
Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics:shortpapers, pages 534–539,
Portland, Oregon, June 19-24, 2011. c©2011 Association for Computational Linguistics

Nonparametric Bayesian Machine Transliteration with Synchronous
Adaptor Grammars

Yun Huang1,2 Min Zhang1 Chew Lim Tan2

huangyun@comp.nus.edu.sg mzhang@i2r.a-star.edu.sg tancl@comp.nus.edu.sg
1Human Language Department 2Department of Computer Science
Institute for Infocomm Research National University of Singapore
1 Fusionopolis Way, Singapore 13 Computing Drive, Singapore

Abstract

Machine transliteration is defined as auto-
matic phonetic translation of names across
languages. In this paper, we propose syn-
chronous adaptor grammar, a novel nonpara-
metric Bayesian learning approach, for ma-
chine transliteration. This model provides
a general framework without heuristic or re-
striction to automatically learn syllable equiv-
alents between languages. The proposed
model outperforms the state-of-the-art EM-
based model in the English to Chinese translit-
eration task.

1 Introduction

Proper names are one source of OOV words in many
NLP tasks, such as machine translation and cross-
lingual information retrieval. They are often trans-
lated through transliteration, i.e. translation by pre-
serving how words sound in both languages. In
general, machine transliteration is often modelled
as monotonic machine translation (Rama and Gali,
2009; Finch and Sumita, 2009; Finch and Sumita,
2010), the joint source-channel models (Li et al.,
2004; Yang et al., 2009), or the sequential label-
ing problems (Reddy and Waxmonsky, 2009; Ab-
dul Hamid and Darwish, 2010).

Syllable equivalents acquisition is a critical phase
for all these models. Traditional learning approaches
aim to maximize the likelihood of training data
by the Expectation-Maximization (EM) algorithm.
However, the EM algorithm may over-fit the training
data by memorizing the whole training instances. To
avoid this problem, some approaches restrict that a

single character in one language could be aligned
to many characters of the other, but not vice versa
(Li et al., 2004; Yang et al., 2009). Heuristics are
introduced to obtain many-to-many alignments by
combining two directional one-to-many alignments
(Rama and Gali, 2009). Compared to maximum
likelihood approaches, Bayesian models provide a
systemic way to encode knowledges and infer com-
pact structures. They have been successfully applied
to many machine learning tasks (Liu and Gildea,
2009; Zhang et al., 2008; Blunsom et al., 2009).

Among these models, Adaptor Grammars (AGs)
provide a framework for defining nonparametric
Bayesian models based on PCFGs (Johnson et al.,
2007). They introduce additional stochastic pro-
cesses (namedadaptors) allowing the expansion of
an adapted symbol to depend on the expansion his-
tory. Since many existing models could be viewed
as special kinds of PCFG, adaptor grammars give
general Bayesian extension to them. AGs have been
used in various NLP tasks such as topic modeling
(Johnson, 2010), perspective modeling (Hardisty et
al., 2010), morphology analysis and word segmenta-
tion (Johnson and Goldwater, 2009; Johnson, 2008).

In this paper, we extend AGs to Synchronous
Adaptor Grammars (SAGs), and describe the in-
ference algorithm based on the Pitman-Yor process
(Pitman and Yor, 1997). We also describe how
transliteration could be modelled under this formal-
ism. It should be emphasized that the proposed
method is language independent and heuristic-free.
Experiments show the proposed approach outper-
forms the strong EM-based baseline in the English
to Chinese transliteration task.
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2 Synchronous Adaptor Grammars

2.1 Model

A Pitman-Yor Synchronous Adaptor Grammar
(PYSAG) is a tupleG = (Gs,Na,a, b,α), where
Gs = (N ,Ts,Tt,R, S,Θ) is a Synchronous
Context-Free Grammar (SCFG) (Chiang, 2007),
N is a set of nonterminal symbols,Ts/Tt are
source/target terminal symbols,R is a set of rewrite
rules, S ∈ N is the start symbol,Θ is the distri-
bution of rule probabilities,Na ⊆ N is the set of
adapted nonterminals,a ∈ [0, 1], b ≥ 0 are vec-
tors of discount and concentration parameters both
indexed by adapted nonterminals, andα are Dirich-
let prior parameters.

Algorithm 1 Generative Process
1: drawθA ∼ Dir(αA) for all A ∈ N
2: for each yield pair〈s / t〉 do
3: SAMPLE(S) ⊲ Sample from root

4: return

5: function SAMPLE(A) ⊲ ForA ∈ N
6: if A ∈ Na then
7: return SAMPLESAG(A)
8: else
9: return SAMPLESCFG(A)

10: function SAMPLESCFG(A) ⊲ ForA /∈ Na

11: draw ruler = 〈β / γ〉 ∼ Multi(θA)
12: treetB ←SAMPLE(B) for nonterminalB ∈ β∪γ
13: return BUILD TREE(r, tB1

, tB2
, . . .)

