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Abstract 

 

The pipeline of most Phrase-Based Statistical 
Machine Translation (PB-SMT) systems starts 
from automatically word aligned parallel cor-
pus. But word appears to be too fine-grained 
in some cases such as non-compositional 
phrasal equivalences, where no clear word 
alignments exist. Using words as inputs to PB-
SMT pipeline has inborn deficiency. This pa-
per proposes pseudo-word as a new start point 
for PB-SMT pipeline. Pseudo-word is a kind 
of basic multi-word expression that character-
izes minimal sequence of consecutive words in 
sense of translation. By casting pseudo-word 
searching problem into a parsing framework, 
we search for pseudo-words in a monolingual 
way and a bilingual synchronous way. Ex-
periments show that pseudo-word significantly 
outperforms word for PB-SMT model in both 
travel translation domain and news translation 
domain. 

1 Introduction 

The pipeline of most Phrase-Based Statistical 
Machine Translation (PB-SMT) systems starts 
from automatically word aligned parallel corpus 
generated from word-based models (Brown et al., 
1993), proceeds with step of induction of phrase 
table (Koehn et al., 2003) or synchronous gram-
mar (Chiang, 2007) and with model weights tun-
ing step. Words are taken as inputs to PB-SMT at 
the very beginning of the pipeline. But there is a 
deficiency in such manner that word is too fine-
grained in some cases such as non-compositional 
phrasal equivalences, where clear word align-
ments do not exist. For example in Chinese-to-
English translation, “想” and “would like to” 
constitute a 1-to-n phrasal equivalence, “多少 
钱” and “how much is it” constitute a m-to-n 
phrasal equivalence. No clear word alignments 

are there in such phrasal equivalences. Moreover, 
should basic translational unit be word or coarse-
grained multi-word is an open problem for opti-
mizing SMT models. 

Some researchers have explored coarse-
grained translational unit for machine translation. 
Marcu and Wong (2002) attempted to directly 
learn phrasal alignments instead of word align-
ments. But computational complexity is prohibi-
tively high for the exponentially large number of 
decompositions of a sentence pair into phrase 
pairs. Cherry and Lin (2007) and Zhang et al. 
(2008) used synchronous ITG (Wu, 1997) and 
constraints to find non-compositional phrasal 
equivalences, but they suffered from intractable 
estimation problem. Blunsom et al. (2008; 2009) 
induced phrasal synchronous grammar, which 
aimed at finding hierarchical phrasal equiva-
lences. 

Another direction of questioning word as basic 
translational unit is to directly question word 
segmentation on languages where word bounda-
ries are not orthographically marked. In Chinese-
to-English translation task where Chinese word 
boundaries are not marked, Xu et al. (2004) used 
word aligner to build a Chinese dictionary to re-
segment Chinese sentence. Xu et al. (2008) used 
a Bayesian semi-supervised method that com-
bines Chinese word segmentation model and 
Chinese-to-English translation model to derive a 
Chinese segmentation suitable for machine trans-
lation. There are also researches focusing on the 
impact of various segmentation tools on machine 
translation (Ma et al. 2007; Chang et al. 2008; 
Zhang et al. 2008). Since there are many 1-to-n 
phrasal equivalences in Chinese-to-English trans-
lation (Ma and Way. 2009), only focusing on 
Chinese word as basic translational unit is not 
adequate to model 1-to-n translations. Ma and 
Way (2009) tackle this problem by using word 
aligner to bootstrap bilingual segmentation suit-
able for machine translation. Lambert and 
Banchs (2005) detect bilingual multi-word ex-
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pressions by monotonically segmenting a given 
Spanish-English sentence pair into bilingual 
units, where word aligner is also used. 

IBM model 3, 4, 5 (Brown et al., 1993) and 
Deng and Byrne (2005) are another kind of re-
lated works that allow 1-to-n alignments, but 
they rarely questioned if such alignments exist in 
word units level, that is, they rarely questioned 
word as basic translational unit. Moreover, m-to-
n alignments were not modeled. 

