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Abstract

We introduce synchronous tree adjoining
grammars (TAG) into tree-to-string transla-
tion, which converts a source tree to a target
string. Without reconstructing TAG deriva-
tions explicitly, our rule extraction algo-
rithm directly learns tree-to-string rules from
aligned Treebank-style trees. As tree-to-string
translation casts decoding as a tree parsing
problem rather than parsing, the decoder still
runs fast when adjoining is included. Less
than 2 times slower, the adjoining tree-to-
string system improves translation quality by
+0.7 BLEU over the baseline system only al-
lowing for tree substitution on NIST Chinese-
English test sets.

1 Introduction

Syntax-based translation models, which exploit hi-
erarchical structures of natural languages to guide
machine translation, have become increasingly pop-
ular in recent years. So far, most of them have
been based on synchronous context-free grammars
(CFG) (Chiang, 2007), tree substitution grammars
(TSG) (Eisner, 2003; Galley et al., 2006; Liu et
al., 2006; Huang et al., 2006; Zhang et al., 2008),
and inversion transduction grammars (ITG) (Wu,
1997; Xiong et al., 2006). Although these for-
malisms present simple and precise mechanisms for
describing the basic recursive structure of sentences,
they are not powerful enough to model some impor-
tant features of natural language syntax. For ex-
ample, Chiang (2006) points out that the transla-
tion of languages that can stack an unbounded num-
ber of clauses in an “inside-out” way (Wu, 1997)

provably goes beyond the expressive power of syn-
chronous CFG and TSG. Therefore, it is necessary
to find ways to take advantage of more powerful syn-
chronous grammars to improve machine translation.

Synchronous tree adjoining grammars (TAG)
(Shieber and Schabes, 1990) are a good candidate.
As a formal tree rewriting system, TAG (Joshi et al.,
1975; Joshi, 1985) provides a larger domain of lo-
cality than CFG to state linguistic dependencies that
are far apart since the formalism treats trees as basic
building blocks. As a mildly context-sensitive gram-
mar, TAG is conjectured to be powerful enough to
model natural languages. Synchronous TAG gener-
alizes TAG by allowing the construction of a pair
of trees using the TAG operations of substitution
and adjoining on tree pairs. The idea of using syn-
chronous TAG in machine translation has been pur-
sued by several researchers (Abeille et al., 1990;
Prigent, 1994; Dras, 1999), but only recently in
its probabilistic form (Nesson et al., 2006; De-
Neefe and Knight, 2009). Shieber (2007) argues that
probabilistic synchronous TAG possesses appealing
properties such as expressivity and trainability for
building a machine translation system.

However, one major challenge for applying syn-
chronous TAG to machine translation is computa-
tional complexity. While TAG requiresO(n6) time
for monolingual parsing, synchronous TAG requires
O(n12) for bilingual parsing. One solution is to use
tree insertion grammars (TIG) introduced by Sch-
abes and Waters (1995). As a restricted form of
TAG, TIG still allows for adjoining of unbounded
trees but only requiresO(n3) time for monolingual
parsing. Nesson et al. (2006) firstly demonstrate
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Figure 1: Initial and auxiliary tree pairs. The source side (Chinese) is a Treebank-style linguistic tree. The target side
(English) is a purely structural tree using a single non-terminal (X). By convention, substitution and foot nodes are
marked with a down arrow (↓) and an asterisk (∗), respectively. The dashed lines link substitution sites (e.g., NP↓ and
X↓ in β1) and adjoining sites (e.g., NP and X inα2) in tree pairs. Substituting the initial tree pairα1 at the NP↓-X↓

node pair in the auxiliary tree pairβ1 yields a derived tree pairβ2, which can be adjoined at NN-X inα2 to generate
α3.

the use of synchronous TIG for machine translation
and report promising results. DeNeefe and Knight
(2009) prove that adjoining can improve translation
quality significantly over a state-of-the-art string-
to-tree system (Galley et al., 2006) that uses syn-
chronous TSG with tractable computational com-
plexity.

