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Abstract

Minimum Error Rate Training (MERT)
and Minimum Bayes-Risk (MBR) decod-
ing are used in most current state-of-the-
art Statistical Machine Translation (SMT)
systems. The algorithms were originally
developed to work with N -best lists of
translations, and recently extended to lat-
tices that encode many more hypotheses
than typical N -best lists. We here extend
lattice-based MERT and MBR algorithms
to work with hypergraphs that encode a
vast number of translations produced by
MT systems based on Synchronous Con-
text Free Grammars. These algorithms
are more efficient than the lattice-based
versions presented earlier. We show how
MERT can be employed to optimize pa-
rameters for MBR decoding. Our exper-
iments show speedups from MERT and
MBR as well as performance improve-
ments from MBR decoding on several lan-
guage pairs.

1 Introduction

Statistical Machine Translation (SMT) systems
have improved considerably by directly using the
error criterion in both training and decoding. By
doing so, the system can be optimized for the
translation task instead of a criterion such as like-
lihood that is unrelated to the evaluation met-
ric. Two popular techniques that incorporate the
error criterion are Minimum Error Rate Train-
ing (MERT) (Och, 2003) and Minimum Bayes-
Risk (MBR) decoding (Kumar and Byrne, 2004).
These two techniques were originally developed
for N -best lists of translation hypotheses and re-
cently extended to translation lattices (Macherey
et al., 2008; Tromble et al., 2008) generated by a
phrase-based SMT system (Och and Ney, 2004).
Translation lattices contain a significantly higher

number of translation alternatives relative to N -
best lists. The extension to lattices reduces the
runtimes for both MERT and MBR, and gives per-
formance improvements from MBR decoding.

SMT systems based on synchronous context
free grammars (SCFG) (Chiang, 2007; Zollmann
and Venugopal, 2006; Galley et al., 2006) have
recently been shown to give competitive perfor-
mance relative to phrase-based SMT. For these
systems, a hypergraph or packed forest provides a
compact representation for encoding a huge num-
ber of translation hypotheses (Huang, 2008).

In this paper, we extend MERT and MBR
decoding to work on hypergraphs produced by
SCFG-based MT systems. We present algorithms
that are more efficient relative to the lattice al-
gorithms presented in Macherey et al. (2008;
Tromble et al. (2008). Lattice MBR decoding uses
a linear approximation to the BLEU score (Pap-
ineni et al., 2001); the weights in this linear loss
are set heuristically by assuming that n-gram pre-
cisions decay exponentially with n. However, this
may not be optimal in practice. We employ MERT
to select these weights by optimizing BLEU score
on a development set.

A related MBR-inspired approach for hyper-
graphs was developed by Zhang and Gildea
(2008). In this work, hypergraphs were rescored to
maximize the expected count of synchronous con-
stituents in the translation. In contrast, our MBR
algorithm directly selects the hypothesis in the
hypergraph with the maximum expected approx-
imate corpus BLEU score (Tromble et al., 2008).
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Figure 1: An example hypergraph.
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2 Translation Hypergraphs

A translation lattice compactly encodes a large
number of hypotheses produced by a phrase-based
SMT system. The corresponding representation
for an SMT system based on SCFGs (e.g. Chi-
ang (2007), Zollmann and Venugopal (2006), Mi
et al. (2008)) is a directed hypergraph or a packed
forest (Huang, 2008).

Formally, a hypergraph is a pair H = 〈V, E〉
consisting of a vertex set V and a set of hyperedges
E ⊆ V∗ × V . Each hyperedge e ∈ E connects a
head vertex h(e) with a sequence of tail vertices
T (e) = {v1, ..., vn}. The number of tail vertices
is called the arity (|e|) of the hyperedge. If the ar-
ity of a hyperedge is zero, h(e) is called a source
vertex. The arity of a hypergraph is the maximum
arity of its hyperedges. A hyperedge of arity 1 is a
regular edge, and a hypergraph of arity 1 is a regu-
lar graph (lattice). Each hyperedge is labeled with
a rule re from the SCFG. The number of nontermi-
nals on the right-hand side of re corresponds with
the arity of e. An example without scores is shown
in Figure 1. A path in a translation hypergraph in-
duces a translation hypothesis E along with its se-
quence of SCFG rules D = r1, r2, ..., rK which,
if applied to the start symbol, derives E. The se-
quence of SCFG rules induced by a path is also
called a derivation tree for E.