14: function SAMPLESAG(A) ⊲ ForA ∈ Na

15: draw cache indexzn+1 ∼ P (z|zi<n), where

P (z|zi<n) =

{

ma+b

n+b
if zn+1 = m + 1

nk−a

n+b
if zn+1 = k ∈ {1, · · · , m}

16: if zn+1 = m + 1 then ⊲ New entry
17: treet← SAMPLESCFG(A)
18: m← m + 1; nm = 1 ⊲ Update counts
19: INSERTTOCACHE(CA, t).
20: else ⊲ Old entry
21: nk ← nk + 1
22: treet← FIND INCACHE(CA, zn+1)

23: return t

The generative process of a synchronous tree set
T is described in Algorithm 1. First, rule probabil-
ities are sampled for each nonterminalA ∈ N (line
1) according to the Dirichlet distribution. Then syn-
chronous trees are generated in the top-down fashion

from the start symbolS (line 3) for each yield pair.
For nonterminals that are not adapted, the grammar
expands it just as the original synchronous grammar
(function SAMPLESCFG). For each adapted non-
terminalA ∈ Na, the grammar maintains a cache
CA to store previously generated subtrees underA.
Let zi be the subtree index inCA, denoting the syn-
chronous subtree generated at theith expansion of
A. At some particular time, assumingn subtrees
rooted atA have been generated withm different
types in the cache ofA, each of which has been gen-
erated forn1, . . . , nm times respectively1. Then the
grammar either generates the(n+1)th synchronous
subtree as SCFG (line 17) or chooses an existing
subtree (line 22), according to the conditional prob-
ability P (z|zi<n).

The above generative process demonstrates “rich
get richer” dynamics, i.e. previous sampled subtrees
under adapted nonterminals would more likely be
sampled again in following procedures. This is suit-
able for many learning tasks since they prefer sparse
solutions to avoid the over-fitting problems. If we
integrate out the adaptors, the joint probability of a
particular sequence of indexesz with cached counts
(n1, . . . , nm) under the Pitman-Yor process is

PY (z|a, b) =

∏m
k=1(a(k − 1) + b)

∏nk−1
j=1 (j − a)

∏n−1
i=0 (i + b)

.

(1)
Given synchronous tree setT , the joint probability
under the PYSAG is

P (T |α,a, b) =
∏

A∈N

B(αA + fA)

B(αA)
PY (z(T )|a, b)

(2)
where fA is the vector containing the number of
times that rulesr ∈ RA are used in theT , andB
is the Beta function.

2.2 Inference for PYSAGs

Directly drawing samples from Equation (2) is
intractable, so we extend the component-wise
Metropolis-Hastings algorithm (Johnson et al.,
2007) to the synchronous case. In detail, we
draw sampleT ′

i from some proposal distribution
Q(Ti|yi,T−i)

2, then accept the new sampled syn-

1Obviously,n =
∑

m

k=1
nk.

2
T−i means the set of sampled trees except theith one.
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chronous treeT ′
i with probability

A(Ti, T
′
i ) = min

{

1,
P (T ′|α,a, b)Q(Ti|yi,T−i)

P (T |α,a, b)Q(T ′
i |yi,T−i)

}

.

(3)
In theory,Q could be any distribution if it never

assigns zero probability. For efficiency reason, we
choose the probabilistic SCFG as the proposal dis-
tribution. We pre-parse the training instances3 be-
fore inference and save the structure of synchronous
parsing forests. During the inference, we only
change rule probabilities in parsing forests without
changing the forest structures. The probability of
rule r ∈ RA in Q is estimated by relative frequency
θr = [fr]−i∑

r′∈RA
[f

r′ ]−i
, whereRA is the set of rules

rooted atA, and[fr]−i is the number of times that
rule r is used in the tree setT−i. We use the sam-
pling algorithm described in (Blunsom and Osborne,
2008) to draw a synchronous tree from the parsing
forest according to the proposalQ.

Following (Johnson and Goldwater, 2009), we put
an uninformative Beta(1,1) prior ona and a “vague”
Gamma(10, 0.1) prior onb to model the uncertainty
of hyperparameters.

3 Machine Transliteration

3.1 Grammars

For machine transliteration, we design the following
grammar to learn syllable mappings4:

Name → 〈Syl / Syl〉+

Syl → 〈NECs / NECs〉
Syl → 〈NECs SECs / NECs SECs〉
Syl → 〈NECs TECs / NECs TECs〉

NECs → 〈NEC / NEC〉+

SECs → 〈SEC / SEC〉+

TECs → 〈TEC / TEC〉+

NEC → 〈si / tj〉
SEC → 〈ε / tj〉
TEC → 〈si / ε〉

3We implement the CKY-like bottom up parsing algorithm
described in (Wu, 1997). The complexity isO(|s|3|t|3).