In this paper, we introduce synchronous TAG into
tree-to-string translation (Liu et al., 2006; Huang et
al., 2006), which is the simplest and fastest among
syntax-based approaches (Section 2). We propose
a new rule extraction algorithm based on GHKM
(Galley et al., 2004) that directly induces a syn-
chronous TAG from an aligned and parsed bilingual
corpus without converting Treebank-style trees to
TAG derivations explicitly (Section 3). As tree-to-
string translation takes a source parse tree as input,
the decoding can be cast as a tree parsing problem
(Eisner, 2003): reconstructing TAG derivations from
a derived tree using tree-to-string rules that allow for
both substitution and adjoining. We describe how to
convert TAG derivations to translation forest (Sec-
tion 4). We evaluated the new tree-to-string system
on NIST Chinese-English tests and obtained con-
sistent improvements (+0.7 BLEU) over the STSG-

based baseline system without significant loss in ef-
ficiency (1.6 times slower) (Section 5).

2 Model

A synchronous TAG consists of a set of linked ele-
mentary tree pairs:initial andauxiliary . An initial
tree is a tree of which the interior nodes are all la-
beled with non-terminal symbols, and the nodes on
the frontier are either words or non-terminal sym-
bols marked with a down arrow (↓). An auxiliary
tree is defined as an initial tree, except that exactly
one of its frontier nodes must be marked as foot
node (∗). The foot node must be labeled with a non-
terminal symbol that is the same as the label of the
root node.

Synchronous TAG defines two operations to build
derived tree pairs from elementary tree pairs:substi-
tution andadjoining. Nodes in initial and auxiliary
tree pairs are linked to indicate the correspondence
between substitution and adjoining sites. Figure 1
shows three initial tree pairs (i.e.,α1, α2, andα3)
and two auxiliary tree pairs (i.e.,β1 andβ2). The
dashed lines link substitution nodes (e.g., NP↓ and
X↓ in β1) and adjoining sites (e.g., NP and X inα2)
in tree pairs. Substituting the initial tree pairα1 at
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�±
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Figure 2: A training example. Tree-to-string rules can be extracted from shaded nodes.

node minimal initial rule minimal auxiliary rule

NR0,1 [1] ( NR měiguó )→ US
NP0,1 [2] ( NP ( x1:NR↓ ) ) → x1

NN1,2 [3] ( NN zǒngtǒng )→ President
NP1,2 [4] ( NP ( x1:NN↓ ) ) → x1

[5] ( NP ( x1:NP↓ ) ( x2:NP↓ ) ) → x1 x2

[6] ( NP0:1 ( x1:NR↓ ) ) → x1 [7] ( NP ( x1:NP∗ ) ( x2:NP↓ ) ) → x1 x2

NP0,2 [8] ( NP0:2 ( x1:NP∗ ) ( x2:NP↓ ) ) → x1 x2

[9] ( NP0:1 ( x1:NN↓ ) ) → x1 [10] ( NP (x1:NP↓ ) ( x2:NP∗ ) ) → x1 x2

[11] ( NP0:2 ( x1:NP↓ ) ( x2:NP∗ ) ) → x1 x2

NR2,3 [12] ( NR àob̄amǎ )→ Obama
NP2,3 [13] ( NP (x1:NR↓ ) ) → x1

[14] ( NP (x1:NP↓ ) ( x2:NP↓ ) ) → x1 x2

[15] ( NP0:2 ( x1:NP↓ ) ( x2:NP↓ ) ) → x1 x2 [16] ( NP (x1:NP∗ ) ( x2:NP↓ ) ) → x1 x2

NP0,3 [17] ( NP0:1 ( x1:NR↓ ) ) → x1 [18] ( NP (x1:NP↓ ) ( x2:NP∗ ) ) → x1 x2

[19] ( NP0:1 ( x1:NN↓ ) ) → x1

[20] ( NP0:1 ( x1:NR↓ ) ) → x1

NN4,5 [21] ( NN qiāngj̄ı ) → shooting
NN5,6 [22] ( NN shı̀jiàn )→ incident
NP4,6 [23] ( NP (x1:NN↓ ) ( x2:NN↓ ) ) → x1 x2