3 Minimum Error Rate Training

Given a set of source sentences FS
1 with corre-

sponding reference translations RS
1 , the objective

of MERT is to find a parameter set λ̂M
1 which min-

imizes an automated evaluation criterion under a
linear model:

λ̂M
1 = arg min

λM
1

 SX
s=1

Err
`
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´ff
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In the context of statistical machine translation,
the optimization procedure was first described in
Och (2003) for N -best lists and later extended to
phrase-lattices in Macherey et al. (2008). The al-
gorithm is based on the insight that, under a log-
linear model, the cost function of any candidate
translation can be represented as a line in the plane
if the initial parameter set λM

1 is shifted along a
direction dM

1 . Let C = {E1, ..., EK} denote a set
of candidate translations, then computing the best
scoring translation hypothesis Ê out of C results in
the following optimization problem:

Ê(F ; γ) = arg max
E∈C

n
(λM

1 + γ · dM
1 )> · hM

1 (E, F )
o

= arg max
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ff

= arg max
E∈C

˘
a(E, F ) + γ · b(E, F )| {z }

(∗)

¯
Hence, the total score (∗) for each candidate trans-
lation E ∈ C can be described as a line with
γ as the independent variable. For any particu-
lar choice of γ, the decoder seeks that translation
which yields the largest score and therefore corre-
sponds to the topmost line segment. If γ is shifted
from −∞ to +∞, other translation hypotheses
may at some point constitute the topmost line seg-
ments and thus change the decision made by the
decoder. The entire sequence of topmost line seg-
ments is called upper envelope and provides an ex-
haustive representation of all possible outcomes
that the decoder may yield if γ is shifted along
the chosen direction. Both the translations and
their corresponding line segments can efficiently
be computed without incorporating any error crite-
rion. Once the envelope has been determined, the
translation candidates of its constituent line seg-
ments are projected onto their corresponding error
counts, thus yielding the exact and unsmoothed er-
ror surface for all candidate translations encoded
in C. The error surface can now easily be traversed
in order to find that γ̂ under which the new param-
eter set λM

1 + γ̂ · dM
1 minimizes the global error.

In this section, we present an extension of the
algorithm described in Macherey et al. (2008)
that allows us to efficiently compute and repre-
sent upper envelopes over all candidate transla-
tions encoded in hypergraphs. Conceptually, the
algorithm works by propagating (initially empty)
envelopes from the hypergraph’s source nodes
bottom-up to its unique root node, thereby ex-
panding the envelopes by applying SCFG rules to
the partial candidate translations that are associ-
ated with the envelope’s constituent line segments.
To recombine envelopes, we need two operators:
the sum and the maximum over convex polygons.
To illustrate which operator is applied when, we
transform H = 〈V, E〉 into a regular graph with
typed nodes by (1) marking all vertices v ∈ V with
the symbol ∨ and (2) replacing each hyperedge
e ∈ E , |e| > 1, with a small subgraph consisting
of a new vertex v∧(e) whose incoming and out-
going edges connect the same head and tail nodes
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Algorithm 1 ∧-operation (Sum)
input: associative map a: V → Env(V), hyperarc e
output: Minkowski sum of envelopes over T (e)

for (i = 0; i < |T (e)|; ++i) {
v = Ti(e);
pq.enqueue(〈 v, i, 0〉);

}

L = ∅;
D = 〈 e, ε1 · · · ε|e|〉
while (!pq.empty()) {

〈 v, i, j〉 = pq.dequeue();
` = A[v][j];
D[i+1] = `.D;
if (L.empty() ∨ L.back().x < `.x) {

if (0 < j) {
`.y += L.back().y - A[v][j-1].y;
`.m += L.back().m - A[v][j-1].m;

}
L.push_back(`);
L.back().D = D;

} else {
L.back().y += `.y;
L.back().m += `.m;
L.back().D[i+1] = `.D;
if (0 < j) {

L.back().y -= A[v][j-1].y;
L.back().m -= A[v][j-1].m;

}
}
if (++j < A[v].size())

pq.enqueue(〈 v, i, j〉);
}
return L;

in the transformed graph as were connected by e
in the original graph. The unique outgoing edge
of v∧(e) is associated with the rule re; incoming
edges are not linked to any rule. Figure 2 illus-
trates the transformation for a hyperedge with ar-
ity 3. The graph transformation is isomorphic.