4Similar to (Johnson, 2008), the adapted nonterminal are un-
derlined. Similarly, we also use rules in the regular expression
styleX→ 〈A / A〉+ to denote the following three rules:

X → 〈As / As〉
As → 〈A / A〉
As → 〈A As / A As〉

where the adapted nonterminalSyl is designed to
capture the syllable equivalents between two lan-
guages, and the nonterminalNEC, SEC andTEC cap-
ture the character pairs with no empty character,
empty source and empty target respectively. Note
that this grammar restricts the leftmost characters on
both sides must be aligned one-by-one. Since our
goal is to learn the syllable equivalents, we are not
interested in the subtree tree inside the syllables. We
refer this grammar assyllable grammar.

The above grammar could capture inner-syllable
dependencies. However, the selection of the target
characters also depend on the context. For example,
the following three instances are found in the train-
ing set:

〈a a b y e / c[ao] '[bi]〉
〈a a g a a r d / D[ai] �[ge] �[de]〉

〈a a l t o / C[a] �[er] ÷[tuo]〉

where the same English syllable〈a a〉 are translit-
erated to〈c[ao]〉, 〈D[ai]〉 and〈C[a]〉 respec-
tively, depending on the following syllables. To
model these contextual dependencies, we propose
the hierarchical SAG. The two-layerword grammar
is obtained by adding following rules:

Name → 〈Word / Word〉+

Word → 〈Syl / Syl〉+

We might further add a new adapted nonterminal
Col to learn the word collocations. The following
rules appear in thecollocation grammar:

Name → 〈Col / Col〉+

Col → 〈Word / Word〉+

Word → 〈Syl / Syl〉+

Figure 1 gives one synchronous parsing trees
under the collocation grammar of the example
〈m a x / ð[mai] �[ke] d[si]〉.

3.2 Translation Model

After sampling, we need a translation model to
transliterate new source string to target string.
Following (Li et al., 2004), we use the n-gram
translation model to estimate the joint distribution
P (s, t) =

∏K
k=1 P (pk|p

k−1
1 ), wherepk is the kth

syllable pair of the string pair〈s / t〉.
The first step is to construct joint segmentation

lattice for each training instance. We first generate a
merged grammarG′ using collected subtrees under
adapted nonterminals, then use synchronous parsing
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Name

Cols

Col

Words

Word

Syls

Syl

NECs

NEC

TECs

TEC

Syls

Syl

NECs

NEC

SECs

SEC

m/ð a/ε x/� ε/d

Figure 1: An example of parse tree.

to obtain probabilities in the segmentation lattice.
Specifically, we “flatten” the collected subtrees un-
der Syl, i.e. removing internal nodes, to construct
new synchronous rules. For example, we could get
two rules from the tree in Figure 1:

Syl → 〈m a / ð〉

Syl → 〈x / �d〉

If multiple subtrees are flattened to the same syn-
chronous rule, we sum up the counts of these sub-
trees. For rules with non-adapted nonterminal as
parent, we assign the probability as the same of the
sampled rule probability, i.e. letθ′r = θr. For
the adapted nonterminalSyl, there are two kinds
of rules: (1) the rules in the original probabilistic
SCFG, and (2) the rules flattened from subtrees. We
assign the rule probability as

θ′r =

{

ma+b
n+b

· θr if r is original SCFG rule
nr−a
n+b

if r is flatten from subtree
(4)

wherea and b are the parameters associated with
Syl, m is the number of types of different rules flat-
ten from subtrees,nr is the count of ruler, andn is
the total number of flatten rules. One may verify that
the rule probabilities are well normalized. Based
on this merged grammarG′, we parse the training
string pairs, then encode the parsed forest into the
lattice. Figure 2 show a lattice example for the string
pair 〈a a l t o / C[a] �[er] ÷[tuo]〉. The
transition probabilities in the lattice are the “inside”

probabilities of correspondingSyl node in the pars-
ing forest.

start

a/C

aa/C

aal/C�

aalto/C�÷

〈 a/C 〉

〈 aa/C 〉

〈 al/� 〉

〈 l/� 〉

〈 lto/�÷ 〉

〈 to/÷ 〉

Figure 2: Lattice example.

After building the segmentation lattice, we train
3-order language model from the lattice using the
SRILM5. In decoding, given a new source string, we
use the Viterbi algorithm with beam search (Li et al.,
2004) to find the best transliteration candidate.

