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Abstract

We cast the word alignment problem as max-
imizing a submodular function under matroid
constraints. Our framework is able to express
complex interactions between alignment com-
ponents while remaining computationally ef-
ficient, thanks to the power and generality of
submodular functions. We show that submod-
ularity naturally arises when modeling word
fertility. Experiments on the English-French
Hansards alignment task show that our ap-
proach achieves lower alignment error rates
compared to conventional matching based ap-
proaches.

1 Introduction

Word alignment is a key component in most statisti-
cal machine translation systems. While classical ap-
proaches for word alignment are based on generative
models (e.g., IBM models (Brown et al., 1993) and
HMM (Vogel et al., 1996)), word alignment can also
be viewed as a matching problem, where each word
pair is associated with a score reflecting the desirabil-
ity of aligning that pair, and the alignment is then the
highest scored matching under some constraints.

Several matching-based approaches have been
proposed in the past. Melamed (2000) introduces
the competitive linking algorithm which greedily
constructs matchings under the one-to-one mapping
assumption. In (Matusov et al., 2004), matchings
are found using an algorithm for constructing
a maximum weighted bipartite graph matching
(Schrijver, 2003), where word pair scores come from
alignment posteriors of generative models. Similarly,
Taskar et al. (2005) cast word alignment as a
maximum weighted matching problem and propose a

framework for learning word pair scores as a function
of arbitrary features of that pair. These approaches,
however, have two potentially substantial limitations:
words have fertility of at most one, and interactions
between alignment decisions are not representable.

Lacoste-Julien et al. (2006) address this issue by
formulating the alignment problem as a quadratic
assignment problem, and off-the-shelf integer linear
programming (ILP) solvers are used to solve to op-
timization problem. While efficient for some median
scale problems, ILP-based approaches are limited
since when modeling more sophisticated interactions,
the number of variables (and/or constraints) required
grows polynomially, or even exponentially, making
the resultant optimization impractical to solve.

In this paper, we treat the word alignment problem
as maximizing a submodular function subject to
matroid constraints (to be defined in Section 2).
Submodular objective functions can represent
complex interactions among alignment decisions,
and essentially extend the modular (linear) objectives
used in the aforementioned approaches. While our
extensions add expressive power, they do not result
in a heavy computational burden. This is because
maximizing a monotone submodular function under
a matroid constraint can be solved efficiently using
a simple greedy algorithm. The greedy algorithm,
moreover, is a constant factor approximation
algorithm that guarantees a near-optimal solution.
In this paper, we moreover show that submodularity
naturally arises in word alignment problems when
modeling word fertility (see Section 4). Experiment
results on the English-French Hansards alignment
task show that our approach achieves lower align-
ment error rates compared to the maximum weighted
matching approach, while being at least 50 times
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faster than an ILP-based approach.

2 Background

Matroids and submodularity both play important
roles in combinatorial optimization. We briefly in-
troduce them here, referring the reader to (Schrijver,
2003) for details.

Matroids are combinatorial structures that general-
ize the notion of linear independence in matrices. A
pair (V, I) is called a matroid if V is a finite ground
set and I is a nonempty collection of subsets of V
that are independent. In particular, I must satisfy (i)
if X ⊂ Y and Y ∈ I then X ∈ I, (ii) if X,Y ∈ I
and |X| < |Y | thenX∪{e} ∈ I for some e ∈ Y \X .
We typically refer to a matroid by listing its ground
set and its family of independent sets:M = (V, I).

A set function f : 2V → R is called submodu-
lar (Edmonds, 1970) if it satisfies the property of
diminishing returns: for any X ⊆ Y ⊆ V \ v, a sub-
modular function f must satisfy f(X+v)−f(X) ≥
f(Y + v)− f(Y ). That is, the incremental “value”
of v decreases as the context in which v is considered
grows from X to Y . If this is satisfied everywhere
with equality, then the function f is called modu-
lar. A set function f is monotone nondecreasing if
∀X ⊆ Y , f(X) ≤ f(Y ). As shorthand, in this pa-
per, monotone nondecreasing submodular functions
will simply be referred to as monotone submodular.

Historically, submodular functions have their roots
in economics, game theory, combinatorial optimiza-
tion, and operations research. More recently, submod-
ular functions have started receiving attention in the
machine learning and computer vision community
(Kempe et al., 2003; Narasimhan and Bilmes, 2004;
Narasimhan and Bilmes, 2005; Krause and Guestrin,
2005; Narasimhan and Bilmes, 2007; Krause et al.,
2008; Kolmogorov and Zabin, 2004; Jegelka and
Bilmes, 2011) and have recently been introduced
to natural language processing for the task of docu-
ment summarization (Lin and Bilmes, 2010; Lin and
Bilmes, 2011).