The rules associated with every hyperedge spec-
ify how line segments in the envelopes of a hyper-
edge’s tail nodes can be combined. Suppose we
have a hyperedge e with rule re : X → aX1bX2c
and T (e) = {v1, v2}. Then we substitute X1 and
X2 in the rule with candidate translations associ-
ated with line segments in envelopes Env(v1) and
Env(v2) respectively.

To derive the algorithm, we consider the gen-
eral case of a hyperedge e with rule re : X →
w1X1w2...wnXnwn+1. Because the right-hand
side of re has n nonterminals, the arity of e is
|e| = n. Let T (e) = {v1, ..., vn} denote the
tail nodes of e. We now assume that each tail
node vi ∈ T (e) is associated with the upper en-
velope over all candidate translations that are in-
duced by derivations of the corresponding nonter-
minal symbol Xi. These envelopes shall be de-

Algorithm 2 ∨-operation (Max)
input: array L[0..K-1] containing line objects
output: upper envelope of L

Sort(L:m);
j = 0; K = size(L);
for (i = 0; i < K; ++i) {

` = L[i];
`.x = -∞;
if (0 < j) {

if (L[j-1].m == `.m) {
if (`.y <= L[j-1].y) continue;
--j;

}
while (0 < j) {

`.x = (`.y - L[j-1].y)/
(L[j-1].m - `.m);

if (L[j-1].x < `.x) break;
--j;

}
if (0 == j) `.x = -∞;
L[j++] = `;

} else L[j++] = `;
}
L.resize(j);
return L;

noted by Env(vi). To decompose the problem of
computing and propagating the tail envelopes over
the hyperedge e to its head node, we now define
two operations, one for either node type, to spec-
ify how envelopes associated with the tail vertices
are propagated to the head vertex.

Nodes of Type “∧”: For a type ∧ node, the
resulting envelope is the Minkowski sum over
the envelopes of the incoming edges (Berg et
al., 2008). Since the envelopes of the incoming
edges are convex hulls, the Minkowski sum pro-
vides an upper bound to the number of line seg-
ments that constitute the resulting envelope: the
bound is the sum over the number of line seg-
ments in the envelopes of the incoming edges, i.e.:∣∣Env(v∧(e))

∣∣ ≤ ∑
v∨∈T (e)

∣∣Env(v∨)
∣∣.

Algorithm 1 shows the pseudo code for comput-
ing the Minkowski sum over multiple envelopes.
The line objects ` used in this algorithm are
encoded as 4-tuples, each consisting of the x-
intercept with `’s left-adjacent line stored as `.x,
the slope `.m, the y-intercept `.y, and the (partial)
derivation tree `.D. At the beginning, the leftmost
line segment of each envelope is inserted into a
priority queue pq. The priority is defined in terms
of a line’s x-intercept such that lower values imply
higher priority. Hence, the priority queue enumer-
ates all line segments from left to right in ascend-
ing order of their x-intercepts, which is the order
needed to compute the Minkowski sum.

Nodes of Type “∨”: The operation performed
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Figure 2: Transformation of a hypergraph into
a factor graph and bottom-up propagation of en-
velopes.

at nodes of type “∨” computes the convex hull
over the union of the envelopes propagated over
the incoming edges. This operation is a “max”
operation and it is identical to the algorithm de-
scribed in (Macherey et al., 2008) for phrase lat-
tices. Algorithm 2 contains the pseudo code.

