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Abstract

We address the problem of selecting non-
domain-specific language model training
data to build auxiliary language models
for use in tasks such as machine transla-
tion. Our approach is based on comparing
the cross-entropy, according to domain-
specific and non-domain-specifc language
models, for each sentence of the text
source used to produce the latter language
model. We show that this produces better
language models, trained on less data, than
both random data selection and two other
previously proposed methods.

1 Introduction

Statistical N-gram language models are widely
used in applications that produce natural-language
text as output, particularly speech recognition and
machine translation. It seems to be a univer-
sal truth that output quality can always be im-
proved by using more language model training
data, but only if the training data is reasonably
well-matched to the desired output. This presents
a problem, because in virtually any particular ap-
plication the amount of in-domain data is limited.

Thus it has become standard practice to com-
bine in-domain data with other data, either by
combining N-gram counts from in-domain and
other data (usually weighting the counts in some
way), or building separate language models from
different data sources, interpolating the language
model probabilities either linearly or log-linearly.
Log-linear interpolation is particularly popular
in statistical machine translation (e.g., Brants et
al., 2007), because the interpolation weights can
easily be discriminatively trained to optimize an
end-to-end translation objective function (such as
BLEU) by making the log probability according to
each language model a separate feature function in
the overall translation model.

The normal practice when using multiple lan-
guages models in machine translation seems to be
to train models on as much data as feasible from
each source, and to depend on feature weight opti-
mization to down-weight the impact of data that is
less well-matched to the translation application. In
this paper, however, we show that for a data source
that is not entirely in-domain, we can improve the
match between the language model from that data
source and the desired application output by intel-
ligently selecting a subset of the available data as
language model training data. This not only pro-
duces a language model better matched to the do-
main of interest (as measured in terms of perplex-
ity on held-out in-domain data), but it reduces the
computational resources needed to exploit a large
amount of non-domain-specific data, since the re-
sources needed to filter a large amount of data are
much less (especially in terms of memory) than
those required to build a language model from all
the data.

2 Approaches to the Problem

Our approach to the problem assumes that we have
enough in-domain data to train a reasonable in-
domain language model, which we then use to
help score text segments from other data sources,
and we select segments based on a score cutoff op-
timized on held-out in-domain data.

We are aware of two comparable previous ap-
proaches. Lin et al. (1997) and Gao et al. (2002)
both used a method similar to ours, in which the
metric used to score text segments is their perplex-
ity according to the in-domain language model.
The candidate text segments with perplexity less
than some threshold are selected.

The second previous approach does not explic-
itly make use of an in-domain language model, but
is still applicable to our scenario. Klakow (2000)
estimates a unigram language model from the
entire non-domain-specific corpus to be selected
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from, and scores each candidate text segment from
that corpus by the change in the log likelihood
of the in-domain data according to the unigram
model, if that segment were removed from the cor-
pus used to estimate the unigram model. Those
segments whose removal would decrease the log
likelihood of the in-domain data more than some
threshold are selected.

Our method is a fairly simple variant of scoring
by perplexity according to an in-domain language
model. First, note that selecting segments based
on a perplexity threshold is equivalent to selecting
based on a cross-entropy threshold. Perplexity and
cross-entropy are monotonically related, since the
perplexity of a strings according to a modelM is
simply bHM (s), whereHM (s) is the cross-entropy
of s according toM and b is the base with re-
spect to which the cross-entropy is measured (e.g.,
bits or nats). However, instead of scoring text seg-
ments by perplexity or cross-entropy according to
the in-domain language model, we score them by
the difference of the cross-entropy of a text seg-
ment according to the in-domain language model
and the cross-entropy of the text segment accord-
ing to a language model trained on a random sam-
ple of the data source from which the text segment
is drawn.

To state this formally, letI be an in-domain data
set andN be a non-domain-specific (or otherwise
not entirely in-domain) data set. LetHI(s) be the
per-word cross-entropy, according to a language
model trained onI, of a text segments drawn from
N . Let HN (s) be the per-word cross-entropy ofs
according to a language model trained on a ran-
dom sample ofN . We partitionN into text seg-
ments (e.g., sentences), and score the segments ac-
cording toHI(s) − HN (s), selecting all text seg-
ments whose score is less than a thresholdT .