3 Approach

We are given a source language (English) string eI1 =
e1, · · · , ei, · · · , eI and a target language (French)
string fJ1 = f1, · · · , fj , · · · , fJ that have to be
aligned. Define the word positions in the English

string as set E , {1, · · · , I} and positions in the
French string as set F , {1, · · · , J}. An alignment
A between the two word strings can then be seen as
a subset of the Cartesian product of the word posi-
tions, i.e., A ⊆ {(i, j) : i ∈ E, j ∈ F} , V, and
V = E × F is the ground set. For convenience, we
refer to element (i, j) ∈ A as an edge that connects i
and j in alignment A.

Restricting the fertility of word fj to be at most kj
is mathematically equivalent to having |A ∩ PEj | ≤
kj , whereA ⊆ V is an alignment and PEj = E×{j}.
Intuitively, PEj is the set of all possible edges in the
ground set that connect to j, and the cardinality of
the intersection between A and PEj indicates how
many edges in A are connected to j. Similarly, we
can impose constraints on the fertility of English
words by constraining the alignment A to satisfy
|A ∩ PFi | ≤ ki for i ∈ E where PFi = {i} × F .
Note that either of {PEj : j ∈ F} or {PFi : i ∈ E}
constitute a partition of V . Therefore, alignments A
that satisfy |A ∩ PEj | ≤ kj ,∀j ∈ F , are independent
in the partition matroidME = (V, IE) with

IE = {A ⊆ V : ∀j ∈ F, |A ∩ PEj | ≤ kj},

and alignmentsA that satisfy |A∩PFi | ≤ ki, ∀i ∈ E,
are independent in matroidMF = (V, IF ) with

IF = {A ⊆ V : ∀i ∈ E, |A ∩ PFi | ≤ ki}.

Suppose we have a set function f : 2V → R+ that
measures quality (or scores) of an alignment A ⊆ V ,
then when also considering fertility constraints, we
can treat the word alignment problem as maximizing
a set function subject to matroid constraint:

Problem 1. maxA⊆V f(A), subject to: A ∈ I,

where I is the set of independent sets of a matroid (or
it might be the set of independent sets simultaneously
in two matroids, as we shall see later).

Independence in partition matroids generalizes
the typical matching constraints for word alignment,
where each word aligns to at most one word (kj =
1,∀j) in the other sentence (Matusov et al., 2004;
Taskar et al., 2005). Our matroid generalizations pro-
vide flexibility in modeling fertility, and also strate-
gies for solving the word alignment problem effi-
ciently and near-optimally. In particular, when f
is monotone submodular, near-optimal solutions for
Problem 1 can be efficiently guaranteed.
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For example, in (Fisher et al., 1978), a simple
greedy algorithm for monotone submodular function
maximization with a matroid constraint is shown
to have a constant approximation factor. Precisely,
the greedy algorithm finds a solution A such that
f(A) ≥ 1

m+1f(A∗) whereA∗ is the optimal solution
and m is number of matroid constraints. When there
is only one matroid constraint, we get an approxima-
tion factor 1

2 . Constant factor approximation algo-
rithms are particularly attractive since the quality of
the solution does not depend on the size of the prob-
lem, so even very large size problems do well. It is
also important to note that this is a worst case bound,
and in most cases the quality of the solution obtained
will be much better than this bound suggests.

Vondrák (2008) shows a continuous greedy al-
gorithm followed by pipage rounding with approx-
imation factor 1 − 1/e (≈ 0.63) for maximizing
a monotone submodular function subject to a ma-
troid constraint. Lee et al. (2009) improve the 1

m+1 -
approximation result in (Fisher et al., 1978) by show-
ing a local-search algorithm has approximation guar-
antee of 1

m+ε for the problem of maximizing a mono-
tone submodular function subject to m matroid con-
straints (m ≥ 2 and ε > 0). In this paper, however,
we use the simple greedy algorithm for the sake of
efficiency. We outline our greedy algorithm for Prob-
lem 1 in Algorithm 1, which is slightly different from
the one in (Fisher et al., 1978) as in line 4 of Al-
gorithm 1, we have an additional requirement on a
such that the increment of adding a is strictly greater
than zero. This additional requirement is to main-
tain a higher precision word alignment solution. The
theoretical guarantee still holds as f is monotone —
i.e., Algorithm 1 is a 1

2 -approximation algorithm for
Problem 1 (only one matroid constraint) when f is
monotone submodular.

Algorithm 1: A greedy algorithm for Problem 1.
input : A = ∅, N = V .
begin1

while N 6= ∅ do2
a← argmaxe∈N f(A ∪ {e})− f(A);3
if A ∪ {a} ∈ I and f(A ∪ {a})− f(A) > 04
then

A→ A ∪ {a}5

N → N \ {a}.6

end7

Algorithm 1 requires O(|V |2) evaluations of f . In
practice, the argmax in Algorithm 1 can be efficient
implemented with priority queue when f is submod-
ular (Minoux, 1978), which brings the complexity
down to O(|V | log |V |) oracle function calls.