This paper focuses on determining the basic 
translational units on both language sides without 
using word aligner before feeding them into PB-
SMT pipeline. We call such basic translational 
unit as pseudo-word to differentiate with word. 
Pseudo-word is a kind of multi-word expression 
(includes both unary word and multi-word). 
Pseudo-word searching problem is the same to 
decomposition of a given sentence into pseudo-
words. We assume that such decomposition is in 
the Gibbs distribution. We use a measurement, 
which characterizes pseudo-word as minimal 
sequence of consecutive words in sense of trans-
lation, as potential function in Gibbs distribution. 
Note that the number of decomposition of one 
sentence into pseudo-words grows exponentially 
with sentence length. By fitting decomposition 
problem into parsing framework, we can find 
optimal pseudo-word sequence in polynomial 
time. Then we feed pseudo-words into PB-SMT 
pipeline, and find that pseudo-words as basic 
translational units improve translation perform-
ance over words as basic translational units. Fur-
ther experiments of removing the power of 
higher order language model and longer max 
phrase length, which are inherent in pseudo-
words, show that pseudo-words still improve 
translational performance significantly over 
unary words. 

This paper is structured as follows: In section 
2, we define the task of searching for pseudo-
words and its solution. We present experimental 
results and analyses of using pseudo-words in 
PB-SMT model in section 3. The conclusion is 
presented at section 4. 

2 Searching for Pseudo-words 

Pseudo-word searching problem is equal to de-
composition of a given sentence into pseudo-
words. We assume that the distribution of such 
decomposition is in the form of Gibbs distribu-
tion as below: 

)exp(1)|( ∑= ySigXYP

where X denotes the sentence, Y denotes a de-
composition of X. Sig function acts as potential 
function on each multi-word yk, and ZX acts as 
partition function. Note that the number of yk is 
not fixed given X because X can be decomposed 
into various number of multi-words. 

Given X, ZX is fixed, so searching for optimal 
decomposition is as below: 

∑==
k

y
YY kK

SigARGMAXXYPARGMAXY
1

)|(ˆ   (2) 

where Y1
K denotes K multi-word units from de-

composition of X. A multi-word sequence with 
maximal sum of Sig function values is the search 
target — pseudo-word sequence. From (2) we 
can see that Sig function is vital for pseudo-word 
searching. In this paper Sig function calculates 
sequence significance which is proposed to char-
acterize pseudo-word as minimal sequence of 
consecutive words in sense of translation. The 
detail of sequence significance is described in the 
following section. 

2.1 Sequence Significance 

Two kinds of definitions of sequence signifi-
cance are proposed. One is monolingual se-
quence significance. X and Y are monolingual 
sentence and monolingual multi-words respec-
tively in this monolingual scenario. The other is 
bilingual sequence significance. X and Y are sen-
tence pair and multi-word pairs respectively in 
this bilingual scenario. 

2.1.1 Monolingual Sequence Significance 

Given a sentence w1, …, wn, where wi denotes 
unary word, monolingual sequence significance 
is defined as: 

1,1

,
,

+−

=
ji

ji
ji Freq

Freq
Sig   (3) 

where Freqi, j (i≤j) represents frequency of word 
sequence wi, …, wj in the corpus, Sigi, j  repre-
sents monolingual sequence significance of a 
word sequence wi, …, wj. We also denote word 
sequence wi, …, wj as span[i, j], whole sentence 
as span[1, n]. Each span is also a multi-word ex-
pression. 

Monolingual sequence significance of span[i, j] 
is proportional to span[i, j]’s frequency, while is 
inversely proportion to frequency of expanded 
span (span[i-1, j+1]). Such definition character-
izes minimal sequence of consecutive words 
which we are looking for. Our target is to find 
pseudo-word sequence which has maximal sum 
of spans’ significances: kX

kZ
  (1) 
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where pw denotes pseudo-word, K is equal to or 
less than sentence’s length. spank is the kth span 
of K spans span1

K. Equation (4) is the rewrite of 
equation (2) in monolingual scenario. Searching 
for pseudo-words pw1

K is the same to finding 
optimal segmentation of a sentence into K seg-
ments span1

K (K is a variable too). Details of 
searching algorithm are described in section 
2.2.1. 