This method can be justified by reasoning sim-
liar to that used to derive methods for training
binary text classifiers without labeled negative
examples (Denis et al., 2002; Elkin and Noto,
2008). Let us imagine that our non-domain-
specific corpusN contains an in-domain subcor-
pusNI , drawn from the same distribution as our
in-domain corpusI. SinceNI is statistically just
like our in-domain dataI, it would seem to be a
good candidate for the data that we want to extract
from N . By a simple variant of Bayes rule, the
probabilityP (NI |s,N) of a text segments, drawn
randomly fromN , being inNI is given by

P (NI |s,N) =
P (s|NI , N)P (NI |N)

P (s|N)

Since NI is a subset ofN , P (s|NI , N) =
P (s|NI), and by our assumption about the rela-
tionship ofI andNI , P (s|NI) = P (s|I). Hence,

P (NI |s,N) =
P (s|I)P (NI |N)

P (s|N)

If we could estimate all the probabilities in the
right-hand side of this equation, we could use it
to select text segments that have a high probability
of being inNI .

We can estimateP (s|I) andP (s|N) by train-
ing language models onI and a sample ofN , re-
spectively. That leaves us onlyP (NI |N), to es-
timate, but we really don’t care whatP (NI |N)
is, because knowing that would still leave us won-
dering what threshold to set onP (NI |s,N). We
don’t care about classification accuracy; we care
only about the quality of the resulting language
model, so we might as well just attempt to find
a threshold onP (s|I)/P (s|N) that optimizes the
fit of the resulting language model to held-out in-
domain data.

Equivalently, we can work in the log domain
with the quantity log(P (s|I)) − log(P (s|N)).
This gets us very close to working with the differ-
ence in cross-entropies, becauseHI(s)−HN (s) is
just a length-normalized version oflog(P (s|I))−
log(P (s|N)), with the sign reversed. The rea-
son that we need to normalize for length is that
the value oflog(P (s|I)) − log(P (s|N)) tends to
correlate very strongly with text segment length.
If the candidate text segments vary greatly in
length—e.g., if we partitionN into sentences—
this correlation can be a serious problem.

We estimated this effect on a 1000-sentence
sample of our experimental data described be-
low, and found the correlation between sentence
log probability difference and sentence length to
be r = −0.92, while the cross-entropy differ-
ence was almost uncorrelated with sentence length
(r = 0.04). Hence, using sentence probability ra-
tios or log probability differences as our scoring
function would result in selecting disproportion-
ately very short sentences. We tested this in an
experiment not described here in detail, and found
it not to be significantly better as a selection crite-
rion than random selection.
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Corpus Sentence count Token count
Gigaword 133,310,562 3,445,946,266
Europarl train 1,651,392 48,230,859
Europarl test 2,000 55,566

Table 1: Corpus size statistics

3 Experiments

We have empirically evaluated our proposed
method for selecting data from a non-domain-
specific source to model text in a specific domain.
For the in-domain corpus, we chose the English
side of the English-French parallel text from re-
lease v5 of the Europarl corpus (Koehn, 2005).
This consists of proceedings of the European Par-
liament from 1999 through 2009. We used the
text from 1999 through 2008 as in-domain train-
ing data, and we used the first 2000 sentences
from January 2009 as test data. For the non-
domain-specific corpus, we used the LDC Eng-
lish Gigaword Third Edition (LDC Catalog No.:
LDC2007T07).

We used a simple tokenization scheme on all
data, splitting on white space and on boundaries
between alphanumeric and nonalphanumeric (e.g.,
punctuation) characters. With this tokenization,
the sizes of our data sets in terms of sentences and
tokens are shown in Table 1. The token counts in-
clude added end-of-sentence tokens.

To implement our data selection method we re-
quired one language model trained on the Europarl
training data and one trained on the Gigaword
data. To make these language models comparable,
and to show the feasibility of optimizing the fit to
the in-domain data without training a model on the
entire Gigaword corpus, we trained the Gigaword
language model for data selection on a random
sample of the Gigaword corpus of a similar size to
that of the Europarl training data: 1,874,051 sen-
tences, 48,459,945 tokens.

To further increase the comparability of these
Europarl and Gigaword language models, we re-
stricted the vocabulary of both models to the to-
kens appearing at least twice in the Europarl train-
ing data, treating all other tokens as instances of
<UNK>. With this vocabulary, 4-gram language
models were trained on both the Europarl training
data and the Gigaword random sample using back-
off absolute discounting (Ney et al. 1994), with a
discount of 0.7 used for all N-gram lengths. The

discounted probability mass at the unigram level
was added to the probability of<UNK>. A count
cutoff of 2 occurrences was applied to the trigrams
and 4-grams in estimating these models.

We computed the cross-entropy of each sen-
tence in the Gigaword corpus according to both
models, and scored each sentence by the differ-
ence in cross-entropy,HEp(s)−HGw(s). We then
selected subsets of the Gigaword data correspond-
ing to 8 cutoff points in the cross-entropy differ-
ence scores, and trained 4-gram models (again us-
ing absolute discounting with a discount of 0.7) on
each of these subsets and on the full Gigaword cor-
pus. These language models were estimated with-
out restricting the vocabulary or applying count
cutoffs, but the only parameters computed were
those needed to determine the perplexity of the
held-out Europarl test set, which saves a substan-
tial amount of computation in determining the op-
timal selection threshold.

