a sub-root, where all the children of the
sub-root are complete. We call them fixed depen-
dency structures because the head is known or fixed.
In the other, we keep dependency structures of sib-
ling nodes of a common head, but the head itself is
unspecified or floating. Each of the siblings must be
a complete constituent. We call them floating de-
pendency structures. Floating structures can repre-
sent many linguistically meaningful non-constituent
structures: for example, like the red, a modifier of
a noun. Only those two kinds of dependency struc-
tures are well-formed structures in our system.

Furthermore, we operate over well-formed struc-
tures in a bottom-up style in decoding. However,
the description given above does not provide a clear
definition on how to combine those two types of
structures. In the rest of this section, we will pro-
vide formal definitions of well-formed structures and
combinatory operations over them, so that we can
easily manipulate well-formed structures in decod-
ing. Formal definitions also allow us to easily ex-
tend the framework to incorporate a dependency lan-
guage model in decoding. Examples will be pro-
vided along with the formal definitions.

Consider a sentence S = w1w2...wn. Let
d1d2...dn represent the parent word IDs for each
word. For example, d4 = 2 means that w4 depends

1We ignore the left hand side here because there is only one
non-terminal X . Of course, this formalism can be extended to
have multiple NTs.

itwill

find

boy

the

find

boy

(a) (b) (c)

Figure 2: Fixed dependency structures

boy will

the

interestingit

(a) (b)

Figure 3: Floating dependency structures

on w2. If wi is a root, we define di = 0.

Definition 1 A dependency structure di..j is fixed
on head h, where h ∈ [i, j], or fixed for short, if
and only if it meets the following conditions

• dh /∈ [i, j]
• ∀k ∈ [i, j] and k 6= h, dk ∈ [i, j]
• ∀k /∈ [i, j], dk = h or dk /∈ [i, j]

In addition, we say the category of di..j is
(−, h,−), where − means this field is undefined.

Definition 2 A dependency structure di...dj is float-
ing with children C , for a non-empty set C ⊆
{i, ..., j}, or floating for short, if and only if it meets
the following conditions

• ∃h /∈ [i, j], s.t.∀k ∈ C, dk = h
• ∀k ∈ [i, j] and k /∈ C, dk ∈ [i, j]
• ∀k /∈ [i, j], dk /∈ [i, j]

We say the category of di..j is (C,−,−) if j < h,
or (−,−, C) otherwise. A category is composed of
the three fields (A, h,B), where h is used to repre-
sent the head, and A and B are designed to model
left and right dependents of the head respectively.

A dependency structure is well-formed if and
only if it is either fixed or floating.

Examples

We can represent dependency structures with
graphs. Figure 2 shows examples of fixed structures,
Figure 3 shows examples of floating structures, and
Figure 4 shows ill-formed dependency structures.

It is easy to verify that the structures in Figures
2 and 3 are well-formed. 4(a) is ill-formed because

579



interestingwill

findfind

boy

(a) (b)

Figure 4: Ill-formed dependency structures

boy does not have its child word the in the tree. 4(b)
is ill-formed because it is not a continuous segment.

As for the example the red mentioned above, it is
a well-formed floating dependency structure.

2.2 Operations on Well-Formed Dependency
Structures and Categories

One of the purposes of introducing floating depen-
dency structures is that siblings having a common
parent will become a well-defined entity, although
they are not considered a constituent. We always
build well-formed partial structures on the target
side in decoding. Furthermore, we combine partial
dependency structures in a way such that we can ob-
tain all possible well-formed but no ill-formed de-
pendency structures during bottom-up decoding.

The solution is to employ categories introduced
above. Each well-formed dependency structure has
a category. We can apply four combinatory oper-
ations over the categories. If we can combine two
categories with a certain category operation, we can
use a corresponding tree operation to combine two
dependency structures. The category of the com-
bined dependency structure is the result of the com-
binatory category operations.

We first introduce three meta category operations.
Two of them are unary operations, left raising (LR)
and right raising (RR), and one is the binary opera-
tion unification (UF).

First, the raising operations are used to turn a
completed fixed structure into a floating structure.
It is easy to verify the following theorem according
to the definitions.

Theorem 1 A fixed structure with category
(−, h,−) for span [i, j] is also a floating structure
with children {h} if there are no outside words
depending on word h.