The complete algorithm then works as follows:
Traversing all nodes in H bottom-up in topolog-
ical order, we proceed for each node v ∈ V over
its incoming hyperedges and combine in each such
hyperedge e the envelopes associated with the tail
nodes T (e) by computing their sum according to
Algorithm 1 (∧-operation). For each incoming
hyperedge e, the resulting envelope is then ex-
panded by applying the rule re to its constituent
line segments. The envelopes associated with dif-
ferent incoming hyperedges of node v are then
combined and reduced according to Algorithm 2
(∨-operation). By construction, the envelope at
the root node is the convex hull over the line seg-
ments of all candidate translations that can be de-
rived from the hypergraph.

The suggested algorithm has similar properties
as the algorithm presented in (Macherey et al.,
2008). In particular, it has the same upper bound
on the number of line segments that constitute the
envelope at the root node, i.e, the size of this enve-
lope is guaranteed to be no larger than the number
of edges in the transformed hypergraph.

4 Minimum Bayes-Risk Decoding

We first review Minimum Bayes-Risk (MBR) de-
coding for statistical MT. An MBR decoder seeks
the hypothesis with the least expected loss under a
probability model (Bickel and Doksum, 1977). If
we think of statistical MT as a classifier that maps

a source sentence F to a target sentence E, the
MBR decoder can be expressed as follows:

Ê = argmin
E′∈G

∑
E∈G

L(E,E′)P (E|F ), (1)

where L(E,E′) is the loss between any two hy-
potheses E and E′, P (E|F ) is the probability
model, and G is the space of translations (N -best
list, lattice, or a hypergraph).

MBR decoding for translation can be performed
by reranking an N -best list of hypotheses gener-
ated by an MT system (Kumar and Byrne, 2004).
This reranking can be done for any sentence-
level loss function such as BLEU (Papineni et al.,
2001), Word Error Rate, or Position-independent
Error Rate.

Recently, Tromble et al. (2008) extended
MBR decoding to translation lattices under an
approximate BLEU score. They approximated
log(BLEU) score by a linear function of n-gram
matches and candidate length. If E and E′ are the
reference and the candidate translations respec-
tively, this linear function is given by:

G(E,E′) = θ0|E′|+
∑
w

θ|w|#w(E′)δw(E), (2)

where w is an n-gram present in either E or E′,
and θ0, θ1, ..., θN are weights which are deter-
mined empirically, where N is the maximum n-
gram order.

Under such a linear decomposition, the MBR
decoder (Equation 1) can be written as

Ê = argmax
E′∈G

θ0|E′|+
∑
w

θ|w|#w(E′)p(w|G), (3)

where the posterior probability of an n-gram in the
lattice is given by

p(w|G) =
∑
E∈G

1w(E)P (E|F ). (4)

Tromble et al. (2008) implement the MBR
decoder using Weighted Finite State Automata
(WFSA) operations. First, the set of n-grams
is extracted from the lattice. Next, the posterior
probability of each n-gram is computed. A new
automaton is then created by intersecting each n-
gram with weight (from Equation 2) to an un-
weighted lattice. Finally, the MBR hypothesis is
extracted as the best path in the automaton. We
will refer to this procedure as FSAMBR.

The above steps are carried out one n-gram at
a time. For a moderately large lattice, there can
be several thousands of n-grams and the proce-
dure becomes expensive. We now present an alter-
nate approximate procedure which can avoid this
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enumeration making the resulting algorithm much
faster than FSAMBR.

4.1 Efficient MBR for lattices
The key idea behind this new algorithm is to
rewrite the n-gram posterior probability (Equa-
tion 4) as follows:

p(w|G) =
∑
E∈G

∑
e∈E

f(e, w,E)P (E|F ) (5)

where f(e, w,E) is a score assigned to edge e on
path E containing n-gram w:

f(e, w,E) =


1 w ∈ e, p(e|G) > p(e′|G),

e′ precedes e on E
0 otherwise

(6)

In other words, for each path E, we count the edge
that contributes n-gram w and has the highest edge
posterior probability relative to its predecessors on
the path E; there is exactly one such edge on each
lattice path E.

