
Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics, pages 430–439,
Portland, Oregon, June 19-24, 2011. c©2011 Association for Computational Linguistics

An Algorithm for Unsupervised Transliteration Mining with an Application
to Word Alignment

Hassan Sajjad Alexander Fraser Helmut Schmid
Institute for Natural Language Processing

University of Stuttgart
{sajjad,fraser,schmid}@ims.uni-stuttgart.de

Abstract

We propose a language-independent method
for the automatic extraction of transliteration
pairs from parallel corpora. In contrast to
previous work, our method uses no form of
supervision, and does not require linguisti-
cally informed preprocessing. We conduct
experiments on data sets from the NEWS
2010 shared task on transliteration mining and
achieve an F-measure of up to 92%, out-
performing most of the semi-supervised sys-
tems that were submitted. We also apply our
method to English/Hindi and English/Arabic
parallel corpora and compare the results with
manually built gold standards which mark
transliterated word pairs. Finally, we integrate
the transliteration module into the GIZA++
word aligner and evaluate it on two word
alignment tasks achieving improvements in
both precision and recall measured against
gold standard word alignments.

1 Introduction

Most previous methods for building transliteration
systems were supervised, requiring either hand-
crafted rules or a clean list of transliteration pairs,
both of which are expensive to create. Such re-
sources are also not applicable to other language
pairs.

In this paper, we show that it is possible to ex-
tract transliteration pairs from a parallel corpus us-
ing an unsupervised method. We first align a bilin-
gual corpus at the word level using GIZA++ and
create a list of word pairs containing a mix of non-
transliterations and transliterations. We train a sta-

tistical transliterator on the list of word pairs. We
then filter out a few word pairs (those which have
the lowest transliteration probabilities according to
the trained transliteration system) which are likely
to be non-transliterations. We retrain the translitera-
tor on the filtered data set. This process is iterated,
filtering out more and more non-transliteration pairs
until a nearly clean list of transliteration word pairs
is left. The optimal number of iterations is automat-
ically determined by a novel stopping criterion.

We compare our unsupervised transliteration min-
ing method with the semi-supervised systems pre-
sented at the NEWS 2010 shared task on translit-
eration mining (Kumaran et al., 2010) using four
language pairs. We refer to this task as NEWS10.
These systems used a manually labelled set of data
for initial supervised training, which means that
they are semi-supervised systems. In contrast, our
system is fully unsupervised. We achieve an F-
measure of up to 92% outperforming most of the
semi-supervised systems.

The NEWS10 data sets are extracted Wikipedia
InterLanguage Links (WIL) which consist of par-
allel phrases, whereas a parallel corpus consists of
parallel sentences. Transliteration mining on the
WIL data sets is easier due to a higher percentage
of transliterations than in parallel corpora. We also
do experiments on parallel corpora for two language
pairs. To this end, we created gold standards in
which sampled word pairs are annotated as either
transliterations or non-transliterations. These gold
standards have been submitted with the paper as sup-
plementary material as they are available to the re-
search community.

430

Finally we integrate a transliteration module into
the GIZA++ word aligner and show that it improves
word alignment quality. The transliteration mod-
ule is trained on the transliteration pairs which our
mining method extracts from the parallel corpora.
We evaluate our word alignment system on two lan-
guage pairs using gold standard word alignments
and achieve improvements of 10% and 13.5% in pre-
cision and 3.5% and 13.5% in recall.

The rest of the paper is organized as follows. In
section 2, we describe the filtering model and the
transliteration model. In section 3, we present our
iterative transliteration mining algorithm and an al-
gorithm which computes a stopping criterion for the
mining algorithm. Section 4 describes the evaluation
of our mining method through both gold standard
evaluation and through using it to improve word
alignment quality. In section 5, we present previous
work and we conclude in section 6.

2 Models

Our algorithms use two different models. The first
model is a joint character sequence model which
we apply to transliteration mining. We use the
grapheme-to-phoneme converter g2p to implement
this model. The other model is a standard phrase-
based MT model which we apply to transliteration
(as opposed to transliteration mining). We build it
using the Moses toolkit.

2.1 Joint Sequence Model Using g2p

Here, we briefly describe g2p using notation from
Bisani and Ney (2008). The details of the model,
its parameters and the utilized smoothing techniques
can be found in Bisani and Ney (2008).

The training data is a list of word pairs (a source
word and its presumed transliteration) extracted
from a word-aligned parallel corpus. g2p builds a
joint sequence model on the character sequences of
the word pairs and infers m-to-n alignments between
source and target characters with Expectation Maxi-
mization (EM) training. The m-to-n character align-
ment units are referred to as “multigrams”.