∀k /∈ [i, j], dk 6= h. (1)

Therefore we can always raise a fixed structure if we
assume it is complete, i.e. (1) holds.

itwill

find

boy

the

interesting

LA

LA
LA RA

RA

LC RC

Figure 5: A dependency tree with flexible combination

Definition 3 Meta Category Operations

• LR((−, h,−)) = ({h},−,−)
• RR((−, h,−)) = (−,−, {h})
• UF((A1, h1, B1), (A2, h2, B2)) = NORM((A1 t

A2, h1 t h2, B1 t B2))
Unification is well-defined if and only if we can

unify all three elements and the result is a valid fixed
or floating category. For example, we can unify a
fixed structure with a floating structure or two float-
ing structures in the same direction, but we cannot
unify two fixed structures.

h1 t h2 =







h1 if h2 = −
h2 if h1 = −
undefined otherwise

A1 t A2 =







A1 if A2 = −
A2 if A1 = −
A1 ∪A2 otherwise

NORM((A, h, B)) =















(−, h,−) if h 6= −
(A,−,−) if h = −, B = −
(−,−, B) if h = −, A = −
undefined otherwise

Next we introduce the four tree operations on de-
pendency structures. Instead of providing the formal
definition, we use figures to illustrate these opera-
tions to make it easy to understand. Figure 1 shows
a traditional dependency tree. Figure 5 shows the
four operations to combine partial dependency struc-
tures, which are left adjoining (LA), right adjoining
(RA), left concatenation (LC) and right concatena-
tion (RC).

Child and parent subtrees can be combined with
adjoining which is similar to the traditional depen-
dency formalism. We can either adjoin a fixed struc-
ture or a floating structure to the head of a fixed
structure.

Complete siblings can be combined via concate-
nation. We can concatenate two fixed structures, one
fixed structure with one floating structure, or two
floating structures in the same direction. The flex-
ibility of the order of operation allows us to take ad-

580



will

find

boy

the

LA

LA
LA

will

find

boy

the

LA

LA

LC

2

3 2

1
1

3

(b)(a)

Figure 6: Operations over well-formed structures

vantage of various translation fragments encoded in
transfer rules.

Figure 6 shows alternative ways of applying op-
erations on well-formed structures to build larger
structures in a bottom-up style. Numbers represent
the order of operation.

We use the same names for the operations on cat-
egories for the sake of convenience. We can easily
use the meta category operations to define the four
combinatory operations. The definition of the oper-
ations in the left direction is as follows. Those in the
right direction are similar.

Definition 4 Combinatory category operations

LA((A1,−,−), (−, h2,−))

= UF((A1,−,−), (−, h2,−))

LA((−, h1,−), (−, h2,−))

= UF(LR((−, h1,−)), (−, h2,−))

LC((A1,−,−), (A2,−,−))

= UF((A1,−,−), (A2,−,−))

LC((A1,−,−), (−, h2,−))

= UF((A1,−,−), LR((−, h2,−)))

LC((−, h1,−), (A2,−,−))

= UF(LR((−, h1,−)), (A2,−,−))

LC((−, h1,−), (−, h2,−))

= UF(LR((−, h1,−)), LR((−, h2,−)))

It is easy to verify the soundness and complete-
ness of category operations based on one-to-one
mapping of the conditions in the definitions of cor-
responding operations on dependency structures and
on categories.

Theorem 2 (soundness and completeness)
Suppose X and Y are well-formed dependency
structures. OP(cat(X), cat(Y )) is well-defined for
a given operation OP if and only if OP(X,Y ) is
well-defined. Furthermore,

cat(OP(X, Y )) = OP(cat(X), cat(Y ))

Suppose we have a dependency tree for a red apple,
where both a and red depend on apple. There are
two ways to compute the category of this string from
the bottom up.

cat(Da red apple)

= LA(cat(Da), LA(cat(Dred), cat(Dapple)))

= LA(LC(cat(Da), cat(Dred)), cat(Dapple))

Based on Theorem 2, it follows that combinatory
operation of categories has the confluence property,
since the result dependency structure is determined.

Corollary 1 (confluence) The category of a well-
formed dependency tree does not depend on the or-
der of category calculation.

