
Proceedings of the 47th Annual Meeting of the ACL and the 4th IJCNLP of the AFNLP, pages 333–341,
Suntec, Singapore, 2-7 August 2009. c©2009 ACL and AFNLP

Phrase-Based Statistical Machine Translation as a Traveling Salesman
Problem

Mikhail Zaslavskiy∗ Marc Dymetman Nicola Cancedda
Mines ParisTech, Institut Curie Xerox Research Centre Europe
77305 Fontainebleau, France 38240 Meylan, France

mikhail.zaslavskiy@ensmp.fr {marc.dymetman,nicola.cancedda}@xrce.xerox.com

Abstract

An efficient decoding algorithm is a cru-
cial element of any statistical machine
translation system. Some researchers have
noted certain similarities between SMT
decoding and the famous Traveling Sales-
man Problem; in particular (Knight, 1999)
has shown that any TSP instance can be
mapped to a sub-case of a word-based
SMT model, demonstrating NP-hardness
of the decoding task. In this paper, we fo-
cus on the reverse mapping, showing that
any phrase-based SMT decoding problem
can be directly reformulated as a TSP. The
transformation is very natural, deepens our
understanding of the decoding problem,
and allows direct use of any of the pow-
erful existing TSP solvers for SMT de-
coding. We test our approach on three
datasets, and compare a TSP-based de-
coder to the popular beam-search algo-
rithm. In all cases, our method provides
competitive or better performance.

1 Introduction

Phrase-based systems (Koehn et al., 2003) are
probably the most widespread class of Statistical
Machine Translation systems, and arguably one of
the most successful. They use aligned sequences
of words, called biphrases, as building blocks for
translations, and score alternative candidate trans-
lations for the same source sentence based on a
log-linear model of the conditional probability of
target sentences given the source sentence:

p(T, a|S) =
1

ZS

exp
∑

k

λkhk(S, a, T) (1)

where thehk are features, that is, functions of the
source stringS, of the target stringT , and of the

∗ This work was conducted during an internship at
XRCE.

alignmenta, where the alignment is a representa-
tion of the sequence of biphrases that where used
in order to buildT from S; Theλk’s are weights
andZS is a normalization factor that guarantees
that p is a proper conditional probability distri-
bution over the pairs(T, A). Some features are
local, i.e. decompose over biphrases and can be
precomputed and stored in advance. These typ-
ically include forward and reverse phrase condi-
tional probability featureslog p(t̃|s̃) as well as
log p(s̃|t̃), where s̃ is the source side of the
biphrase and̃t the target side, and the so-called
“phrase penalty” and “word penalty” features,
which count the number of phrases and words in
the alignment. Other features arenon-local, i.e.
depend on the order in which biphrases appear in
the alignment. Typical non-local features include
one or more n-gram language models as well as
a distortion feature, measuring by how much the
order of biphrases in the candidate translation de-
viates from their order in the source sentence.

Given such a model, where theλi’s have been
tuned on a development set in order to minimize
some error rate (see e.g. (Lopez, 2008)), together
with a library of biphrases extracted from some
large training corpus, adecoderimplements the
actual search among alternative translations:

(a∗, T ∗) = arg max
(a,T)

P (T, a|S). (2)

The decoding problem (2) is a discrete optimiza-
tion problem. Usually, it is very hard to find the
exact optimum and, therefore, an approximate so-
lution is used. Currently, most decoders are based
on some variant of a heuristic left-to-right search,
that is, they attempt to build a candidate translation
(a, T) incrementally, from left to right, extending
the current partial translation at each step with a
new biphrase, and computing a score composed of
two contributions: one for the known elements of
the partial translation so far, and one a heuristic

333

estimate of the remaining cost for completing the
translation. The variant which is mostly used is
a form ofbeam-search, where several partial can-
didates are maintained in parallel, and candidates
for which the current score is too low are pruned
in favor of candidates that are more promising.