We firstly search for monolingual pseudo-
words on source and target side individually. 
Then we apply word alignment techniques to 
build pseudo-word alignments. We argue that 
word alignment techniques will work fine if non-
existent word alignments in such as non-
compositional phrasal equivalences have been 
filtered by pseudo-words. 

2.1.2 Bilingual Sequence Significance 

Bilingual sequence significance is proposed to 
characterize pseudo-word pairs. Co-occurrence 
of sequences on both language sides is used to 
define bilingual sequence significance. Given a 
bilingual sequence pair: span-pair[is, js, it, jt] 
(source side span[is, js] and target side span[it, jt]), 
bilingual sequence significance is defined as be-
low: 

1

k

,1,1,1

,,,
,,,

+−+−

=
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jiji
jiji Freq
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Sig   (5) 

where Freq denotes the frequency of a span-pair. 
Bilingual sequence significance is an extension 
of monolingual sequence significance. Its value 
is proportional to frequency of span-pair[is, js, it, 
jt], while is inversely proportional to frequency 
of expanded span-pair[is-1, js+1, it-1, jt+1]. 
Pseudo-word pairs of one sentence pair are such 
pairs that maximize the sum of span-pairs’ bilin-
gual sequence significances: 

∑ = −
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pairspan

K
K
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11

1

 (6) 

pwp represents pseudo-word pair. Equation (6) is 
the rewrite of equation (2) in bilingual scenario. 
Searching for pseudo-word pairs pwp1

K is equal 
to bilingual segmentation of a sentence pair into 
optimal span-pair1

K. Details of searching algo-
rithm are presented in section 2.2.2. 

2.2 Algorithms of Searching for Pseudo-
words 

Pseudo-word searching problem is equal to de-
composition of a sentence into pseudo-words. 
But the number of possible decompositions of 

the sentence grows exponentially with the sen-
tence length in both monolingual scenario and 
bilingual scenario. By casting such decomposi-
tion problem into parsing framework, we can 
find pseudo-word sequence in polynomial time. 
According to the two scenarios, searching for 
pseudo-words can be performed in a monolin-
gual way and a synchronous way. Details of the 
two kinds of searching algorithms are described 
in the following two sections. 

2.2.1 Algorithm of Searching for Monolin-
gual Pseudo-words (SMP) 

Searching for monolingual pseudo-words is 
based on the computation of monolingual se-
quence significance. Figure 1 presents the search 
algorithm. It is performed in a way similar to 
CKY (Cocke-Kasami-Younger) parser. 

 
Initialization: Wi, i = Sigi, i; 

Wi, j = 0,  (i≠j); 
1:  for d = 2 … n do 
2:      for all i, j s.t. j-i=d-1 do 
3:          for k = i … j – 1 do 
4:              v = Wi, k + Wk+1, j
5:              if v > Wi, j then 
6:                  Wi, j = v; 
7:          u = Sigi, j
8:          if u > Wi, j then 
9:              Wi, j = u; 

Figure 1. Algorithm of searching for monolingual 
pseudo-words (SMP). 

 
In this algorithm, Wi, j records maximal sum of 

monolingual sequence significances of sub spans 
of span[i, j]. During initialization, Wi, i is initial-
ized as Sigi,i (note that this sequence is word wi 
only). For all spans that have more than one 
word (i≠j), Wi, j is initialized as zero. 

In the main algorithm, d represents span’s 
length, ranging from 2 to n, i represents start po-
sition of a span, j represents end position of a 
span, k represents decomposition position of 
span[i,j]. For span[i, j], Wi, j is updated if higher 
sum of monolingual sequence significances is 
found. 