With categories, we can easily track the types of
dependency structures and constrain operations in
decoding. For example, we have a rule with depen-
dency structure find ← X , where X right adjoins
to find. Suppose we have two floating structures2 ,

cat(X1) = ({he, will},−,−)

cat(X2) = (−,−, {it, interesting})

We can replace X by X2, but not by X1 based on
the definition of category operations.

2.3 Rule Extraction

Now we explain how we get the string-to-
dependency rules from training data. The procedure
is similar to (Chiang, 2007) except that we maintain
tree structures on the target side, instead of strings.

Given sentence-aligned bi-lingual training data,
we first use GIZA++ (Och and Ney, 2003) to gen-
erate word level alignment. We use a statistical CFG
parser to parse the English side of the training data,
and extract dependency trees with Magerman’s rules
(1995). Then we use heuristic rules to extract trans-
fer rules recursively based on the GIZA alignment
and the target dependency trees. The rule extraction
procedure is as follows.

1. Initialization:
All the 4-tuples (P i,j

f , P m,n
e , D,A) are valid

phrase alignments, where source phrase P i,j
f is

2Here we use words instead of word indexes in categories to
make the example easy to understand.

581



it

find

interesting
(D1)

(D2)
it

X

find

interesting
(D’)

Figure 7: Replacing it with X in D1

aligned to target phrase P m,n
e under alignment3

A, and D, the dependency structure for P m,n
e ,

is well-formed. All valid phrase templates are
valid rules templates.

2. Inference:
Let (P i,j

f , P m,n
e , D1, A) be a valid rule tem-

plate, and (P p,q
f , P s,t

e , D2, A) a valid phrase
alignment, where [p, q] ⊂ [i, j], [s, t] ⊂ [m,n],
D2 is a sub-structure of D1, and at least one
word in P i,j

f but not in P p,q
f is aligned.

We create a new valid rule template
(P ′

f , P ′

e, D
′, A), where we obtain P ′

f by

replacing P p,q
f with label X in P i,j

f , and obtain
P ′

e by replacing P s,t
e with X in P m,n

e . Further-
more, We obtain D′ by replacing sub-structure
D2 with X in D1

4. An example is shown in
Figure 7.

Among all valid rule templates, we collect those
that contain at most two NTs and at most seven ele-
ments in the source as transfer rules in our system.

2.4 Decoding

Following previous work on hierarchical MT (Chi-
ang, 2005; Galley et al., 2006), we solve decoding
as chart parsing. We view target dependency as the
hidden structure of source fragments.

The parser scans all source cells in a bottom-up
style, and checks matched transfer rules according to
the source side. Once there is a completed rule, we
build a larger dependency structure by substituting
component dependency structures for corresponding
NTs in the target dependency structure of rules.

Hypothesis dependency structures are organized
in a shared forest, or AND-OR structures. An AND-

3By P
i,j

f aligned to P m,n
e , we mean all words in P

i,j

f are
either aligned to words in P m,n

e or unaligned, and vice versa.
Furthermore, at least one word in P

i,j

f is aligned to a word in
P m,n

e .
4If D2 is a floating structure, we need to merge several

dependency links into one.

structure represents an application of a rule over
component OR-structures, and an OR-structure rep-
resents a set of alternative AND-structures with the
same state. A state means a n-tuple that character-
izes the information that will be inquired by up-level
AND-structures.

Supposing we use a traditional tri-gram language
model in decoding, we need to specify the leftmost
two words and the rightmost two words in a state.
Since we only have a single NT X in the formalism
described above, we do not need to add the NT la-
bel in states. However, we need to specify one of
the three types of the dependency structure: fixed,
floating on the left side, or floating on the right side.
This information is encoded in the category of the
dependency structure.

In the next section, we will explain how to ex-
tend categories and states to exploit a dependency
language model during decoding.

3 Dependency Language Model

For the dependency tree in Figure 1, we calculate the
probability of the tree as follows

Prob = PT (find)

×PL(will|find-as-head)

×PL(boy|will, find-as-head)

×PL(the|boy-as-head)

×PR(it|find-as-head)

×PR(interesting|it, find-as-head)

Here PT (x) is the probability that word x is the
root of a dependency tree. PL and PR are left and
right side generative probabilities respectively. Let
wh be the head, and wL1

wL2
...wLn be the children

on the left side from the nearest to the farthest. Sup-
pose we use a tri-gram dependency LM,

PL(wL1
wL2

...wLn
|wh-as-head)

= PL(wL1
|wh-as-head)

×PL(wL2
|wL1

, wh-as-head)

×...× PL(wLn
|wLn−1

, wLn−2
) (2)

wh-as-head represents wh used as the head, and
it is different from wh in the dependency language
model. The right side probability is similar.