PP3,6 [24] ( PP ( duı̀ ) (x1:NP↓ ) ) → x1

NN7,8 [25] ( NN qiǎnzé )→ condemned
NP7,8 [26] ( NP (x1:NN↓ ) ) → x1

VP6,8 [27] ( VP ( VV yǔyı̌ ) ( x1:NP↓ ) ) → x1

[28] ( VP ( x1:PP↓ ) ( x2:VP↓ ) ) → x2 thex1VP3,8 [29] ( VP0:1 ( VV yǔyı̌ ) ( x1:NP↓ ) ) → x1 [30] ( VP ( x1:PP↓ ) ( x2:VP∗ ) ) → x2 thex1

IP0,8 [31] ( IP ( x1:NP↓ ) ( x2:VP↓ ) ) → x1 hasx2

Table 1: Minimal initial and auxiliary rules extracted fromFigure 2. Note that an adjoining site has a span as subscript.
For example, NP0:1 in rule 6 indicates that the node is an adjoining site linked to a target node dominating the target
string spanning from position 0 to position 1 (i.e.,x1). The target tree is hidden because tree-to-string translation only
considers the target surface string.
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the NP↓-X↓ node pair in the auxiliary tree pairβ1

yields a derived tree pairβ2, which can be adjoined
at NN-X in α2 to generateα3.

For simplicity, we representα2 as a tree-to-string
rule:

( NP0:1 ( NR měiguó ) )→ US

where NP0:1 indicates that the node is an adjoin-
ing site linked to a target node dominating the tar-
get string spanning from position 0 to position 1
(i.e., “US”). The target tree is hidden because tree-
to-string translation only considers the target surface
string. Similarly,β1 can be written as

( NP (x1:NP∗ ) ( x2:NP↓ ) ) → x1 x2

wherex denotes a non-terminal and the subscripts
indicate the correspondence between source and tar-
get non-terminals.

The parameters of a probabilistic synchronous
TAG are

∑

α

Pi(α) = 1 (1)

∑

α

Ps(α|η) = 1 (2)

∑

β

Pa(β|η) + Pa(NONE|η) = 1 (3)

whereα ranges over initial tree pairs,β over aux-
iliary tree pairs, andη over node pairs.Pi(α) is
the probability of beginning a derivation withα;
Ps(α|η) is the probability of substitutingα at η;
Pa(β|η) is the probability of adjoiningβ at η; fi-
nally, Pa(NONE|η) is the probability of nothing ad-
joining atη.

For tree-to-string translation, these parameters
can be treated as feature functions of a discrimi-
native framework (Och, 2003) combined with other
conventional features such as relative frequency, lex-
ical weight, rule count, language model, and word
count (Liu et al., 2006).

3 Rule Extraction

Inducing a synchronous TAG from training data
often begins with converting Treebank-style parse
trees to TAG derivations (Xia, 1999; Chen and
Vijay-Shanker, 2000; Chiang, 2003). DeNeefe and

Knight (2009) propose an algorithm to extract syn-
chronous TIG rules from an aligned and parsed
bilingual corpus. They first classify tree nodes
into heads, arguments, and adjuncts using heuristics
(Collins, 2003), then transform a Treebank-style tree
into a TIG derivation, and finally extract minimally-
sized rules from the derivation tree and the string on
the other side, constrained by the alignments. Proba-
bilistic models can be estimated by collecting counts
over the derivation trees.

However, one challenge is that there are many
TAG derivations that can yield the same derived tree,
even with respect to a single grammar. It is difficult
to choose appropriate single derivations that enable
the resulting grammar to translate unseen data well.
DeNeefe and Knight (2009) indicate that the way to
reconstruct TIG derivations has a direct effect on fi-
nal translation quality. They suggest that one possi-
ble solution is to use derivation forest rather than a
single derivation tree for rule extraction.

Alternatively, we extend the GHKM algorithm
(Galley et al., 2004) todirectly extract tree-to-string
rules that allow for both substitution and adjoining
from aligned and parsed data. There is no need for
transforming a parse tree into a TAG derivation ex-
plicitly before rule extraction and all derivations can
be easily reconstructed using extracted rules.1 Our
rule extraction algorithm involves two steps: (1) ex-
tracting minimal rules and (2) composition.