The algorithm is performed in a bottom-up 
way. Small span’s computation is first. After 
maximal sum of significances is found in small 
spans, big span’s computation, which uses small 
spans’ maximal sum, is continued. Maximal sum 
of significances for whole sentence (W1,n, n is 
sentence’s length)  is guaranteed in this way, and 
optimal decomposition is obtained correspond-
ingly. 
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The method of fitting the decomposition prob-
lem into CKY parsing framework is located at 
steps 7-9. After steps 3-6, all possible decompo-
sitions of span[i, j] are explored and Wi, j of op-
timal decomposition of span[i, j] is recorded. 
Then monolingual sequence significance Sigi,j of 
span[i, j] is computed at step 7, and it is com-
pared to Wi, j at step 8. Update of Wi, j is taken at 
step 9 if Sigi,j is bigger than Wi, j, which indicates 
that span[i, j] is non-decomposable. Thus 
whether span[i, j] should be non-decomposable 
or not is decided through steps 7-9. 

2.2.2 Algorithm of Synchronous Searching 
for Pseudo-words (SSP) 

Synchronous searching for pseudo-words utilizes 
bilingual sequence significance. Figure 2 pre-
sents the search algorithm. It is similar to ITG 
(Wu, 1997), except that it has no production 
rules and non-terminal nodes of a synchronous 
grammar. What it cares about is the span-pairs 
that maximize the sum of bilingual sequence sig-
nificances. 

 
Initialization:  if is = js or it = jt then 

ttssttss

ttss

jijijiji SigW ,,,,,, = ; 
                       else 

0,,, =jijiW ; 

1:  for ds = 2 … ns, dt = 2 … nt do 
2:      for all  is, js, it, jt s.t. js-is=ds-1 and jt-it=dt-1 do
3:             for ks = is … js – 1, kt = it … jt – 1 do 

4:                    v = max{ ,
ttssttss jkjkkiki WW ,1,,1,,, +++

ttsst

tjiji ,,,

tj,,,

tj,,,

jiji ,,,

tss kijkjkki WW ,,,1,1,, ++ + } 

5:                    if v > W  then 
tss

6:                           W = v; 
tss iji

7:              u =  
ttss jijiSig ,,,

8:              if u > W  then 
tss iji

9:                    W = u; 
ttss

Figure 2. Algorithm of Synchronous Searching for 
Pseudo-words(SSP). 

 
In the algorithm, records maximal 

sum of bilingual sequence significances of sub 
span-pairs of span-pair[i

ttss jijiW ,,,

s, js, it, jt]. For 1-to-m 
span-pairs, Ws are initialized as bilingual se-
quence significances of such span-pairs. For 
other span-pairs, Ws are initialized as zero. 

In the main algorithm, ds/dt denotes the length 
of a span on source/target side, ranging from 2 to 
ns/nt (source/target sentence’s length). is/it is the 
start position of a span-pair on source/target side, 

js/jt is the end position of a span-pair on 
source/target side, ks/kt is the decomposition po-
sition of a span-pair[is, js, it, jt] on source/target 
side. 

Update steps in Figure 2 are similar to that of 
Figure 1, except that the update is about span-
pairs, not monolingual spans. Reversed and non-
reversed alignments inside a span-pair are com-
pared at step 4. For span-pair[is, js, it, jt], 

 is updated at step 6 if higher sum of 
bilingual sequence significances is found. 

ttss jijiW ,,,

Fitting the bilingually searching for pseudo-
words into ITG framework is located at steps 7-9. 
Steps 3-6 have explored all possible decomposi-
tions of span-pair[is, js, it, jt] and have recorded 
maximal 

ttss
 of these decompositions. Then 

bilingual sequence significance of span-pair[i
jijiW ,,,

s, js, 
it, jt] is computed at step 7. It is compared to 

ttss
 at step 8. Update is taken at step 9 if 

bilingual sequence significance of span-pair[i
jijiW ,,,

s, js, 
it, jt] is bigger than 

ttss
, which indicates that 

span-pair[i
jijiW ,,,

s, js, it, jt] is non-decomposable. 
Whether the span-pair[is, js, it, jt] should be non-
decomposable  or not is decided through steps 7-
9. 