We will see in the next section that some char-
acteristics of beam-search make it a suboptimal
choice for phrase-based decoding, and we will
propose an alternative. This alternative is based on
the observation that phrase-based decoding can be
very naturally cast as a Traveling Salesman Prob-
lem (TSP), one of the best studied problems in
combinatorial optimization. We will show that this
formulation is not only a powerful conceptual de-
vice for reasoning on decoding, but is also prac-
tically convenient: in the same amount of time,
off-the-shelf TSP solvers can find higher scoring
solutions than the state-of-the art beam-search de-
coder implemented inMoses(Hoang and Koehn,
2008).

2 Related work

Beam-search decoding
In beam-search decoding, candidate translation
prefixes are iteratively extended with new phrases.
In its most widespread variant,stack decoding,
prefixes obtained by consuming the same number
of source words, no matter which, are grouped to-
gether in the samestack1 and compete against one
another.Thresholdandhistogrampruning are ap-
plied: the former consists in dropping all prefixes
having a score lesser than the best score by more
than some fixed amount (a parameter of the algo-
rithm), the latter consists in dropping all prefixes
below a certain rank.

While quite successful in practice, stack decod-
ing presents some shortcomings. A first one is that
prefixes obtained by translating different subsets
of source words compete against one another. In
one early formulation of stack decoding for SMT
(Germann et al., 2001), the authors indeed pro-
posed to lazily create one stack for each subset
of source words, but acknowledged issues with
the potential combinatorial explosion in the num-
ber of stacks. This problem is reduced by the use
of heuristics for estimating the cost of translating
the remaining part of the source sentence. How-

1While commonly adopted in the speech and SMT com-
munities, this is a bit of a misnomer, since the used data struc-
tures are priority queues, not stacks.

ever, this solution is only partially satisfactory. On
the one hand, heuristics should be computationally
light, much lighter than computing the actual best
score itself, while, on the other hand, the heuris-
tics should be tight, as otherwise pruning errors
will ensue. There is no clear criterion to guide
in this trade-off. Even when good heuristics are
available, the decoder will show a bias towards
putting at the beginning the translation of a certain
portion of the source, either because this portion
is less ambiguous (i.e. its translation has larger
conditional probability) or because the associated
heuristics is less tight, hence more optimistic. Fi-
nally, since the translation is built left-to-right the
decoder cannot optimize the search by taking ad-
vantage of highly unambiguous and informative
portions that should be best translated far from the
beginning. All these reasons motivate considering
alternative decoding strategies.

Word-based SMT and the TSP
As already mentioned, the similarity between
SMT decoding and TSP was recognized in
(Knight, 1999), who focussed on showing that
any TSP can be reformulated as a sub-class of the
SMT decoding problem, proving that SMT decod-
ing is NP-hard. Following this work, the exis-
tence of many efficient TSP algorithms then in-
spired certain adaptations of the underlying tech-
niques to SMT decoding for word-based models.
Thus, (Germann et al., 2001) adapt a TSP sub-
tour elimination strategy to an IBM-4 model, us-
ing generic Integer Programming techniques. The
paper comes close to a TSP formulation of de-
coding with IBM-4 models, but does not pursue
this route to the end, stating that“It is difficult
to convert decoding into straight TSP, but a wide
range of combinatorial optimization problems (in-
cluding TSP) can be expressed in the more gen-
eral framework of linear integer programming”.
By employing generic IP techniques, it is how-
ever impossible to rely on the variety of more
efficient both exact and approximate approaches
which have been designed specifically for the TSP.
In (Tillmann and Ney, 2003) and (Tillmann, 2006),
the authors modify a certain Dynamic Program-
ming technique used for TSP for use with an IBM-
4 word-based model and a phrase-based model re-
spectively. However, to our knowledge, none of
these works has proposed a direct reformulation
of these SMT models as TSP instances. We be-
lieve we are the first to do so, working in our case

334

with the mainstream phrase-based SMT models,
and therefore making it possible to directly apply
existing TSP solvers to SMT.

3 The Traveling Salesman Problem and
its variants

In this paper the Traveling Salesman Problem ap-
pears in four variants:

STSP. The most standard, and most studied,
variant is theSymmetric TSP: we are given a non-
directed graphG on N nodes, where the edges
carry real-valued costs. The STSP problem con-
sists in finding a tour of minimal total cost, where
a tour (also called Hamiltonian Circuit) is a “cir-
cular” sequence of nodes visiting each node of the
graph exactly once;

ATSP. TheAsymmetric TSP, or ATSP, is a vari-
ant where the underlying graphG is directed and
where, for i and j two nodes of the graph, the
edges (i,j) and (j,i) may carry different costs.