3.1 Extracting Minimal Rules

Figure 2 shows a training example, which consists of
a Chinese parse tree, an English string, and the word
alignment between them. By convention, shaded
nodes are calledfrontier nodes from which tree-to-
string rules can be extracted. Note that the source
phrase dominated by a frontier node and its corre-
sponding target phrase are consistent with the word
alignment: all words in the source phrase are aligned
to all words in the corresponding target phrase and
vice versa.

We distinguish between three categories of tree-

1Note that our algorithm does not take heads, complements,
and adjuncts into consideration and extracts all possible rules
with respect to word alignment. Our hope is that this treatment
would make our system more robust in the presence of noisy
data. It is possible to use the linguistic preferences as features.
We leave this for future work.
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to-string rules:

1. substitution rules, in which the source tree is
an initial tree without adjoining sites.

2. adjoining rules, in which the source tree is an
initial tree with at least one adjoining site.

3. auxiliary rules , in which the source tree is an
auxiliary tree.

For example, in Figure 1,α1 is a substitution rule,
α2 is an adjoining rule, andβ1 is an auxiliary rule.

Minimal substitution rules are the same with those
in STSG (Galley et al., 2004; Liu et al., 2006) and
therefore can be extracted directly using GHKM. By
minimal, we mean that the interior nodes are not
frontier and cannot be decomposed. For example,
in Table 2, rule 1 (for shortr1) is a minimal substi-
tution rule extracted from NR0,1.

Minimal adjoining rules are defined as minimal
substitution rules, except that each root node must
be an adjoining site. In Table 2,r2 is a minimal
substitution rule extracted from NP0,1. As NP0,1 is
a descendant of NP0,2 with the same label, NP0,1

is a possible adjoining site. Therefore,r6 can be
derived fromr2 and licensed as a minimal adjoining
rule extracted from NP0,2. Similarly, four minimal
adjoining rules are extracted from NP0,3 because it
has four frontier descendants labeled with NP.

Minimal auxiliary rules are derived from minimal
substitution and adjoining rules. For example, in Ta-
ble 2,r7 andr10 are derived from the minimal sub-
stitution ruler5 while r8 andr11 are derived from
r15. Note that a minimal auxiliary rule can have ad-
joining sites (e.g.,r8).

Table 1 lists 17 minimal substitution rules, 7 min-
imal adjoining rules, and 7 minimal auxiliary rules
extracted from Figure 2.

3.2 Composition

We can obtain composed rules that capture rich con-
texts by substituting and adjoining minimal initial
and auxiliary rules. For example, the composition
of r12, r17, r25, r26, r29, and r31 yields an initial
rule with two adjoining sites:

( IP ( NP0:1 ( NR àob̄amǎ ) ) ( VP2:3 ( VV yǔyı̌ )
( NP ( NN qiǎnzé ) ) ) )→ Obama has condemned

Note that the source phrase “àob̄amǎ. . . yǔyı̌ qiǎnzé”
is discontinuous. Our model allows both the source
and target phrases of an initial rule with adjoining
sites to be discontinuous, which goes beyond the ex-
pressive power of synchronous CFG and TSG.

Similarly, the composition of two auxiliary rules
r8 andr16 yields a new auxiliary rule:

( NP ( NP (x1:NP∗ ) ( x2:NP↓ ) ) ( x3:NP↓ ) ) → x1x2x3

We first compose initial rules and then com-
pose auxiliary rules, both in a bottom-up way. To
maintain a reasonable grammar size, we follow Liu
(2006) to restrict that the tree height of a rule is no
greater than 3 and the source surface string is no
longer than 7.

To learn the probability modelsPi(α), Ps(α|η),
Pa(β|η), andPa(NONE|η), we collect and normal-
ize counts over these extracted rules following De-
Neefe and Knight (2009).

4 Decoding

Given a synchronous TAG and a derived source tree
π, a tree-to-string decoder finds the English yield
of the best derivation of which the Chinese yield
matchesπ:

ê = e

(

arg max
D s.t. f(D)=π

P (D)

)

(4)

This is calledtree parsing (Eisner, 2003) as the de-
coder finds ways of decomposingπ into elementary
trees.