We compared our selection method to three
other methods. As a baseline, we trained lan-
guage models on random subsets of the Gigaword
corpus of approximately equal size to the data
sets produced by the cutoffs we selected for the
cross-entropy difference scores. Next, we scored
all the Gigaword sentences by the cross-entropy
according to the Europarl-trained model alone.
As we noted above, this is equivalent to the in-
domain perplexity scoring method used by Lin et
al. (1997) and Gao et al. (2002). Finally, we im-
plemented Klakow’s (2000) method, scoring each
Gigaword sentence by removing it from the Giga-
word corpus and computing the difference in the
log likelihood of the Europarl corpus according to
unigram models trained on the Gigaword corpus
with and without that sentence. With the latter two
methods, we chose cutoff points in the resulting
scores to produce data sets approximately equal in
size to those obtained using our selection method.

4 Results

For all four selection methods, plots of test set per-
plexity vs. the number of training data tokens se-
lected are displayed in Figure 1. (Note that the
training data token counts are displayed on a log-
arithmic scale.) The test set perplexity for the lan-
guage model trained on the full Gigaword corpus
is 135. As we might expect, reducing training
data by random sampling always increases per-
plexity. Selecting Gigaword sentences by their
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Figure 1: Test set perplexity vs. training set size

Selection Method Original LM PPL Modified LM PPL
in-domain cross-entropy scoring 124.4 124.8
Klakow’s method 110.5 110.8
cross-entropy difference scoring 100.7 101.9

Table 2: Results adjusted for vocabulary coverage

cross-entropy according to the Europarl-trained
model is effective in reducing both test set perplex-
ity and training corpus size, with an optimum per-
plexity of 124, obtained with a model built from
36% of the Gigaword corpus. Klakow’s method
is even more effective, with an optimum perplex-
ity of 111, obtained with a model built from 21%
of the Gigaword corpus. The cross-entropy differ-
ence selection method, however, is yet more effec-
tive, with an optimum perplexity of 101, obtained
with a model built from less than 7% of the Giga-
word corpus.

The comparisons implied by Figure 1, how-
ever, are only approximate, because each perplex-
ity (even along the same curve) is computed with
respect to a different vocabulary, resulting in a dif-
ferent out-of-vocabulary (OOV) rate. OOV tokens
in the test data are excluded from the perplexity
computation, so the perplexity measurements are
not strictly comparable.

Out of the 55566 test set tokens, the number
of OOV tokens ranges from 418 (0.75%), for the
smallest training set based on in-domain cross-
entropy scoring, to 20 (0.03%), for training on
the full Gigaword corpus. If we consider only

the training sets that appear to produce the lowest
perplexity for each selection method, however, the
spread of OOV counts is much narrower, ranging
53 (0.10%) for best training set based on cross-
entropy difference scoring, to 20 (0.03%), for ran-
dom selection.

To control for the difference in vocabulary, we
estimated a modified 4-gram language model for
each selection method (other than random se-
lection) using the training set that appeared to
produce the lowest perplexity for that selection
method in our initial experiments. In the modified
language models, the unigram model based on the
selected training set is smoothed by absolute dis-
counting, and backed-off to an unsmoothed uni-
gram model based on the full Gigaword corpus.
This produces language models that are normal-
ized over the same vocabulary as a model trained
on the full Gigaword corpus; thus the test set has
the same OOVs for each model.

Test set perplexity for each of these modifed
language models is compared to that of the orig-
inal version of the model in Table 2. It can be
seen that adjusting the vocabulary in this way, so
that all models are based on the same vocabulary,
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yields only very small changes in the measured
test-set perplexity, and these differences are much
smaller than the differences between the different
selection methods, whichever way the vocabulary
of the language models is determined.

5 Conclusions

The cross-entropy difference selection method in-
troduced here seems to produce language mod-
els that are both a better match to texts in a re-
stricted domain, and require less data for train-
ing, than any of the other data selection methods
tested. This study is preliminary, however, in that
we have not yet shown improved end-to-end task
performance applying this approach, such as im-
proved BLEU scores in a machine translation task.
However, we believe there is reason to be opti-
mistic about this. When a language model trained
on non-domain-specific data is used in a statisti-
cal translation model as a separate feature func-
tion (as is often the case), lower perplexity on in-
domain target language test data derived from ref-
erence translations corresponds directly to assign-
ing higher language model feature scores to those
reference translations, which should in turn lead to
translation system output that matches reference
translations better.
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