We note that f(e, w,E) relies on the full path
E which means that it cannot be computed based
on local statistics. We therefore approximate the
quantity f(e, w,E) with f∗(e, w,G) that counts
the edge e with n-gram w that has the highest arc
posterior probability relative to predecessors in the
entire lattice G. f∗(e, w,G) can be computed lo-
cally, and the n-gram posterior probability based
on f∗ can be determined as follows:

p(w|G) =
X
E∈G

X
e∈E

f∗(e, w,G)P (E|F ) (7)

=
X
e∈E

1w∈ef
∗(e, w,G)

X
E∈G

1E(e)P (E|F )

=
X
e∈E

1w∈ef
∗(e, w,G)P (e|G),

where P (e|G) is the posterior probability of a lat-
tice edge. The algorithm to perform Lattice MBR
is given in Algorithm 3. For each node t in the lat-
tice, we maintain a quantity Score(w, t) for each
n-gram w that lies on a path from the source node
to t. Score(w, t) is the highest posterior probabil-
ity among all edges on the paths that terminate on t
and contain n-gram w. The forward pass requires
computing the n-grams introduced by each edge;
to do this, we propagate n-grams (up to maximum
order −1) terminating on each node.

4.2 Extension to Hypergraphs
We next extend the Lattice MBR decoding algo-
rithm (Algorithm 3) to rescore hypergraphs pro-
duced by a SCFG based MT system. Algorithm 4
is an extension to the MBR decoder on lattices

Algorithm 3 MBR Decoding on Lattices
1: Sort the lattice nodes topologically.
2: Compute backward probabilities of each node.
3: Compute posterior prob. of each n-gram:
4: for each edge e do
5: Compute edge posterior probability P (e|G).
6: Compute n-gram posterior probs. P (w|G):
7: for each n-gram w introduced by e do
8: Propagate n− 1 gram suffix to he.
9: if p(e|G) > Score(w, T (e)) then

10: Update posterior probs. and scores:
p(w|G) += p(e|G) − Score(w, T (e)).
Score(w, he) = p(e|G).

11: else
12: Score(w, he) = Score(w, T (e)).
13: end if
14: end for
15: end for
16: Assign scores to edges (given by Equation 3).
17: Find best path in the lattice (Equation 3).

(Algorithm 3). However, there are important dif-
ferences when computing the n-gram posterior
probabilities (Step 3). In this inside pass, we now
maintain both n-gram prefixes and suffixes (up to
the maximum order−1) on each hypergraph node.
This is necessary because unlike a lattice, new n-
grams may be created at subsequent nodes by con-
catenating words both to the left and the right side
of the n-gram. When the arity of the edge is 2,
a rule has the general form aX1bX2c, where X1

and X2 are sequences from tail nodes. As a result,
we need to consider all new sequences which can
be created by the cross-product of the n-grams on
the two tail nodes. E.g. if X1 = {c, cd, d} and
X2 = {f, g}, then a total of six sequences will
result. In practice, such a cross-product is not pro-

Algorithm 4 MBR Decoding on Hypergraphs
1: Sort the hypergraph nodes topologically.
2: Compute inside probabilities of each node.
3: Compute posterior prob. of each hyperedge P (e|G).
4: Compute posterior prob. of each n-gram:
5: for each hyperedge e do
6: Merge the n-grams on the tail nodes T (e). If the

same n-gram is present on multiple tail nodes, keep
the highest score.

7: Apply the rule on e to the n-grams on T (e).
8: Propagate n− 1 gram prefixes/suffixes to he.
9: for each n-gram w introduced by this hyperedge do

10: if p(e|G) > Score(w, T (e)) then
11: p(w|G) += p(e|G) − Score(w, T (e))

Score(w, he) = p(e|G)
12: else
13: Score(w, he) = Score(w, T (e))
14: end if
15: end for
16: end for
17: Assign scores to hyperedges (Equation 3).
18: Find best path in the hypergraph (Equation 3).
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hibitive when the maximum n-gram order in MBR
does not exceed the order of the n-gram language
model used in creating the hypergraph. In the lat-
ter case, we will have a small set of unique prefixes
and suffixes on the tail nodes.