In order to calculate the dependency language
model score, or depLM score for short, on the fly for

582



partial hypotheses in a bottom-up decoding, we need
to save more information in categories and states.

We use a 5-tuple (LF,LN, h,RN,RF ) to repre-
sent the category of a dependency structure. h rep-
resents the head. LF and RF represent the farthest
two children on the left and right sides respectively.
Similarly, LN and RN represent the nearest two
children on the left and right sides respectively. The
three types of categories are as follows.
• fixed: (LF,−, h,−, RF )
• floating left: (LF,LN,−,−,−)
• floating right: (−,−,−, RN,RF )

Similar operations as described in Section 2.2 are
used to keep track of the head and boundary child
nodes which are then used to compute depLM scores
in decoding. Due to the limit of space, we skip the
details here.

4 Implementation Details

Features

1. Probability of the source side given the target
side of a rule

2. Probability of the target side given the source
side of a rule

3. Word alignment probability
4. Number of target words
5. Number of concatenation rules used
6. Language model score
7. Dependency language model score
8. Discount on ill-formed dependency structures

We have eight features in our system. The values of
the first four features are accumulated on the rules
used in a translation. Following (Chiang, 2005),
we also use concatenation rules like X → XX for
backup. The 5th feature counts the number of con-
catenation rules used in a translation. In our sys-
tem, we allow substitutions of dependency struc-
tures with unmatched categories, but there is a dis-
count for such substitutions.

Weight Optimization

We tune the weights with several rounds of
decoding-optimization. Following (Och, 2003), the
k-best results are accumulated as the input of the op-
timizer. Powell’s method is used for optimization
with 20 random starting points around the weight
vector of the last iteration.

Rescoring

We rescore 1000-best translations (Huang and
Chiang, 2005) by replacing the 3-gram LM score
with the 5-gram LM score computed offline.

5 Experiments

We carried out experiments on three models.
• baseline: replication of the Hiero system.
• filtered: a string-to-string MT system as in

baseline. However, we only keep the transfer
rules whose target side can be generated by a
well-formed dependency structure.
• str-dep: a string-to-dependency system with a

dependency LM.
We take the replicated Hiero system as our

baseline because it is the closest to our string-to-
dependency model. They have similar rule extrac-
tion and decoding algorithms. Both systems use
only one non-terminal label in rules. The major dif-
ference is in the representation of target structures.
We use dependency structures instead of strings;
thus, the comparison will show the contribution of
using dependency information in decoding.

All models are tuned on BLEU (Papineni et al.,
2001), and evaluated on both BLEU and Translation
Error Rate (TER) (Snover et al., 2006) so that we
could detect over-tuning on one metric.

We used part of the NIST 2006 Chinese-
English large track data as well as some LDC
corpora collected for the DARPA GALE program
(LDC2005E83, LDC2006E34 and LDC2006G05)
as our bilingual training data. It contains about
178M/191M words in source/target. Hierarchical
rules were extracted from a subset which has about
35M/41M words5, and the rest of the training data
were used to extract phrasal rules as in (Och, 2003;
Chiang, 2005). The English side of this subset was
also used to train a 3-gram dependency LM. Tra-
ditional 3-gram and 5-gram LMs were trained on a
corpus of 6G words composed of the LDC Gigaword
corpus and text downloaded from Web (Bulyko et
al., 2007). We tuned the weights on NIST MT05
and tested on MT04.

5It includes eight corpora: LDC2002E18, LDC2003E07,
LDC2004T08 HK News, LDC2005E83, LDC2005T06,
LDC2005T10, LDC2006E34, and LDC2006G05

583



Model #Rules
baseline 140M
filtered 26M
str-dep 27M

Table 1: Number of transfer rules

Model
BLEU% TER%

lower mixed lower mixed
Decoding (3-gram LM)

baseline 38.18 35.77 58.91 56.60
filtered 37.92 35.48 57.80 55.43
str-dep 39.52 37.25 56.27 54.07

Rescoring (5-gram LM)
baseline 40.53 38.26 56.35 54.15
filtered 40.49 38.26 55.57 53.47
str-dep 41.60 39.47 55.06 52.96

Table 2: BLEU and TER scores on the test set.