SGTSP. The Symmetric Generalized TSP, or
SGTSP: given a non-oriented graphG of |G|
nodes with edges carrying real-valued costs, given
a partition of these|G| nodes intom non-empty,
disjoint, subsets (called clusters), find a circular
sequence ofm nodes of minimal total cost, where
each cluster is visited exactly once.

AGTSP. TheAsymmetric Generalized TSP, or
AGTSP: similar to the SGTSP, butG is now a di-
rected graph.

The STSP is often simply denoted TSP in the
literature, and is known to be NP-hard (Applegate
et al., 2007); however there has been enormous
interest in developing efficient solvers for it, both
exact and approximate.

Most of existing algorithms are designed for
STSP, but ATSP, SGTSPandAGTSPmay be re-
duced toSTSP, and therefore solved bySTSPal-
gorithms.

3.1 Reductions AGTSP→ATSP→STSP

The transformation of the AGTSP into the ATSP,
introduced by (Noon and Bean, 1993)), is illus-
trated in Figure (1). In this diagram, we assume
that Y1, . . . , YK are the nodes of a given cluster,
while X andZ are arbitrary nodes belonging to
other clusters. In the transformed graph, we in-
troduce edges between theYi’s in order to form a
cycle as shown in the figure, where each edge has
a large negative cost−K. We leave alone the in-
coming edge toYi from X, but the outgoing edge

Figure 1: AGTSP→ATSP.

from Yi to X has its origin changed toYi−1. A
feasible tour in the original AGTSP problem pass-
ing throughX, Yi, Z will then be “encoded” as a
tour of the transformed graph that first traverses
X , then traversesYi, . . . , YK , . . . , Yi−1, then tra-
versesZ (this encoding will have the same cost as
the original cost, minus(k − 1)K). Crucially, if
K is large enough, then the solver for the trans-
formed ATSP graph will tend to traverse as many
K edges as possible, meaning that it will traverse
exactlyk − 1 such edges in the cluster, that is, it
will produce an encoding of some feasible tour of
the AGTSP problem.

As for the transformation ATSP→STSP, several
variants are described in the literature, e.g. (Ap-
plegate et al., 2007, p. 126); the one we use is from
(Wikipedia, 2009) (not illustrated here for lack of
space).

3.2 TSP algorithms

TSP is one of the most studied problems in com-
binatorial optimization, and even a brief review of
existing approaches would take too much place.
Interested readers may consult (Applegate et al.,
2007; Gutin, 2003) for good introductions.

One of the best existing TSP solvers is imple-
mented in the open sourceConcordepackage (Ap-
plegate et al., 2005).Concordeincludes the fastest
exact algorithm and one of the most efficient im-
plementations of the Lin-Kernighan (LK) heuris-
tic for finding an approximate solution. LK works
by generating an initial random feasible solution
for the TSP problem, and then repeatedly identi-
fying an ordered subset ofk edges in the current
tour and an ordered subset ofk edges not included
in the tour such that when they are swapped the
objective function is improved. This is somewhat

335

reminiscent of theGreedy decodingof (Germann
et al., 2001), but in LK several transformations can
be applied simultaneously, so that the risk of being
stuck in a local optimum is reduced (Applegate et
al., 2007, chapter 15).

As will be shown in the next section, phrase-
based SMT decoding can be directly reformulated
as an AGTSP. Here we useConcorde through
first transforming AGTSP into STSP, but it might
also be interesting in the future to use algorithms
specifically designed for AGTSP, which could im-
prove efficiency further (see Conclusion).

4 Phrase-based Decoding as TSP

In this section we reformulate the SMT decoding
problem as anAGTSP. We will illustrate the ap-
proach through a simple example: translating the
French sentence“cette traduction automatique est
curieuse” into English. We assume that the rele-
vant biphrases for translating the sentence are as
follows:

ID source target
h cette this
t traduction translation
ht cette traduction this translation
mt traduction automatique machine translation
a automatique automatic
m automatique machine
i est is
s curieuse strange
c curieuse curious

Under this model, we can produce, among others,
the following translations:

h · mt · i · s this machine translation is strange
h · c · t · i · a this curious translation is automatic
ht · s · i · a this translation strange is automatic

where we have indicated on the left the ordered se-
quence of biphrases that leads to each translation.