4 Submodular Fertility

We begin this section by demonstrating that submod-
ularity arises naturally when modeling word fertility.
To do so, we borrow an example of fertility from
(Melamed, 2000). Suppose a trained model estimates
s(e1, f1) = .05, s(e1, f2) = .02 and s(e2, f2) = .01,
where s(ei, fj) represents the score of aligning ei and
fj . To find the correct alignment (e1, f1) and (e2, f2),
the competitive linking algorithm in (Melamed, 2000)
poses a one-to-one assumption to prevent choosing
(e1, f2) over (e2, f2). The one-to-one assumption,
however, limits the algorithm’s capability of handling
models with fertility larger than one. Alternatively,
we argue that the reason of choosing (e2, f2) rather
than (e1, f2) is that the benefit of aligning e1 and f2

diminishes after e1 is already aligned with f1 — this
is exactly the property of diminishing returns, and
therefore, it is natural to use submodular functions to
model alignment scores.

To illustrate this further, we use another real
example taken from the trial set of English-French
Hansards data. The scores estimated from the data
for aligning word pairs (the, le), (the, de) and (of,
de) are 0.68, 0.60 and 0.44 respectively. Given
an English-French sentence pair: “I have stressed
the CDC as an example of creative, aggressive
effective public ownership” and “je le ai cité comme
exemple de propriété publique créatrice, dynamique
et efficace”, an algorithm that allows word fertility
larger than 1 might choose alignment (the, de) over
(of, de) since 0.68 + 0.60 > 0.68 + 0.44, regardless
the fact that the is already aligned with le. Now if
we use a submodular function to model the score of
aligning an English word to a set of French words,
we might obtain the correct alignments (the, le) and
(of, de) by incorporating the diminishing returns
property (i.e., the score gain of (the, de), which is
0.60 out of context, could diminish to something less
than 0.44 when evaluated in the context of (the, le)).

Formally, for each i in E, we define a mapping
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δi : 2V → 2F with

δi(A) = {j ∈ F |(i, j) ∈ A}, (1)

i.e., δi(A) is the set of positions in F that are aligned
with position i in alignment A.

We use function fi : 2F → R+ to represent the
benefit of aligning position i ∈ E to a set of positions
in F . Given score si,j of aligning i and j, we could
have, for S ⊆ F ,

fi(S) =

∑
j∈S

si,j

α

, (2)

where 0 < α ≤ 1, i.e., we impose a concave function
over a modular function, which produces a submod-
ular function. The value of α determines the rate
that the marginal benefit diminishes when aligning
a word to more than one words in the other string.

Summing over alignment scores in all positions in
E, we obtain the total score of an alignment A:

f(A) =
∑
i∈E

fi(δi(A)), (3)

which is again, monotone submodular. By diminish-
ing the marginal benefits of aligning a word to more
than one words in the other string, f(A) encourages
the common case of low fertility while allowing fer-
tility larger than one. For instance in the aforemen-
tioned example, when α = 1

2 , the score for aligning
both le and de to the is

√
0.68 + 0.60 ≈ 1.13, while

the score of aligning the to le and of to de is
√

0.68 +√
0.44 ≈ 1.49, leading to the correct alignment.

5 Experiments

We evaluated our approaches using the English-
French Hansards data from the 2003 NAACL shared
task (Mihalcea and Pedersen, 2003). This corpus con-
sists of 1.1M automatically aligned sentences, and
comes with a test set of 447 sentences, which have
been hand-aligned and are marked with both “sure”
and “possible” alignments (Och and Ney, 2003). Us-
ing these alignments, alignment error rate (AER) is
calculated as:

AER(A,S, P ) = 1− |A ∩ S|+ |A ∩ P |
|A|+ |S|

(4)

where S is the set of sure gold pairs, and P is the
set of possible gold pairs. We followed the work
in (Taskar et al., 2005) and split the original test set
into 347 test examples, and 100 training examples
for parameters tuning.

In general, the score of aligning i to j can be
modeled as a function of arbitrary features. Although
parameter learning in our framework would be
another interesting topic to study, we focus herein on
the inference problem. Therefore, only one feature
(Eq. 5) was used in our experiments in order for no
feature weight learning to be required. In particular,
we estimated the score of aligning i to j as

si,j =
p(fj |ei) · p(i|j, I)∑

j′∈F p(fj′ |ei) · p(i|j′, I)
, (5)

where the translation probability p(fj |ei) and
alignment probability p(i|j, I) were obtained from
IBM model 2 trained on the 1.1M sentences. The
IBM 2 models gives an AER of 21.0% with French
as the target, in line with the numbers reported in
Och and Ney (2003) and Lacoste-Julien et al. (2006).