Table 1 shows the number of transfer rules ex-
tracted from the training data for the tuning and
test sets. The constraint of well-formed dependency
structures greatly reduced the size of the rule set. Al-
though the rule size increased a little bit after incor-
porating dependency structures in rules, the size of
string-to-dependency rule set is less than 20% of the
baseline rule set size.

Table 2 shows the BLEU and TER scores
on MT04. On decoding output, the string-to-
dependency system achieved 1.48 point improve-
ment in BLEU and 2.53 point improvement in
TER compared to the baseline hierarchical string-
to-string system. After 5-gram rescoring, it achieved
1.21 point improvement in BLEU and 1.19 improve-
ment in TER. The filtered model does not show im-
provement on BLEU. The filtered string-to-string
rules can be viewed the string projection of string-
to-dependency rules. It means that just using depen-
dency structure does not provide an improvement on
performance. However, dependency structures al-
low the use of a dependency LM which gives rise to
significant improvement.

6 Discussion

The well-formed dependency structures defined here
are similar to the data structures in previous work on
mono-lingual parsing (Eisner and Satta, 1999; Mc-
Donald et al., 2005). However, here we have fixed
structures growing on both sides to exploit various
translation fragments learned in the training data,

while the operations in mono-lingual parsing were
designed to avoid artificial ambiguity of derivation.

Charniak et al. (2003) described a two-step string-
to-CFG-tree translation model which employed a
syntax-based language model to select the best
translation from a target parse forest built in the first
step. Only translation probability P (F |E) was em-
ployed in the construction of the target forest due to
the complexity of the syntax-based LM. Since our
dependency LM models structures over target words
directly based on dependency trees, we can build a
single-step system. This dependency LM can also
be used in hierarchical MT systems using lexical-
ized CFG trees.

The use of a dependency LM in MT is similar to
the use of a structured LM in ASR (Xu et al., 2002),
which was also designed to exploit long-distance re-
lations. The depLM is used in a bottom-up style,
while SLM is employed in a left-to-right style.

7 Conclusions and Future Work

In this paper, we propose a novel string-to-
dependency algorithm for statistical machine trans-
lation. For comparison purposes, we replicated
the Hiero system as described in (Chiang, 2005).
Our string-to-dependency system generates 80%
fewer rules, and achieves 1.48 point improvement in
BLEU and 2.53 point improvement in TER on the
decoding output on the NIST 04 Chinese-English
evaluation set.

Dependency structures provide a desirable plat-
form to employ linguistic knowledge in MT. In the
future, we will continue our research in this direction
to carry out translation with deeper features, for ex-
ample, propositional structures (Palmer et al., 2005).
We believe that the fixed and floating structures pro-
posed in this paper can be extended to model predi-
cates and arguments.

Acknowledgments

This work was supported by DARPA/IPTO Contract
No. HR0011-06-C-0022 under the GALE program.
We are grateful to Roger Bock, Ivan Bulyko, Mike
Kayser, John Makhoul, Spyros Matsoukas, Antti-
Veikko Rosti, Rich Schwartz and Bing Zhang for
their help in running the experiments and construc-
tive comments to improve this paper.

584



References

I. Bulyko, S. Matsoukas, R. Schwartz, L. Nguyen, and
J. Makhoul. 2007. Language model adaptation in
machine translation from speech. In Proceedings of
the 32nd IEEE International Conference on Acoustics,
Speech, and Signal Processing (ICASSP).

E. Charniak, K. Knight, and K. Yamada. 2003. Syntax-
based language models for statistical machine transla-
tion. In Proceedings of MT Summit IX.

D. Chiang. 2005. A hierarchical phrase-based model for
statistical machine translation. In Proceedings of the
43th Annual Meeting of the Association for Computa-
tional Linguistics (ACL).