We now formulate decoding as an AGTSP, in
the following way. The graph nodes are all the
possible pairs(w, b), wherew is a source word in
the source sentences andb is a biphrase contain-
ing this source word. The graph clusters are the
subsets of the graph nodes that share a common
source wordw.

The costs of a transition between nodesM and
N of the graph are defined as follows:
(a) If M is of the form(w, b) andN of the form
(w′, b), in whichb is a single biphrase, andw and
w′ are consecutive words inb, then the transition
cost is 0: once we commit to using the first word
of b, there is no additional cost for traversing the

other source words covered byb.
(b) If M = (w, b), where w is the rightmost
source wordin the biphraseb, andN = (w′, b′),
wherew′ 6= w is the leftmost source wordin b′,
then the transition cost corresponds to the cost
of selectingb′ just after b; this will correspond
to “consuming” the source side ofb′ after having
consumed the source side ofb (whatever their rel-
ative positions in the source sentence), and to pro-
ducing the target side ofb′ directly after the target
side ofb; the transition cost is then the addition of
several contributions (weighted by their respective
λ (not shown), as in equation 1):

• The cost associated with the features local to
b in the biphrase library;

• The “distortion” cost of consuming the
source wordw′ just after the source wordw:
|pos(w′) − pos(w) − 1|, where pos(w) and
pos(w′) are the positions ofw andw′ in the
source sentence.

• The language model cost of producing the
target words ofb′ right after the target words
of b; with a bigram language model, this cost
can be precomputed directly fromb and b′.
This restriction to bigram models will be re-
moved in Section 4.1.

(c) In all other cases, the transition cost is infinite,
or, in other words, there is no edge in the graph
betweenM andN .

A special cluster containing a single node (de-
noted by $-$$ in the figures), and corresponding to
specialbeginning-of-sentencesymbols must also
be included: the corresponding edges and weights
can be worked out easily. Figures 2 and 3 give
some illustrations of what we have just described.

4.1 From Bigram to N-gram LM

Successful phrase-based systems typically employ
language models of order higher than two. How-
ever, our models so far have the following impor-
tant “Markovian” property: the cost of a path is
additive relative to the costs of transitions. For
example, in the example of Figure 3, the cost of
this · machine translation· is · strange, can only
take into account the conditional probability of the
word strangerelative to the wordis, but not rela-
tive to the wordstranslationandis. If we want to
extend the power of the model to general n-gram
language models, and in particular to the 3-gram

336

Figure 2: Transition graph for the source sentence
cette traduction automatique est curieuse. Only
edges entering or exiting the node traduction−mt
are shown. The only successor to[traduction−
mt] is [automatique− mt], and[cette− ht] is not a
predecessor of[traduction− mt].

Figure 3: A GTSP tours is illustrated, correspond-
ing to the displayed output.

case (on which we concentrate here, but the tech-
niques can be easily extended to the general case),
the following approach can be applied.

Compiling Out for Trigram models
This approach consists in “compiling out” all
biphrases with a target side of only one word.
We replace each biphraseb with single-word tar-
get side by “extended” biphrasesb1, . . . , br, which
are “concatenations” ofb and some other biphrase
b′ in the library.2 To give an example, consider
that we: (1) remove from the biphrase library the
biphrasei, which has a single word target, and (2)
add to the library the extended biphrasesmti, ti,
si, . . ., that is, all the extended biphrases consist-
ing of the concatenation of a biphrase in the library
with i, then it is clear that these extended biphrases
will provide enough context to compute a trigram
probability for the target word produced immedi-
ately next (in the examples, for the wordsstrange,

2In the figures, such “concatenations” are denoted by
[b′ · b] ; they are interpreted as encapsulations of first con-
suming the source side ofb

′, whether or not this source side
precedes the source side ofb in the source sentence, produc-
ing the target side ofb′, consuming the source side ofb, and
producing the target side ofb immediately after that ofb′.