4 Experiments

4.1 Data and Settings

We conduct experiments on the English-Chinese
data in the ACL Named Entities Workshop (NEWS
2009)6. Table 1 gives some statistics of the data. For
evaluation, we report theword accuracy andmean
F-score metrics defined in (Li et al., 2009).

Train Dev Test
# Entry 31,961 2,896 2,896
# En Char 218,073 19,755 19,864
# Ch Char 101,205 9,160 9,246
# Ch Type 370 275 283

Table 1: Transliteration data statistics

In the inference step, we first run sampler through
the whole training corpus for10 iterations, then col-
lect adapted subtree statistics for every10 iterations,
and finally stop after20 collections. After each it-
eration, we resample each of hyperparameters from
the posterior distribution of hyperparameters using a
slice sampler (Neal, 2003).

4.2 Results

We implement the joint source-channel model (Li et
al., 2004) as the baseline system, in which the ortho-
graphic syllable alignment is automatically derived
by the Expectation-Maximization (EM) algorithm.

5http://www.speech.sri.com/projects/srilm/
6http://www.acl-ijcnlp-2009.org/workshops/NEWS2009/
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Since EM tends to memorize the training instance
as a whole, Li et al. (2004) restrict the Chinese side
to be single character in syllable equivalents. Our
method can be viewed as the Bayesian extension of
the EM-based baseline. Since PYSAGs could learn
accurate and compact transliteration units, we do not
need the restriction any more.

Grammar Dev (%) Test (%)
Baseline 67.8/86.9 66.6/85.7

Syl 66.6/87.0 66.6/86.6
Word 67.1/87.2 67.0/86.7
Col 67.2/87.1 66.9/86.7

Table 2: Transliteration results, in the format ofword ac-
curacy / mean F-score. “Syl”,“Word” and “Col” denote
the syllable, word and collocation grammar respectively.

Table 2 presents the results of all experiments.
From this table, we draw following conclusions:

1. The best results of our model are67.1%/87.2%
on development set and corresponding
67.0%/86.7% on test set, achieved by word
grammars. The results on test set outperform
the EM-based baseline system on both word
accuracy and mean F-score.

2. Comparing grammars of different layers, we
find that the word grammars perform consis-
tently better than the syllable grammars. These
support the assumption that the context infor-
mation are helpful to identify syllable equiva-
lents. However, the collocation grammars do
not further improve performance. We guess
the reason is that the instances in transliter-
ation are very short, so two-layer grammars
are good enough while the collocations become
very sparse, which results in unreliable proba-
bility estimation.

4.3 Discussion

Table 3 shows some examples of learned syllable
mappings in the final sampled tree of the syllable
grammar. We can see that the PYSAGs could find
good syllable mappings from the raw name pairs
without any heuristic or restriction. In this point of
view, the proposed method is language independent.

Specifically, we are interested in the English to-
ken “x”, which is the only one that has two corre-

s/d[si]/1669 k/�[ke]/408 ri/p[li]/342
t/A[te]/728 ma/ê[ma]/390 ra/.[la]/339
man/ù[man]/703 co/�[ke]/387 ca/k[ka]/333
d/�[de]/579 ll/�[er]/383 m/0[mu]/323
ck/�[ke]/564 la/.[la]/382 li/|[li]/314
de/�[de]/564 tt/A[te]/380 ber/Ë[bo]/311
ro/Û[luo]/531 l/�[er]/367 ley/|[li]/310
son/Ü[sen]/442 ton/î[dun]/360 na/B[na]/302

x/�d[ke si]/40 x/�[ke]/3 x/d[si]/1

Table 3: Examples of learned syllable mappings. Chinese
Pinyin are given in the square bracket. The counts of syl-
lable mappings in the final sampled tree are also given.

sponding Chinese characters (“�d[ke si]”). Ta-
ble 3 demonstrates that nearly all these correct map-
pings are discovered by PYSAGs. Note that these
kinds of mapping can not be learned if we restrict the
Chinese side to be only one character (the heuristic
used in (Li et al., 2004)). We will conduct experi-
ments on other language pairs in the future.

5 Conclusion

This paper proposes synchronous adaptor gram-
mars, a nonparametric Bayesian model, for machine
transliteration. Based on the sampling, the PYSAGs
could automatically discover syllable equivalents
without any heuristic or restriction. In this point
of view, the proposed model is language indepen-
dent. The joint source-channel model is then used
for training and decoding. Experimental results on
the English-Chinese transliteration task show that
the proposed method outperforms the strong EM-
based baseline system. We also compare grammars
in different layers and find that the two-layer gram-
mars are suitable for the transliteration task. We
plan to carry out more transliteration experiments on
other language pairs in the future.
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