D. Chiang. 2007. Hierarchical phrase-based translation.
Computational Linguistics, 33(2).

S. DeNeefe, K. Knight, W. Wang, and D. Marcu. 2007.
What can syntax-based mt learn from phrase-based
mt? In Proceedings of the 2007 Conference of Em-
pirical Methods in Natural Language Processing.

Y. Ding and M. Palmer. 2005. Machine translation using
probabilistic synchronous dependency insertion gram-
mars. In Proceedings of the 43th Annual Meeting of
the Association for Computational Linguistics (ACL),
pages 541–548, Ann Arbor, Michigan, June.

J. Eisner and G. Satta. 1999. Efficient parsing for bilex-
ical context-free grammars and head automaton gram-
mars. In Proceedings of the 37th Annual Meeting of
the Association for Computational Linguistics (ACL).

H. Fox. 2002. Phrasal cohesion and statistical machine
translation. In Proceedings of the 2002 Conference of
Empirical Methods in Natural Language Processing.

M. Galley, M. Hopkins, K. Knight, and D. Marcu. 2004.
What’s in a translation rule? In Proceedings of the
2004 Human Language Technology Conference of the
North American Chapter of the Association for Com-
putational Linguistics.

M. Galley, J. Graehl, K. Knight, D. Marcu, S. DeNeefea,
W. Wang, and I. Thayer. 2006. Scalable inference and
training of context-rich syntactic models. In COLING-
ACL ’06: Proceedings of 44th Annual Meeting of the
Association for Computational Linguistics and 21st
Int. Conf. on Computational Linguistics.

J. Graehl and K. Knight. 2004. Training tree transducers.
In Proceedings of the 2004 Human Language Technol-
ogy Conference of the North American Chapter of the
Association for Computational Linguistics.

L. Huang and D. Chiang. 2005. Better k-best parsing.
In Proceedings of the 9th International Workshop on
Parsing Technologies.

D. Magerman. 1995. Statistical decision-tree models for
parsing. In Proceedings of the 33rd Annual Meeting of
the Association for Computational Linguistics.

D. Marcu, W. Wang, A. Echihabi, and K. Knight. 2006.
SPMT: Statistical machine translation with syntacti-
fied target language phraases. In Proceedings of the
2006 Conference of Empirical Methods in Natural
Language Processing.

R. McDonald, K. Crammer, and F. Pereira. 2005. Online
large-margin training of dependency parsers. In Pro-
ceedings of the 43th Annual Meeting of the Association
for Computational Linguistics (ACL).

F. J. Och and H. Ney. 2003. A systematic comparison of
various statistical alignment models. Computational
Linguistics, 29(1).

F. J. Och. 2003. Minimum error rate training for sta-
tistical machine translation. In Erhard W. Hinrichs
and Dan Roth, editors, Proceedings of the 41st Annual
Meeting of the Association for Computational Linguis-
tics (ACL), pages 160–167, Sapporo, Japan, July.

M. Palmer, D. Gildea, and P. Kingsbury. 2005. The
proposition bank: An annotated corpus of semantic
roles. Computational Linguistics, 31(1).

K. Papineni, S. Roukos, and T. Ward. 2001. Bleu: a
method for automatic evaluation of machine transla-
tion. IBM Research Report, RC22176.

C. Quirk, A. Menezes, and C. Cherry. 2005. De-
pendency treelet translation: Syntactically informed
phrasal SMT. In Proceedings of the 43th Annual
Meeting of the Association for Computational Lin-
guistics (ACL), pages 271–279, Ann Arbor, Michigan,
June.

S. Shieber and Y. Schabes. 1990. Synchronous tree ad-
joining grammars. In Proceedings of COLING ’90:
The 13th Int. Conf. on Computational Linguistics.

M. Snover, B. Dorr, R. Schwartz, L. Micciulla, and
J. Makhoul. 2006. A study of translation edit rate with
targeted human annotation. In Proceedings of Associ-
ation for Machine Translation in the Americas.

W. Wang, K. Knight, and D. Marcu. 2007. Binarizing
syntax trees to improve syntax-based machine transla-
tion accuracy. In Proceedings of the 2007 Conference
of Empirical Methods in Natural Language Process-
ing.

P. Xu, C. Chelba, and F. Jelinek. 2002. A study on richer
syntactic dependencies for structured language model-
ing. In Proceedings of the 40th Annual Meeting of the
Association for Computational Linguistics (ACL).

585