Figure 4: Compiling-out of biphrasei: (est,is).

automaticandautomaticrespectively). If we do
that exhaustively for all biphrases (relevant for the
source sentence at hand) that, likei, have a single-
word target, we will obtain a representation that
allows a trigram language model to be computed
at each point.

The situation becomes clearer by looking at Fig-
ure 4, where we have only eliminated the biphrase
i, and only shown some of the extended biphrases
that now encapsulatei, and where we show one
valid circuit. Note that we are now able to as-
sociate with the edge connecting the two nodes
(est, mti) and(curieuse, s) a trigram cost because
mti provides a large enough target context.

While this exhaustive “compiling out” method
works in principle, it has a serious defect: if for
the sentence to be translated, there arem relevant
biphrases, among whichk have single-word tar-
gets, then we will create on the order ofkm ex-
tended biphrases, which may represent a signif-
icant overhead for the TSP solver, as soon ask

is large relative tom, which is typically the case.
The problem becomes even worse if we extend the
compiling-out method to n-gram language models
with n > 3. In the Future Work section below,
we describe a powerful approach for circumvent-
ing this problem, but with which we have not ex-
perimented yet.

5 Experiments

5.1 Monolingual word re-ordering

In the first series of experiments we consider the
artificial task of reconstructing the original word
order of a given English sentence. First, we ran-
domly permute words in the sentence, and then
we try to reconstruct the original order by max-

337

10
0

10
2

10
4−0.8

−0.6

−0.4

−0.2

0

0.2

Time (sec)

D
ec

od
er

 s
co

re

BEAM−SEARCH
TSP

10
0

10
2

10
4−0.4

−0.3

−0.2

−0.1

0

0.1

Time (sec)

D
ec

od
er

 s
co

re

BEAM−SEARCH
TSP

(a) (b) (c) (d)

Figure 5: (a), (b): LM and BLEU scores as functions of time for a bigramLM; (c), (d): the same for
a trigram LM. The x axis corresponds to the cumulative time for processing the test set; for (a) and (c),
the y axis corresponds to the mean difference (over all sentences) between the lm score of the output
and the lm score of the reference normalized by the sentence length N: (LM(ref)-LM(true))/N. The solid
line with star marks corresponds to using beam-search with different pruning thresholds, which result in
different processing times and performances. The cross corresponds to using the exact-TSP decoder (in
this case the time to the optimal solution is not under the user’s control).

imizing the LM score over all possible permuta-
tions. The reconstruction procedure may be seen
as a translation problem from “Bad English” to
“Good English”. Usually the LM score is used
as one component of a more complex decoder
score which also includes biphrase and distortion
scores. But in this particular “translation task”
from bad to good English, we consider that all
“biphrases” are of the forme − e, wheree is an
English word, and we do not take into account
any distortion: we only consider the quality of
the permutation as it is measured by the LM com-
ponent. Since for each “source word”e, there is
exactly one possible “biphrase”e − e each clus-
ter of the Generalized TSP representation of the
decoding problem contains exactly one node; in
other terms, the Generalized TSP in this situation
is simply a standard TSP. Since the decoding phase
is then equivalent to a word reordering, the LM
score may be used to compare the performance
of different decoding algorithms. Here, we com-
pare three different algorithms: classical beam-
search (Moses); a decoder based on an exact TSP
solver (Concorde); a decoder based on an approx-
imate TSP solver (Lin-Kernighan as implemented
in the Concorde solver)3. In the Beam-search
and the LK-based TSP solver we can control the
trade-off between approximation quality and run-
ning time. To measure re-ordering quality, we use
two scores. The first one is just the “internal” LM
score; since all three algorithms attempt to maxi-
mize this score, a natural evaluation procedure is
to plot its value versus the elapsed time. The sec-

3Both TSP decoders may be used with/or without adistor-
tion limit; in our experiments we do not use this parameter.

ond score is BLEU (Papineni et al., 2001), com-
puted between the reconstructed and the original
sentences, which allows us to check how well the
quality of reconstruction correlates with the inter-
nal score. The training dataset for learning the LM
consists of 50000 sentences from NewsCommen-
tary corpus (Callison-Burch et al., 2008), the test
dataset for word reordering consists of 170 sen-
tences, the average length of test sentences is equal
to 17 words.