In addition to the initialization step, all span-
pairs’ bilingual sequence significances are com-
puted. Maximal sum of bilingual sequence sig-
nificances for one sentence pair is guaranteed 
through this bottom-up way, and the optimal de-
composition of the sentence pair is obtained cor-
respondingly. 

 Algorithm of Excluded Synchronous 
Searching for Pseudo-words (ESSP) 

The algorithm of SSP in Figure 2 explores all 
span-pairs, but it neglects NULL alignments, 
where words and “empty” word are aligned. In 
fact, SSP requires that all parts of a sentence pair 
should be aligned. This requirement is too strong 
because NULL alignments are very common in 
many language pairs. In SSP, words that should 
be aligned to “empty” word are programmed to 
be aligned to real words. 

Unlike most word alignment methods (Och 
and Ney, 2003) that add “empty” word to ac-
count for NULL alignment entries, we propose a 
method to naturally exclude such NULL align-
ments. We call this method as Excluded Syn-
chronous Searching for Pseudo-words (ESSP). 

The main difference between ESSP and SSP is 
in steps 3-6 in Figure 3. We illustrate Figure 3’s 
span-pair configuration in Figure 4. 
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Initialization:  if is = js or it = jt then 

ttssttss jijijiji ,,,,,,

,,, jijiW

SigW = ; 
                       else 

0=
ttss

; 

1:  for ds = 2 … ns, dt = 2 … nt do 
2:        for all  is, js, it, jt s.t. js-is=ds-1 and jt-it=dt-1 do 
3:              for ks1=is+1 … js, ks2=ks1-1 … js-1 

kt1=it+1 … jt, kt2=kt1-1 … jt-1 do 
4:                    v = max{W ,

ttssttss jkjkkiki W ,1,,11,,1, 2211 ++−− +

1,,,1,1, 122 −++ +
ttsstt kijkjk W

tt j,,,

tj,,,

Sig

tt ji ,,,

ttss jiji ,,,

1, 1−ss kiW }

5:                    if v > W  then 
ss iji

6:                           W = v; 
tss iji

7:               u =  
ttss jiji ,,,

8:               if u > W  then 
ss ji

9:                    W = u; 

Figure 3. Algorithm of Excluded Synchronous 
Searching for Pseudo-words (ESSP). 

 
The solid boxes in Figure 4 represent excluded 

parts of span-pair[is, js, it, jt] in ESSP. Note that, 
in SSP, there is no excluded part, that is, ks1=ks2 
and kt1=kt2. 

We can see that in Figure 4, each monolingual 
span is configured into three parts, for example: 
span[is, ks1-1], span[ks1, ks2] and span[ks2+1, js] 
on source language side. ks1 and ks2 are two new 
variables gliding between is and js, span[ks1, ks2] 
is source side excluded part of span-pair[is, js, it, 
jt]. Bilingual sequence significance is computed 
only on pairs of blank boxes, solid boxes are ex-
cluded in this computation to represent NULL 
alignment cases. 

 

 
Figure 4. Illustration of excluded configuration. 

 
Note that, in Figure 4, solid box on either lan-

guage side can be void (i.e., length is zero) if 
there is no NULL alignment on its side. If all 

solid boxes are shrunk into void, algorithm of 
ESSP is the same to SSP. 

Generally, span length of NULL alignment is 
not very long, so we can set a length threshold 
for NULL alignments, eg. ks2-ks1≤EL, where EL 
denotes Excluded Length threshold. Computa-
tional complexity of the ESSP remains the same 
to SSP’s complexity O(ns

3.nt
3), except multiply a 

constant EL2. 
There is one kind of NULL alignments that 

ESSP can not consider. Since we limit excluded 
parts in the middle of a span-pair, the algorithm 
will end without considering boundary parts of a 
sentence pair as NULL alignments. 