The model built on multigrams consisting of
source and target character sequences greater than
one learns too much noise (non-transliteration infor-
mation) from the training data and performs poorly.

In our experiments, we use multigrams with a maxi-
mum of one character on the source and one charac-
ter on the target side (i.e., 0,1-to-0,1 character align-
ment units).

The N-gram approximation of the joint probabil-
ity can be defined in terms of multigrams qi as:

p(qk
1) ≈

k+1∏
j=1

p(qj |qj−1
j−N+1) (1)

where q0, qk+1 are set to a special boundary symbol.
N-gram models of order > 1 did not work well

because these models tended to learn noise (infor-
mation from non-transliteration pairs) in the training
data. For our experiments, we only trained g2p with
the unigram model.

In test mode, we look for the best sequence of
multigrams given a fixed source and target string and
return the probability of this sequence.

For the mining process, we trained g2p on
lists containing both transliteration pairs and non-
transliteration pairs.

2.2 Statistical Machine Transliteration System
We build a phrase-based MT system for translitera-
tion using the Moses toolkit (Koehn et al., 2003). We
also tried using g2p for implementing the translit-
eration decoder but found Moses to perform bet-
ter. Moses has the advantage of using Minimum Er-
ror Rate Training (MERT) which optimizes translit-
eration accuracy rather than the likelihood of the
training data as g2p does. The training data con-
tains more non-transliteration pairs than transliter-
ation pairs. We don’t want to maximize the like-
lihood of the non-transliteration pairs. Instead we
want to optimize the transliteration performance for
test data. Secondly, it is easy to use a large language
model (LM) with Moses. We build the LM on the
target word types in the data to be filtered.

For training Moses as a transliteration system, we
treat each word pair as if it were a parallel sentence,
by putting spaces between the characters of each
word. The model is built with the default settings
of the Moses toolkit. The distortion limit “d“ is set
to zero (no reordering). The LM is implemented as
a five-gram model using the SRILM-Toolkit (Stol-
cke, 2002), with Add-1 smoothing for unigrams and
Kneser-Ney smoothing for higher n-grams.

431

3 Extraction of Transliteration Pairs

Training of a supervised transliteration system re-
quires a list of transliteration pairs which is expen-
sive to create. Such lists are usually either built man-
ually or extracted using a classifier trained on man-
ually labelled data and using other language depen-
dent information. In this section, we present an it-
erative method for the extraction of transliteration
pairs from parallel corpora which is fully unsuper-
vised and language pair independent.

Initially, we extract a list of word pairs from a
word-aligned parallel corpus using GIZA++. The
extracted word pairs are either transliterations, other
kinds of translations, or misalignments. In each it-
eration, we first train g2p on the list of word pairs.
Then we delete those 5% of the (remaining) train-
ing data which are least likely to be transliterations
according to g2p.1 We determine the best iteration
according to our stopping criterion and return the fil-
tered data set from this iteration. The stopping crite-
rion uses unlabelled held-out data to predict the opti-
mal stopping point. The following sections describe
the transliteration mining method in detail.

3.1 Methodology

We will first describe the iterative filtering algorithm
(Algorithm 1) and then the algorithm for the stop-
ping criterion (Algorithm 2). In practice, we first
run Algorithm 2 for 100 iterations to determine the
best number of iterations. Then, we run Algorithm 1
for that many iterations.

Initially, the parallel corpus is word-aligned using
GIZA++ (Och and Ney, 2003), and the alignments
are refined using the grow-diag-final-and heuristic
(Koehn et al., 2003). We extract all word pairs which
occur as 1-to-1 alignments in the word-aligned cor-
pus. We ignore non-1-to-1 alignments because they
are less likely to be transliterations for most lan-
guage pairs. The extracted set of word pairs will be
called “list of word pairs” later on. We use the list
of word pairs as the training data for Algorithm 1.

Algorithm 1 builds a joint sequence model using
g2p on the training data and computes the joint prob-
ability of all word pairs according to g2p. We nor-
malize the probabilities by taking the nth square root

1Since we delete 5% from the filtered data, the number of
deleted data items decreases in each iteration.

Algorithm 1 Mining of transliteration pairs
1: training data←list of word pairs
2: I← 0
3: repeat
4: Build a joint source channel model on the training

data using g2p and compute the joint probability
of every word pair.

5: Remove the 5% word pairs with the lowest length-
normalized probability from the training data.
{and repeat the process with the filtered training
data}

6: I← I+1
7: until I = Stopping iteration from Algorithm 2

where n is the average length of the source and the
target string. The training data contains mostly non-
transliteration pairs and a few transliteration pairs.
Therefore the training data is initially very noisy and
the joint sequence model is not very accurate. How-
ever it can successfully be used to eliminate a few
word pairs which are very unlikely to be translitera-
tions.