5 MERT for MBR Parameter
Optimization

Lattice MBR Decoding (Equation 3) assumes a
linear form for the gain function (Equation 2).
This linear function contains n + 1 parameters
θ0, θ1, ..., θN , where N is the maximum order of
the n-grams involved. Tromble et al. (2008) ob-
tained these factors as a function of n-gram preci-
sions derived from multiple training runs. How-
ever, this does not guarantee that the resulting
linear score (Equation 2) is close to the corpus
BLEU. We now describe how MERT can be used
to estimate these factors to achieve a better ap-
proximation to the corpus BLEU.

We recall that MERT selects weights in a lin-
ear model to optimize an error criterion (e.g. cor-
pus BLEU) on a training set. The lattice MBR
decoder (Equation 3) can be written as a lin-
ear model: Ê = argmaxE′∈G

∑N
i=0 θigi(E′, F ),

where g0(E′, F ) = |E′| and gi(E′, F ) =∑
w:|w|=i #w(E′)p(w|G).
The linear approximation to BLEU may not

hold in practice for unseen test sets or language-
pairs. Therefore, we would like to allow the de-
coder to backoff to the MAP translation in such
cases. To do that, we introduce an additional fea-
ture function gN+1(E,F ) equal to the original de-
coder cost for this sentence. A weight assignment
of 1.0 for this feature function and zeros for the
other feature functions would imply that the MAP
translation is chosen. We now have a total of N+2
feature functions which we optimize using MERT
to obtain highest BLEU score on a training set.

6 Experiments

We now describe our experiments to evaluate
MERT and MBR on lattices and hypergraphs, and
show how MERT can be used to tune MBR pa-
rameters.

6.1 Translation Tasks
We report results on two tasks. The first one is
the constrained data track of the NIST Arabic-
to-English (aren) and Chinese-to-English (zhen)
translation task1. On this task, the parallel and the

1http://www.nist.gov/speech/tests/mt

Dataset # of sentences
aren zhen

dev 1797 1664
nist02 1043 878
nist03 663 919

Table 1: Statistics over the NIST dev/test sets.

monolingual data included all the allowed train-
ing sets for the constrained track. Table 1 reports
statistics computed over these data sets. Our de-
velopment set (dev) consists of the NIST 2005 eval
set; we use this set for optimizing MBR parame-
ters. We report results on NIST 2002 and NIST
2003 evaluation sets.

The second task consists of systems for 39
language-pairs with English as the target language
and trained on at most 300M word tokens mined
from the web and other published sources. The de-
velopment and test sets for this task are randomly
selected sentences from the web, and contain 5000
and 1000 sentences respectively.

6.2 MT System Description

Our phrase-based statistical MT system is simi-
lar to the alignment template system described in
(Och and Ney, 2004; Tromble et al., 2008). Trans-
lation is performed using a standard dynamic pro-
gramming beam-search decoder (Och and Ney,
2004) using two decoding passes. The first de-
coder pass generates either a lattice or an N -best
list. MBR decoding is performed in the second
pass.

We also train two SCFG-based MT systems:
a hierarchical phrase-based SMT (Chiang, 2007)
system and a syntax augmented machine transla-
tion (SAMT) system using the approach described
in Zollmann and Venugopal (2006). Both systems
are built on top of our phrase-based systems. In
these systems, the decoder generates an initial hy-
pergraph or an N -best list, which are then rescored
using MBR decoding.

6.3 MERT Results

Table 2 shows runtime experiments for the hyper-
graph MERT implementation in comparison with
the phrase-lattice implementation on both the aren
and the zhen system. The first two columns show
the average amount of time in msecs that either
algorithm requires to compute the upper envelope
when applied to phrase lattices. Compared to the
algorithm described in (Macherey et al., 2008)
which is optimized for phrase lattices, the hyper-
graph implementation causes a small increase in
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Avg. Runtime/sent [msec]
(Macherey 2008) Suggested Alg.
aren zhen aren zhen

phrase lattice 8.57 7.91 10.30 8.65
hypergraph – – 8.19 8.11

Table 2: Average time for computing envelopes.

running time. This increase is mainly due to the
representation of line segments; while the phrase-
lattice implementation stores a single backpointer,
the hypergraph version stores a vector of back-
pointers.