3 Experiments and Results 

In our experiments, pseudo-words are fed into 
PB-SMT pipeline. The pipeline uses GIZA++ 
model 4 (Brown et al., 1993; Och and Ney, 2003) 
for pseudo-word alignment, uses Moses (Koehn 
et al., 2007) as phrase-based decoder, uses the 
SRI Language Modeling Toolkit to train lan-
guage model with modified Kneser-Ney smooth-
ing (Kneser and Ney 1995; Chen and Goodman 
1998). Note that MERT (Och, 2003) is still on 
original words of target language. In our experi-
ments, pseudo-word length is limited to no more 
than six unary words on both sides of the lan-
guage pair. 

We conduct experiments on Chinese-to-
English machine translation. Two data sets are 
adopted, one is small corpus of IWSLT-2008 
BTEC task of spoken language translation in 
travel domain (Paul, 2008), the other is large 
corpus in news domain, which consists Hong 
Kong News (LDC2004T08), Sinorama Magazine 
(LDC2005T10), FBIS (LDC2003E14), Xinhua 
(LDC2002E18), Chinese News Translation 
(LDC2005T06), Chinese Treebank 
(LDC2003E07), Multiple Translation Chinese 
(LDC2004T07). Table 1 lists statistics of the 
corpus used in these experiments. 

is ks1 ks2 js

it kt1 kt2 jt

is ks1 ks2 js

it kt1 kt2 jt

a) non-reversed 

b) reversed 

 
small large  

Ch → En Ch → En 
Sent. 23k 1,239k 
word 190k 213k 31.7m 35.5m
ASL 8.3 9.2 25.6 28.6 

Table 1. Statistics of corpora, “Ch” denotes Chinese, 
“En” denotes English, “Sent.” row is the number of 
sentence pairs, “word” row is the number of words, 

“ASL” denotes average sentence length. 
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For small corpus, we use CSTAR03 as devel-
opment set, use IWSLT08 official test set for test. 
A 5-gram language model is trained on English 
side of parallel corpus. For large corpus, we use 
NIST02 as development set, use NIST03 as test 
set. Xinhua portion of the English Gigaword3 
corpus is used together with English side of large 
corpus to train a 4-gram language model. 

Experimental results are evaluated by case-
insensitive BLEU-4 (Papineni et al., 2001). 
Closest reference sentence length is used for 
brevity penalty. Additionally, NIST score (Dod-
dington, 2002) and METEOR (Banerjee and La-
vie, 2005) are also used to check the consistency 
of experimental results. Statistical significance in 
BLEU score differences was tested by paired 
bootstrap re-sampling (Koehn, 2004). 

3.1 Baseline Performance 

Our baseline system feeds word into PB-SMT 
pipeline. We use GIZA++ model 4 for word 
alignment, use Moses for phrase-based decoding. 
The setting of language model order for each 
corpus is not changed. Baseline performances on 
test sets of small corpus and large corpus are re-
ported in table 2. 

 
 small Large 

BLEU 0.4029 0.3146 
NIST 7.0419 8.8462 

METEOR 0.5785 0.5335 
Table 2. Baseline performances on test sets of small 

corpus and large corpus. 

3.2 Pseudo-word Unpacking 

Because pseudo-word is a kind of multi-word 
expression, it has inborn advantage of higher 
language model order and longer max phrase 
length over unary word. To see if such inborn 
advantage is the main contribution to the per-
formance or not, we unpack pseudo-word into 
words after GIZA++ aligning. Aligned pseudo-
words are unpacked into m×n word alignments. 
PB-SMT pipeline is executed thereafter. The ad-
vantage of longer max phrase length is removed 
during phrase extraction, and the advantage of 
higher order of language model is also removed 
during decoding since we use language model 
trained on unary words. Performances of pseudo-
word unpacking are reported in section 3.3.1 and 
3.4.1. Ma and Way (2009) used the unpacking 
after phrase extraction, then re-estimated phrase 
translation probability and lexical reordering 
model. The advantage of longer max phrase 
length is still used in their method. 

3.3 Pseudo-word Performances on Small 
Corpus 

Table 3 presents performances of SMP, SSP, 
ESSP on small data set. pwchpwen denotes that 
pseudo-words are on both language side of train-
ing data, and they are input strings during devel-
opment and testing, and translations are also 
pseudo-words, which will be converted to words 
as final output. wchpwen/pwchwen denotes that 
pseudo-words are adopted only on Eng-
lish/Chinese side of the data set. 