We tested two types of partition matroid con-
straints. The first is a global matroid constraint:

A ∈ {A′ ⊆ V : ∀j ∈ F, |A′ ∩ PEj | ≤ b}, (6)

which restricts fertility of all words on F side to be at
most b. This constraint is denoted as FertF (A) ≤ b
in Table 1 for simplicity. The second type, denoted
as FertF (A) ≤ kj , is word-dependent:

A ∈ {A′ ⊆ V : ∀j ∈ F, |A′ ∩ PEj | ≤ kj}, (7)

where the fertility of word on j is restricted to be
at most kj . Here kj = max{b : pb(f) ≤ θ, b ∈
{0, 1, . . . , 5}}, where θ is a threshold and pb(f) is
the probability that French word f was aligned to at
most b English words based on the IBM 2 alignment.

As mentioned in Section 3, matroid constraints
generalize the matching constraint. In particular,
when using two matroid constraints, FertE(A) ≤ 1
and FertF (A) ≤ 1, we have the matching constraint
where fertility for both English and French words
are restricted to be at most one. Our setup 1 (see Ta-
ble 1) uses these two constraints along with a modular
objective function, which is equivalent to the max-
imum weighted bipartite matching problem. Using
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Table 1: AER results
ID Objective function Constraint AER(%)
1 FertF (A) ≤ 1, FertE(A) ≤ 1 21.0
2 FertF (A) ≤ 1 23.1
3

modular: f(A) =
P
i∈E

P
j∈δi(A)

si,j
FertF (A) ≤ kj 22.1

4 FertF (A) ≤ 1 19.8
5

submodular: f(A) =
P
i∈E

“P
j∈δi(A) si,j

”α
FertF (A) ≤ kj 18.6

Generative model (IBM 2, E→F) 21.0
Maximum weighted bipartite matching 20.9

Matching with negative penalty on fertility (ILP) 19.3

greedy algorithm to solve this problem, we get AER
21.0% (setup 1 in Table 1) – no significant difference
compared to the AER (20.9%) achieved by the ex-
act solution (maximum weighted bipartite matching
approach), illustrating that greedy solutions are near-
optimal. Note that the bipartite matching approach
does not improve performance over IBM 2 model,
presumably because only one feature was used here.

When allowing fertility of English words to be
more than one, we see a significant AER reduction
using a submodular objective (setup 4 and 5) instead
of a modular objective (setup 2 and 3), which verifies
our claim that submodularity lends itself to modeling
the marginal benefit of growing fertility. In setup
2 and 4, while allowing larger fertility for English
words, we restrict the fertility of French words to
be most one. To allow higher fertility for French
words, one possible approach is to use constraint
FertF (A) ≤ 2, in which all French words are
allowed to have fertility up to 2. This approach, how-
ever, results in a significant increase of false positive
alignments since all French words tend to collect
as many matches as permitted. This issue could be
alleviated by introducing a symmetric version of
the objective function in Eq. 3 such that marginal
benefit of higher fertility of French words are also
compressed. Alternatively, we use the second type
of matroid constraint in which fertility upper bounds
of French words are word-dependent instead of
global. With θ = .8, about 10 percent of the French
words have kj equal to 2 or greater. By using the
word-dependent matroid constraint (setup 3 and 5),
AERs are reduced compared to those using global
matroid constraints. In particular, 18.6% AER is
achieved by setup 5, which significantly outperforms
the maximum weighted bipartite matching approach.

We also compare our method with model of
Lacoste-Julien et al. (2006) which also allows fer-

tility larger than one by penalizing different levels of
fertility. We used si,j as an edge feature and pb(f) as
a node feature together with two additional features:
a bias feature and the bucketed frequency of the word
type. The same procedures for training and decoding
as in (Lacoste-Julien et al., 2006) were performed
where MOSEK was used as the ILP solver. As shown
in Table 1, performance of setup 5 outperforms this
model and moreover, our approach is at least 50 times
faster: it took our approach only about half a second
to align all the 347 test set sentence pairs whereas
using the ILP-based approach took about 40 seconds.

6 Discussion

We have presented a novel framework where word
alignment is framed as submodular maximization
subject to matroid constraints. Our framework
extends previous matching-based frameworks
in two respects: submodular objective functions
generalize modular (linear) objective functions, and
matroid constraints generalize matching constraints.
Moreover, such generalizations do not incur a
prohibitive computational price since submodular
maximization over matroids can be efficiently solved
with performance guarantees. As it is possible to
leverage richer forms of submodular functions that
model higher order interactions, we believe that the
full potential of our approach has yet to be explored.
Our approach might lead to novel approaches for
machine translation as well.
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