The last two columns show the average amount
of time that is required to compute the upper en-
velope on hypergraphs. For comparison, we prune
hypergraphs to the same density (# of edges per
edge on the best path) and achieve identical run-
ning times for computing the error surface.

6.4 MBR Results

We first compare the new lattice MBR (Algo-
rithm 3) with MBR decoding on 1000-best lists
and FSAMBR (Tromble et al., 2008) on lattices
generated by the phrase-based systems; evaluation
is done using both BLEU and average run-time per
sentence (Table 3). Note that N -best MBR uses
a sentence BLEU loss function. The new lattice
MBR algorithm gives about the same performance
as FSAMBR while yielding a 20X speedup.

We next report the performance of MBR on hy-
pergraphs generated by Hiero/SAMT systems. Ta-
ble 4 compares Hypergraph MBR (HGMBR) with
MAP and MBR decoding on 1000 best lists. On
some systems such as the Arabic-English SAMT,
the gains from Hypergraph MBR over 1000-best
MBR are significant. In other cases, Hypergraph
MBR performs at least as well as N -best MBR.
In all cases, we observe a 7X speedup in run-
time. This shows the usefulness of Hypergraph
MBR decoding as an efficient alternative to N -
best MBR.

6.5 MBR Parameter Tuning with MERT

We now describe the results by tuning MBR n-
gram parameters (Equation 2) using MERT. We
first compute N + 1 MBR feature functions on
each edge of the lattice/hypergraph. We also in-
clude the total decoder cost on the edge as as addi-
tional feature function. MERT is then performed
to optimize the BLEU score on a development set;
For MERT, we use 40 random initial parameters as
well as parameters computed using corpus based
statistics (Tromble et al., 2008).

BLEU (%) Avg.
aren zhen time

nist03 nist02 nist03 nist02 (ms.)
MAP 54.2 64.2 40.1 39.0 -

N -best MBR 54.3 64.5 40.2 39.2 3.7
Lattice MBR

FSAMBR 54.9 65.2 40.6 39.5 3.7
LatMBR 54.8 65.2 40.7 39.4 0.2

Table 3: Lattice MBR for a phrase-based system.

BLEU (%) Avg.
aren zhen time

nist03 nist02 nist03 nist02 (ms.)
Hiero

MAP 52.8 62.9 41.0 39.8 -
N -best MBR 53.2 63.0 41.0 40.1 3.7

HGMBR 53.3 63.1 41.0 40.2 0.5
SAMT

MAP 53.4 63.9 41.3 40.3 -
N -best MBR 53.8 64.3 41.7 41.1 3.7

HGMBR 54.0 64.6 41.8 41.1 0.5

Table 4: Hypergraph MBR for Hiero/SAMT systems.

Table 5 shows results for NIST systems. We
report results on nist03 set and present three sys-
tems for each language pair: phrase-based (pb),
hierarchical (hier), and SAMT; Lattice MBR is
done for the phrase-based system while HGMBR
is used for the other two. We select the MBR
scaling factor (Tromble et al., 2008) based on the
development set; it is set to 0.1, 0.01, 0.5, 0.2, 0.5
and 1.0 for the aren-phrase, aren-hier, aren-samt,
zhen-phrase zhen-hier and zhen-samt systems re-
spectively. For the multi-language case, we train
phrase-based systems and perform lattice MBR
for all language pairs. We use a scaling factor of
0.7 for all pairs. Additional gains can be obtained
by tuning this factor; however, we do not explore
that dimension in this paper. In all cases, we prune
the lattices/hypergraphs to a density of 30 using
forward-backward pruning (Sixtus and Ortmanns,
1999).

We consider a BLEU score difference to be a)
gain if is at least 0.2 points, b) drop if it is at most
-0.2 points, and c) no change otherwise. The re-
sults are shown in Table 6. In both tables, the fol-
lowing results are reported: Lattice/HGMBR with
default parameters (−5, 1.5, 2, 3, 4) computed us-
ing corpus statistics (Tromble et al., 2008),
Lattice/HGMBR with parameters derived from
MERT both without/with the baseline model cost
feature (mert−b, mert+b). For multi-language
systems, we only show the # of language-pairs
with gains/no-changes/drops for each MBR vari-
ant with respect to the MAP translation.
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We observed in the NIST systems that MERT
resulted in short translations relative to MAP on
the unseen test set. To prevent this behavior,
we modify the MERT error criterion to include
a sentence-level brevity scorer with parameter α:
BLEU+brevity(α). This brevity scorer penalizes
each candidate translation that is shorter than the
average length over its reference translations, us-
ing a penalty term which is linear in the difference
between either length. We tune α on the develop-
ment set so that the brevity score of MBR transla-
tion is close to that of the MAP translation.