We can see from table 3 that, ESSP attains the 
best performance, while SSP attains the worst 
performance. This shows that excluding NULL 
alignments in synchronous searching for pseudo-
words is effective. SSP puts overly strong align-
ment constraints on parallel corpus, which im-
pacts performance dramatically. ESSP is superior 
to SMP indicating that bilingually motivated 
searching for pseudo-words is more effective. 
Both SMP and ESSP outperform baseline consis-
tently in BLEU, NIST and METEOR. 

There is a common phenomenon among SMP, 
SSP and ESSP. wchpwen always performs better 
than the other two cases. It seems that Chinese 
word prefers to have English pseudo-word 
equivalence which has more than or equal to one 
word. pwchpwen in ESSP performs similar to the 
baseline, which reflects that our direct pseudo-
word pairs do not work very well with GIZA++ 
alignments. Such disagreement is weakened by 
using pseudo-words on only one language side 
(wchpwen or pwchwen), while the advantage of 
pseudo-words is still leveraged in the alignments. 

Best ESSP (wchpwen) is significantly better 
than baseline (p<0.01) in BLEU score, best SMP 
(wchpwen) is significantly better than baseline 
(p<0.05) in BLEU score. This indicates that 
pseudo-words, through either monolingual 
searching or synchronous searching, are more 
effective than words as to being basic transla-
tional units. 

Figure 5 illustrates examples of pseudo-words 
of one Chinese-to-English sentence pair. Gold 
standard word alignments are shown at the bot-
tom of figure 5. We can see that “front desk” is 
recognized as one pseudo-word in ESSP. Be-
cause SMP performs monolingually, it can not 
consider “前台” and “front desk” simultaneously. 
SMP only detects frequent monolingual multi-
words as pseudo-words. SSP has a strong con-
straint that all parts of a sentence pair should be 
aligned, so source sentence and target sentence 
have same length after merging words into 
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Table 3. Performance of using pseudo-words on small data. 
 
pseudo-words. We can see that too many pseudo-
words are detected by SSP. 

 

 
Figure 5. Outputs of the three algorithms ESSP, 

SMP and SSP on one sentence pair and gold standard 
word alignments. Words in one pseudo-word are con-

catenated by “_”. 
 

3.3.1 Pseudo-word Unpacking Perform-
ances on Small Corpus 

We test pseudo-word unpacking in ESSP. Table 
4 presents its performances on small corpus. 

 
unpackingESSP 

pwchpwen wchpwen pwchwen

baseline

BLEU 0.4097 0.4182 0.4031 0.4029
NIST 7.5547 7.2893 7.2670 7.0419

METEOR 0.5951 0.5874 0.5846 0.5785
Table 4. Performances of pseudo-word unpacking on 

small corpus. 
 

We can see that pseudo-word unpacking sig-
nificantly outperforms baseline. wchpwen is sig-
nificantly better than baseline (p<0.04) in BLEU 
score. Unpacked pseudo-word performs com-
paratively with pseudo-word without unpacking. 
There is no statistical difference between them. It 
shows that the improvement derives from 

pseudo-word itself as basic translational unit, 
does not rely very much on higher language 
model order or longer max phrase length setting. 

3.4 Pseudo-word Performances on Large 
Corpus 

Table 5 lists the performance of using pseudo-
words on large corpus. We apply SMP on this 
task. ESSP is not applied because of its high 
computational complexity. Table 5 shows that all 
three configurations (pwchpwen, wchpwen, pwchwen) 
of SMP outperform the baseline. If we go back to 
the definition of sequence significance, we can 
see that it is a data-driven definition that utilizes 
corpus frequencies. Corpus scale has an influ-
ence on computation of sequence significance in 
long sentences which appear frequently in news 
domain. SMP benefits from large corpus, and 
wchpwen is significantly better than baseline 
(p<0.01). Similar to performances on small cor-
pus, wchpwen always performs better than the 
other two cases, which indicates that Chinese 
word prefers to have English pseudo-word 
equivalence which has more than or equal to one 
word. 
 