Bigram based reordering. First we consider
a bigram Language Model and the algorithms try
to find the re-ordering that maximizes the LM
score. The TSP solver used here is exact, that is,
it actually finds the optimal tour. Figures 5(a,b)
present the performance of the TSP and Beam-
search based methods.

Trigram based reordering. Then we consider
a trigram based Language Model and the algo-
rithms again try to maximize the LM score. The
trigram model used is a variant of the exhaustive
compiling-out procedure described in Section 4.1.
Again, we use an exact TSP solver.

Looking at Figure 5a, we see a somewhat sur-
prising fact: the cross and some star points have
positive y coordinates! This means that, when us-
ing a bigram language model, it is often possible
to reorder the words of a randomly permuted ref-
erence sentence in such a way that the LM score
of the reordered sentence is larger than the LM of
the reference. A second notable point is that the
increase in the LM-score of the beam-search with
time is steady but very slow, and never reaches the
level of performance obtained with the exact-TSP
procedure, even when increasing the time by sev-

338

eral orders of magnitude. Also to be noted is that
the solution obtained by the exact-TSP is provably
the optimum, which is almost never the case of
the beam-search procedure. In Figure 5b, we re-
port the BLEU score of the reordered sentences
in the test set relative to the original reference
sentences. Here we see that the exact-TSP out-
puts are closer to the references in terms of BLEU
than the beam-search solutions. Although the TSP
output does not recover the reference sentences
(it produces sentences with a slightly higher LM
score than the references), it does reconstruct the
references better than the beam-search. The ex-
periments with trigram language models (Figures
5(c,d)) show similar trends to those with bigrams.

5.2 Translation experiments with a bigram
language model

In this section we consider two real translation
tasks, namely, translation from English to French,
trained on Europarl (Koehn et al., 2003) and trans-
lation from German to Spanish training on the
NewsCommentary corpus. For Europarl, the train-
ing set includes 2.81 million sentences, and the
test set 500. For NewsCommentary the training
set is smaller: around 63k sentences, with a test
set of 500 sentences. Figure 6 presents Decoder
and Bleu scores as functions of time for the two
corpuses.

Since in the real translation task, the size of the
TSP graph is much larger than in the artificial re-
ordering task (in our experiments the median size
of the TSP graph was around 400 nodes, some-
times growing up to 2000 nodes), directly apply-
ing the exact TSP solver would take too long; in-
stead we use the approximate LK algorithm and
compare it to Beam-Search. The efficiency of the
LK algorithm can be significantly increased by us-
ing a good initialization. To compare the quality of
the LK and Beam-Search methods we take a rough
initial solution produced by the Beam-Search al-
gorithm using a small value for the stack size and
then use it as initial point, both for the LK algo-
rithm and for further Beam-Search optimization
(where as before we vary the Beam-Search thresh-
olds in order to trade quality for time).

In the case of the Europarl corpus, we observe
that LK outperforms Beam-Search in terms of the
Decoder score as well as in terms of the BLEU
score. Note that the difference between the two al-
gorithms increases steeply at the beginning, which

means that we can significantly increase the qual-
ity of the Beam-Search solution by using the LK
algorithm at a very small price. In addition, it is
important to note that the BLEU scores obtained in
these experiments correspond to feature weights,
in the log-linear model (1), that have been opti-
mized for the Moses decoder, but not for the TSP
decoder: optimizing these parameters relatively to
the TSP decoder could improve its BLEU scores
still further.

On the News corpus, again, LK outperforms
Beam-Search in terms of the Decoder score. The
situation with the BLEU score is more confuse.
Both algorithms do not show any clear score im-
provement with increasing running time which
suggests that the decoder’s objective function is
not very well correlated with the BLEU score on
this corpus.

6 Future Work

In section 4.1, we described a general “compiling
out” method for extending our TSP representation
to handling trigram and N-gram language models,
but we noted that the method may lead to combi-
natorial explosion of the TSP graph. While this
problem was manageable for the artificial mono-
lingual word re-ordering (which had only one pos-
sible translation for each source word), it be-
comes unwieldy for the real translation experi-
ments, which is why in this paper we only consid-
ered bigram LMs for these experiments. However,
we know how to handle this problem in principle,
and we now describe a method that we plan to ex-
periment with in the future.