In the NIST systems, MERT yields small im-
provements on top of MBR with default param-
eters. This is the case for Arabic-English Hi-
ero/SAMT. In all other cases, we see no change
or even a slight degradation due to MERT.
We hypothesize that the default MBR parame-
ters (Tromble et al., 2008) are well tuned. There-
fore there is little gain by additional tuning using
MERT.

In the multi-language systems, the results show
a different trend. We observe that MBR with de-
fault parameters results in gains on 18 pairs, no
differences on 9 pairs, and losses on 12 pairs.
When we optimize MBR features with MERT, the
number of language pairs with gains/no changes/-
drops is 22/5/12. Thus, MERT has a bigger impact
here than in the NIST systems. We hypothesize
that the default MBR parameters are sub-optimal
for some language pairs and that MERT helps to
find better parameter settings. In particular, MERT
avoids the need for manually tuning these param-
eters by language pair.

Finally, when baseline model costs are added
as an extra feature (mert+b), the number of pairs
with gains/no changes/drops is 26/8/5. This shows
that this feature can allow MBR decoding to back-
off to the MAP translation. When MBR does not
produce a higher BLEU score relative to MAP
on the development set, MERT assigns a higher
weight to this feature function. We see such an
effect for 4 systems.

7 Discussion

We have presented efficient algorithms
which extend previous work on lattice-based
MERT (Macherey et al., 2008) and MBR de-
coding (Tromble et al., 2008) to work with
hypergraphs. Our new MERT algorithm can work
with both lattices and hypergraphs. On lattices, it
achieves similar run-times as the implementation

System BLEU (%)
MAP MBR

default mert-b mert+b
aren.pb 54.2 54.8 54.8 54.9
aren.hier 52.8 53.3 53.5 53.7
aren.samt 53.4 54.0 54.4 54.0
zhen.pb 40.1 40.7 40.7 40.9
zhen.hier 41.0 41.0 41.0 41.0
zhen.samt 41.3 41.8 41.6 41.7

Table 5: MBR Parameter Tuning on NIST systems

MBR wrt. MAP default mert-b mert+b
# of gains 18 22 26
# of no-changes 9 5 8
# of drops 12 12 5

Table 6: MBR on Multi-language systems.

described in Macherey et al. (2008). The new
Lattice MBR decoder achieves a 20X speedup
relative to either FSAMBR implementation
described in Tromble et al. (2008) or MBR on
1000-best lists. The algorithm gives comparable
results relative to FSAMBR. On hypergraphs
produced by Hierarchical and Syntax Augmented
MT systems, our MBR algorithm gives a 7X
speedup relative to 1000-best MBR while giving
comparable or even better performance.

Lattice MBR decoding is obtained under a lin-
ear approximation to BLEU, where the weights
are obtained using n-gram precisions derived from
development data. This may not be optimal in
practice for unseen test sets and language pairs,
and the resulting linear loss may be quite differ-
ent from the corpus level BLEU. In this paper, we
have described how MERT can be employed to
estimate the weights for the linear loss function
to maximize BLEU on a development set. On an
experiment with 40 language pairs, we obtain im-
provements on 26 pairs, no difference on 8 pairs
and drops on 5 pairs. This was achieved with-
out any need for manual tuning for each language
pair. The baseline model cost feature helps the al-
gorithm effectively back off to the MAP transla-
tion in language pairs where MBR features alone
would not have helped.

MERT and MBR decoding are popular tech-
niques for incorporating the final evaluation met-
ric into the development of SMT systems. We be-
lieve that our efficient algorithms will make them
more widely applicable in both SCFG-based and
phrase-based MT systems.
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