SMP  
pwchpwen wchpwen pwchwen

baseline

BLEU 0.3185 0.3230 0.3166 0.3146
NIST 8.9216 9.0447 8.9210 8.8462

METEOR 0.5402 0.5489 0.5435 0.5335
Table 5. Performance of using pseudo-words on large 

corpus. 

3.4.1 Pseudo-word Unpacking Perform-
ances on Large Corpus 

Table 6 presents pseudo-word unpacking per-
formances on large corpus. All three configura-
tions improve performance over baseline after 
pseudo-word unpacking. pwchpwen attains the 
best BLEU among the three configurations, and 
is significantly better than baseline (p<0.03). 
wchpwen is also significantly better than baseline 
(p<0.04). By comparing table 6 with table 5, we 
can see that unpacked pseudo-word performs 
comparatively with pseudo-word without un-
packing. There is no statistical difference be-

SMP SSP ESSP  
pwchpwen wchpwen pwchwen pwchpwen wchpwen pwchwen pwchpwen wchpwen pwchwen

baseline

BLEU 0.3996 0.4155 0.4024 0.3184 0.3661 0.3552 0.3998 0.4229 0.4147 0.4029
NIST 7.4711 7.6452 7.6186 6.4099 6.9284 6.8012 7.1665 7.4373 7.4235 7.0419

METEOR 0.5900 0.6008 0.6000 0.5255 0.5569 0.5454 0.5739 0.5963 0.5891 0.5785

前台  的  那个  人  真  粗鲁  。 
The guy at the front desk is pretty rude . 

前台  的  那个  人  真  粗鲁  。 
The guy_at the front_desk is pretty_rude . 

前台  的  那个  人  真  粗鲁  。 
The guy at the front_desk is pretty rude . 

ESSP

前台   的    那个    人    真     粗鲁    。 
 
 
The guy at the front desk is pretty rude  .

Gold standard word alignments 

SMP

SSP 
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tween them. It shows that the improvement de-
rives from pseudo-word itself as basic transla-
tional unit, does not rely very much on higher 
language model order or longer max phrase 
length setting. In fact, slight improvement in 
pwchpwen and pwchwen is seen after pseudo-word 
unpacking, which indicates that higher language 
model order and longer max phrase length im-
pact the performance in these two configurations. 

 
UnpackingSMP 

pwchpwen wchpwen pwchwen

Baseline

BLEU 0.3219 0.3192 0.3187 0.3146 
NIST 8.9458 8.9325 8.9801 8.8462 

METEOR 0.5429 0.5424 0.5411 0.5335 
Table 6. Performance of pseudo-word unpacking on 

large corpus. 

3.5 Comparison to English Chunking 

English chunking is experimented to compare 
with pseudo-word. We use FlexCRFs (Xuan-
Hieu Phan et al., 2005) to get English chunks. 
Since there is no standard Chinese chunking data 
and code, only English chunking is executed. 
The experimental results show that English 
chunking performs far below baseline, usually 8 
absolute BLEU points below. It shows that sim-
ple chunks are not suitable for being basic trans-
lational units. 

4 Conclusion 

We have presented pseudo-word as a novel ma-
chine translational unit for phrase-based machine 
translation. It is proposed to replace too fine-
grained word as basic translational unit. Pseudo-
word is a kind of basic multi-word expression 
that characterizes minimal sequence of consecu-
tive words in sense of translation. By casting 
pseudo-word searching problem into a parsing 
framework, we search for pseudo-words in poly-
nomial time. Experimental results of Chinese-to-
English translation task show that, in phrase-
based machine translation model, pseudo-word 
performs significantly better than word in both 
spoken language translation domain and news 
domain. Removing the power of higher order 
language model and longer max phrase length, 
which are inherent in pseudo-words, shows that 
pseudo-words still improve translational per-
formance significantly over unary words. 
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