Tree-to-string decoding with STSG is usually
treated asforest rescoring (Huang and Chiang,
2007) that involves two steps. The decoder first con-
verts the input tree into a translation forest using a
translation rule set by pattern matching. Huang et
al. (2006) show that this step is a depth-first search
with memorization inO(n) time. Then, the decoder
searches for the best derivation in the translation for-
est intersected withn-gram language models and
outputs the target string.2

Decoding with STAG, however, poses one major
challenge to forest rescoring. As translation forest
only supports substitution, it is difficult to construct
a translation forest for STAG derivations because of

2Mi et al. (2008) give a detailed description of the two-step
decoding process. Huang and Mi (2010) systematically analyze
the decoding complexity of tree-to-string translation.

1282



α1

IP0,8

NP2,3 VP3,8

↓

NR2,3

↓

α2

NR2,3nê
àobāmǎ
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elementary tree translation rule
α1 r1 ( IP ( NP0:1 ( x1:NR↓ ) ) ( x2:VP↓ ) ) → x1 x2

α2 r2 ( NR àob̄amǎ )→ Obama
β1 r3 ( NP ( NP0:1 ( x1:NN↓ ) ) ( x2:NP∗ ) ) → x1 x2

β2 r4 ( NP (x1:NP↓ ) ( x2:NP∗ ) ) → x1 x2

β3 r5 ( NP ( NP (x1:NR↓ ) ) ( x2:NP∗ ) ) → x1 x2

α3 r6 ( NN zǒngtǒng )→ President

Figure 3: Matched trees and corresponding rules. Each node in a matched tree is annotated with a span as superscript
to facilitate identification. For example, IP0,8 in α1 indicates that IP0,8 in Figure 2 is matched. Note that its left child
NP2,3 is not its direct descendant in Figure 2, suggesting that adjoining is required at this site.

α1

α2(1.1) β1(1) β2(1)

β3(1) α3(1.1)

IP0,8

NP0,2 VP3,8

NR0,1 NN1,2 NR2,3

e1 e2

e3 e4

hyperedge translation rule
e1 r1 + r4 ( IP ( NP (x1:NP↓ ) ( NP (x2:NR↓ ) ) ) ( x3:VP↓ ) → x1 x2 x3

e2 r1 + r3 + r5 ( IP ( NP ( NP (x1:NP↓ ) ( x2:NP↓ ) ) ( NP (x3:NR↓ ) ) ) ( x4:VP↓ ) ) → x1 x2 x3 x4

e3 r6 ( NN zǒngtǒng )→ President
e4 r2 ( NR àob̄amǎ )→ Obama

Figure 4: Converting a derivation forest to a translation forest. In a derivation forest, a node in a derivation forest isa
matched elementary tree. A hyperedge corresponds to operations on related trees: substitution (dashed) or adjoining
(solid). We use Gorn addresses as tree addresses.α2(1.1) denotes thatα2 is substituted in the treeα1 at the node NR2,3

↓

of address 1.1 (i.e., the first child of the first child of the root node). As translation forest only supports substitution, we
combine trees with adjoining sites to form an equivalent tree without adjoining sites. Rules are composed accordingly
(e.g.,r1 + r4).
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adjoining. Therefore, we divide forest rescoring for
STAG into three steps:

1. matching, matching STAG rules against the in-
put tree to obtain a TAG derivation forest;

2. conversion, converting the TAG derivation for-
est into a translation forest;

3. intersection, intersecting the translation forest
with ann-gram language model.

Given a tree-to-string rule, rule matching is to find
a subtree of the input tree that is identical to the
source side of the rule. While matching STSG rules
against a derived tree is straightforward, it is some-
what non-trivial for STAG rules that move beyond
nodes of a local tree. We follow Liu et al. (2006) to
enumerate all elementary subtrees and match STAG
rules against these subtrees. This can be done by first
enumerating all minimal initial and auxiliary trees
and then combining them to obtain composed trees,
assuming that every node in the input tree is fron-
tier (see Section 3). We impose the same restrictions
on the tree height and length as in rule extraction.
Figure 3 shows some matched trees and correspond-
ing rules. Each node in a matched tree is annotated
with a span as superscript to facilitate identification.
For example, IP0,8 in α1 means that IP0,8 in Figure
2 is matched. Note that its left child NP2,3 is not
its direct descendant in Figure 2, suggesting that ad-
joining is required at this site.