To avoid the large number of artificial biphrases
as in 4.1, we perform anadaptive selection. Let us
suppose that(w, b) is a SMT decoding graph node,
whereb is a biphrase containing only one word on
the target side. On the first step, when we evaluate
the traveling cost from(w, b) to (w′, b′), we take
the language model component equal to

min
b′′ 6=b′,b

− log p(b′.v|b.e, b′′.e),

whereb′.v represents the first word of theb′ tar-
get side, b.e is the only word of theb target
side, andb′′.e is the last word of theb′′ tar-
get size. This procedure underestimates the total
cost of tour passing through biphrases that have a
single-word target. Therefore if the optimal tour
passes only through biphrases with more than one

339

10
3

10
4

10
5−273

−272.5

−272

−271.5

−271

Time (sec)

D
ec

od
er

 s
co

re

BEAM−SEARCH
TSP (LK)

10
3

10
4

10
50.18

0.185

0.19

Time (sec)

B
LE

U
 s

co
re

BEAM−SEARCH
TSP (LK)

10
3

10
4−414

−413.8

−413.6

−413.4

−413.2

−413

Time (sec)

D
ec

od
er

 s
co

re

TSP (LK)
BEAM−SEARCH

10
3

10
40.242

0.243

0.244

0.245

Time (sec)

B
LE

U
 s

co
re

TSP (LK)
BEAM−SEARCH

(a) (b) (c) (d)

Figure 6: (a), (b): Europarl corpus, translation from English to French; (c),(d): NewsCommentary cor-
pus, translation from German to Spanish. Average value of the decoder and the BLEU scores (over 500
test sentences) as a function of time. The trade-off quality/time in the case of LK is controlled by the
number of iterations, and each point corresponds to a particular number of iterations, in our experiments
LK was run with a number of iterations varying between 2k and 170k. The same trade-off in the case of
Beam-Search is controlled by varying the beam thresholds.

word on their target side, then we are sure that
this tour is also optimal in terms of the tri-gram
language model. Otherwise, if the optimal tour
passes through(w, b), whereb is a biphrase hav-
ing a single-word target, we add only the extended
biphrases related tob as we described in section
4.1, and then we recompute the optimal tour. Iter-
ating this procedure provably converges to an op-
timal solution.

This powerful method, which was proposed in
(Kam and Kopec, 1996; Popat et al., 2001) in the
context of a finite-state model (but not of TSP),
can be easily extended to N-gram situations, and
typically converges in a small number of itera-
tions.

7 Conclusion

The main contribution of this paper has been to
propose a transformation for an arbitrary phrase-
based SMT decoding instance into a TSP instance.
While certain similarities of SMT decoding and
TSP were already pointed out in (Knight, 1999),
where it was shown that any Traveling Salesman
Problem may be reformulated as an instance of
a (simplistic) SMT decoding task, and while cer-
tain techniques used for TSP were then adapted to
word-based SMT decoding (Germann et al., 2001;
Tillmann and Ney, 2003; Tillmann, 2006), we are
not aware of any previous work that shows that
SMT decoding can be directly reformulated as a
TSP. Beside the general interest of this transfor-
mation for understanding decoding, it also opens
the door to direct application of the variety of ex-
isting TSP algorithms to SMT. Our experiments
on synthetic and real data show that fast TSP al-
gorithms can handle selection and reordering in

SMT comparably or better than the state-of-the-
art beam-search strategy, converging on solutions
with higher objective function in a shorter time.

The proposed method proceeds by first con-
structing an AGTSP instance from the decoding
problem, and then converting this instance first
into ATSP and finally into STSP. At this point, a
direct application of the well known STSP solver
Concorde(with Lin-Kernighan heuristic) already
gives good results. We believe however that there
might exist even more efficient alternatives. In-
stead of converting the AGTSP instance into a
STSP instance, it might prove better to use di-
rectly algorithms expressly designed for ATSP
or AGTSP. For instance, some of the algorithms
tested in the context of theDIMACS implemen-
tation challenge for ATSP (Johnson et al., 2002)
might well prove superior. There is also active re-
search around AGTSP algorithms. Recently new
effective methods based on a “memetic” strategy
(Buriol et al., 2004; Gutin et al., 2008) have been
put forward. These methods combined with our
proposed formulation provide ready-to-use SMT
decoders, which it will be interesting to compare.