A TAG derivation tree specifies uniquely how
a derived tree is constructed using elementary trees
(Joshi, 1985). A node in a derivation tree is an ele-
mentary tree and an edge corresponds to operations
on related elementary trees: substitution or adjoin-
ing. We introduceTAG derivation forest , a com-
pact representation of multiple TAG derivation trees,
to encodes all matched TAG derivation trees of the
input derived tree.

Figure 4 shows part of a TAG derivation forest.
The six matched elementary trees are nodes in the
derivation forest. Dashed and solid lines represent
substitution and adjoining, respectively. We use
Gorn addresses as tree addresses: 0 is the address
of the root node,p is the address of thepth child of
the root node, andp · q is the address of theqth child
of the node at the addressp. The derivation forest

should be interpreted as follows:α2 is substituted in
the treeα1 at the node NR2,3

↓
of address 1.1 (i.e., the

first child of the first child of the root node) andβ1 is
adjoined in the treeα1 at the node NP2,3 of address
1.

To take advantage of existing decoding tech-
niques, it is necessary to convert a derivation forest
to a translation forest. A hyperedge in a transla-
tion forest corresponds to a translation rule. Mi et
al. (2008) describe how to convert a derived tree
to a translation forest using tree-to-string rules only
allowing for substitution. Unfortunately, it is not
straightforward to convert a derivation forest includ-
ing adjoining to a translation forest. To alleviate this
problem, we combine initial rules with adjoining
sites and associated auxiliary rules to formequiv-
alent initial rules without adjoining sites on the fly
during decoding.

Considerα1 in Figure 3. It has an adjoining site
NP2,3. Adjoining β2 in α1 at the node NP2,3 pro-
duces an equivalent initial tree with only substitution
sites:

( IP0,8 ( NP0,3 ( NP0,2

↓ ) ( NP2,3 ( NR2,3

↓ ) ) ) ( VP3,8

↓ ) )

The corresponding composed ruler1 + r4 has no
adjoining sites and can be added to translation forest.

We define that the elementary trees needed to be
composed (e.g.,α1 andβ2) form acomposition tree
in a derivation forest. A node in a composition tree is
a matched elementary tree and an edge corresponds
to adjoining operations. The root node must be an
initial tree with at least one adjoining site. The de-
scendants of the root node must all be auxiliary trees.
For example, (α1 ( β2 ) ) and (α1 ( β1 ( β3 ) ) ) are
two composition trees in Figure 4. The number of
children of a node in a composition tree depends on
the number of adjoining sites in the node. We use
composition forestto encode all possible composi-
tion trees.

Often, a node in a composition tree may have mul-
tiple matched rules. As a large amount of composi-
tion trees and composed rules can be identified and
constructed on the fly during forest conversion, we
usedcube pruning(Chiang, 2007; Huang and Chi-
ang, 2007) to achieve a balance between translation
quality and decoding efficiency.
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category description number
VP verb phrase 12.40
NP noun phrase 7.69
IP simple clause 7.26
QP quantifier phrase 0.14
CP clause headed by C 0.10
PP preposition phrase 0.09

CLP classifier phrase 0.02
ADJP adjective phrase 0.02
LCP phrase formed by “XP+LC” 0.02
DNP phrase formed by “XP+DEG” 0.01

Table 2: Top-10 phrase categories of foot nodes and their
average occurrences in training corpus.

5 Evaluation

We evaluated our adjoining tree-to-string translation
system on Chinese-English translation. The bilin-
gual corpus consists of 1.5M sentences with 42.1M
Chinese words and 48.3M English words. The Chi-
nese sentences in the bilingual corpus were parsed
by an in-house parser. To maintain a reasonable
grammar size, we follow Liu et al. (2006) to re-
strict that the height of a rule tree is no greater than
3 and the surface string’s length is no greater than 7.
After running GIZA++ (Och and Ney, 2003) to ob-
tain word alignment, our rule extraction algorithm
extracted 23.0M initial rules without adjoining sites,
6.6M initial rules with adjoining sites, and 5.3M
auxiliary rules. We used the SRILM toolkit (Stol-
cke, 2002) to train a 4-gram language model on the
Xinhua portion of the GIGAWORD corpus, which
contains 238M English words. We used the 2002
NIST MT Chinese-English test set as the develop-
ment set and the 2003-2005 NIST test sets as the
test sets. We evaluated translation quality using the
BLEU metric, as calculated by mteval-v11b.pl with
case-insensitivematching ofn-grams.

Table 2 shows top-10 phrase categories of foot
nodes and their average occurrences in training cor-
pus. We find that VP (verb phrase) is most likely
to be the label of a foot node in an auxiliary rule.
On average, there are 12.4 nodes labeled with VP
are identical to one of its ancestors per tree. NP and
IP are also found to be foot node labels frequently.
Figure 4 shows the average occurrences of foot node
labels VP, NP, and IP over various distances. A dis-
tance is the difference of levels between a foot node
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Figure 5: Average occurrences of foot node labels VP,
NP, and IP over various distances.

system grammar MT03 MT04 MT05

Moses - 33.10 33.96 32.17

hierarchical SCFG 33.40 34.65 32.88

STSG 33.13 34.55 31.94
tree-to-string

STAG 33.64 35.28 32.71

Table 3: BLEU scores on NIST Chinese-English test sets.
Scores marked in bold are significantly better that those
of STSG atpl.01 level.

and the root node. For example, in Figure 2, the dis-
tance between NP0,1 and NP0,3 is 2 and the distance
between VP6,8 and VP3,8 is 1. As most foot nodes
are usually very close to the root nodes, we restrict
that a foot node must be the direct descendant of the
root node in our experiments.

Table 3 shows the BLEU scores on the NIST
Chinese-English test sets. Our baseline system is the
tree-to-string system using STSG (Liu et al., 2006;
Huang et al., 2006). The STAG system outper-
forms the STSG system significantly on the MT04
and MT05 test sets atpl.01 level. Table 3 also
gives the results of Moses (Koehn et al., 2007) and
an in-house hierarchical phrase-based system (Chi-
ang, 2007). Our STAG system achieves compara-
ble performance with the hierarchical system. The
absolute improvement of +0.7 BLEU over STSG is
close to the finding of DeNeefe and Knight (2009)
on string-to-tree translation. We feel that one major
obstacle for achieving further improvement is that
composed rules generated on the fly during decod-
ing (e.g.,r1 + r3 + r5 in Figure 4) usually have too
many non-terminals, making cube pruning in the in-
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STSG STAG
matching 0.086 0.109

conversion 0.000 0.562
intersection 0.946 1.064

other 0.012 0.028
total 1.044 1.763

Table 4: Comparison of average decoding time.

tersection phase suffering from severe search errors
(only a tiny fraction of the search space can be ex-
plored). To produce the 1-best translations on the
MT05 test set that contains 1,082 sentences, while
the STSG system used 40,169 initial rules without
adjoining sites, the STAG system used 28,046 initial
rules without adjoining sites, 1,057 initial rules with
adjoining sites, and 1,527 auxiliary rules.

Table 4 shows the average decoding time on the
MT05 test set. While rule matching for STSG needs
0.086 second per sentence, the matching time for
STAG only increases to 0.109 second. For STAG,
the conversion of derivation forests to translation
forests takes 0.562 second when we restrict that at
most 200 rules can be generated on the fly for each
node. As we use cube pruning, although the trans-
lation forest of STAG is bigger than that of STSG,
the intersection time barely increases. In total, the
STAG system runs in 1.763 seconds per sentence,
only 1.6 times slower than the baseline system.

6 Conclusion

We have presented a new tree-to-string translation
system based on synchronous TAG. With translation
rules learned from Treebank-style trees, the adjoin-
ing tree-to-string system outperforms the baseline
system using STSG without significant loss in effi-
ciency. We plan to introduce left-to-right target gen-
eration (Huang and Mi, 2010) into the STAG tree-
to-string system. Our work can also be extended to
forest-based rule extraction and decoding (Mi et al.,
2008; Mi and Huang, 2008). It is also interesting to
introduce STAG into tree-to-tree translation (Zhang
et al., 2008; Liu et al., 2009; Chiang, 2010).
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