Acknowledgments

Thanks to Vassilina Nikoulina for her advice about
running Moses on the test datasets.

340

References

David L. Applegate, Robert E. Bixby, Vasek Chvatal,
and William J. Cook. 2005. Concorde
tsp solver. http://www.tsp.gatech.edu/
concorde.html.

David L. Applegate, Robert E. Bixby, Vasek Chvatal,
and William J. Cook. 2007.The Traveling Sales-
man Problem: A Computational Study (Princeton
Series in Applied Mathematics). Princeton Univer-
sity Press, January.

Luciana Buriol, Paulo M. França, and Pablo Moscato.
2004. A new memetic algorithm for the asymmetric
traveling salesman problem.Journal of Heuristics,
10(5):483–506.

Chris Callison-Burch, Philipp Koehn, Christof Monz,
Josh Schroeder, and Cameron Shaw Fordyce, edi-
tors. 2008.Proceedings of the Third Workshop on
SMT. ACL, Columbus, Ohio, June.

Ulrich Germann, Michael Jahr, Kevin Knight, and
Daniel Marcu. 2001. Fast decoding and optimal
decoding for machine translation. InIn Proceedings
of ACL 39, pages 228–235.

Gregory Gutin, Daniel Karapetyan, and Krasnogor Na-
talio. 2008. Memetic algorithm for the generalized
asymmetric traveling salesman problem. InNICSO
2007, pages 199–210. Springer Berlin.

G. Gutin. 2003. Travelling salesman and related prob-
lems. InHandbook of Graph Theory.

Hieu Hoang and Philipp Koehn. 2008. Design of the
Moses decoder for statistical machine translation. In
ACL 2008 Software workshop, pages 58–65, Colum-
bus, Ohio, June. ACL.

D.S. Johnson, G. Gutin, L.A. McGeoch, A. Yeo,
W. Zhang, and A. Zverovich. 2002. Experimen-
tal analysis of heuristics for the atsp. InThe Trav-
elling Salesman Problem and Its Variations, pages
445–487.

Anthony C. Kam and Gary E. Kopec. 1996. Document
image decoding by heuristic search.IEEE Transac-
tions on Pattern Analysis and Machine Intelligence,
18:945–950.

Kevin Knight. 1999. Decoding complexity in word-
replacement translation models.Computational
Linguistics, 25:607–615.

Philipp Koehn, Franz Josef Och, and Daniel Marcu.
2003. Statistical phrase-based translation. In
NAACL 2003, pages 48–54, Morristown, NJ, USA.
Association for Computational Linguistics.

Adam Lopez. 2008. Statistical machine translation.
ACM Comput. Surv., 40(3):1–49.

C. Noon and J.C. Bean. 1993. An efficient transforma-
tion of the generalized traveling salesman problem.
INFOR, pages 39–44.

Kishore Papineni, Salim Roukos, Todd Ward, and
Wei J. Zhu. 2001. BLEU: a Method for Automatic
Evaluation of Machine Translation.IBM Research
Report, RC22176.

Kris Popat, Daniel H. Greene, Justin K. Romberg, and
Dan S. Bloomberg. 2001. Adding linguistic con-
straints to document image decoding: Comparing
the iterated complete path and stack algorithms.

Christoph Tillmann and Hermann Ney. 2003. Word re-
ordering and a dynamic programming beam search
algorithm for statistical machine translation.Com-
put. Linguist., 29(1):97–133.

Christoph Tillmann. 2006. Efficient Dynamic Pro-
gramming Search Algorithms For Phrase-Based
SMT. InWorkshop On Computationally Hard Prob-
lems And Joint Inference In Speech And Language
Processing.

Wikipedia. 2009. Travelling Salesman Problem —
Wikipedia, The Free Encyclopedia. [Online; ac-
cessed 5-May-2009].

341