On the filtered training data, we can train a model
which is slightly better than the previous model. Us-
ing this improved model, we can eliminate further
non-transliterations.

Our results show that at the iteration determined
by our stopping criterion, the filtered set mostly
contains transliterations and only a small number
of transliterations have been mistakenly eliminated
(see section 4.2).

Algorithm 2 automatically determines the best
stopping point of the iterative transliteration min-
ing process. It is an extension of Algorithm 1. It
runs the iterative process of Algorithm 1 on half of
the list of word pairs (training data) for 100 itera-
tions. For every iteration, it builds a transliteration
system on the filtered data. The transliteration sys-
tem is tested on the source side of the other half of
the list of word pairs (held-out). The output of the
transliteration system is matched against the target
side of the held-out data. (These target words are ei-
ther transliterations, translations or misalignments.)
We match the target side of the held-out data under
the assumption that all matches are transliterations.
The iteration where the output of the transliteration
system best matches the held-out data is chosen as
the stopping iteration of Algorithm 1.

432

Algorithm 2 Selection of the stopping iteration for
the transliteration mining algorithm

1: Create clusters of word pairs from the list of word
pairs which have a common prefix of length 2 both
on the source and target language side.

2: Randomly add each cluster either to the training data
or to the held-out data.

3: I← 0
4: while I < 100 do
5: Build a joint sequence model on the training

data using g2p and compute the length-normalized
joint probability of every word pair in the training
data.

6: Remove the 5% word pairs with the lowest prob-
ability from the training data. {The training data
will be reduced by 5% of the rest in each iteration}

7: Build a transliteration system on the filtered train-
ing data and test it using the source side of the
held-out and match the output against the target
side of the held-out.

8: I← I+1
9: end while

10: Collect statistics of the matching results and take the
median from 9 consecutive iterations (median9).

11: Choose the iteration with the best median9 score for
the transliteration mining process.

We will now describe Algorithm 2 in detail. Al-
gorithm 2 initially splits the word pairs into training
and held-out data. This could be done randomly, but
it turns out that this does not work well for some
tasks. The reason is that the parallel corpus con-
tains inflectional variants of the same word. If two
variants are distributed over training and held-out
data, then the one in the training data may cause the
transliteration system to produce a correct transla-
tion (but not transliteration) of its variant in the held-
out data. This problem is further discussed in section
4.2.2. Instead of randomly splitting the data, we first
create clusters of word pairs which have a common
prefix of length 2 both on the source and target lan-
guage side. We randomly add each cluster either to
the training data or to the held-out data.

We repeat the mining process (described in Algo-
rithm 1) to eliminate non-transliteration pairs from
the training data. For each iteration of Algorithm 2,
i.e., steps 4 to 9, we build a transliteration system on
the filtered training data and test it on the source side
of the held-out. We collect statistics on how well the
output of the system matches the target side of the

held-out. The matching scores on the held-out data
often make large jumps from iteration to iteration.
We take the median of the results from 9 consecutive
iterations (the 4 iterations before, the current and the
4 iterations after the current iteration) to smooth the
scores. We call this median9. We choose the iter-
ation with the best smoothed score as the stopping
point for the filtering process. In our tests, the me-
dian9 heuristic indicated an iteration close to the op-
timal iteration.

Sometimes several nearby iterations have the
same maximal smoothed score. In that case, we
choose the one with the highest unsmoothed score.
Section 4.2 explains the median9 heuristic in more
detail and presents experimental results showing that
it works well.

4 Experiments

We evaluate our transliteration mining algorithm on
three tasks: transliteration mining from Wikipedia
InterLanguage Links, transliteration mining from
parallel corpora, and word alignment using a word
aligner with a transliteration component. On the
WIL data sets, we compare our fully unsupervised
system with the semi-supervised systems presented
at the NEWS10 (Kumaran et al., 2010). In the eval-
uation on parallel corpora, we compare our min-
ing results with a manually built gold standard in
which each word pair is either marked as a translit-
eration or as a non-transliteration. In the word align-
ment experiment, we integrate a transliteration mod-
ule which is trained on the transliterations pairs ex-
tracted by our method into a word aligner and show
a significant improvement. The following sections
describe the experiments in detail.

4.1 Experiments Using Parallel Phrases of
Wikipedia InterLanguage Links

We conduct transliteration mining experiments on
the English/Arabic, English/Hindi, English/Tamil
and English/Russian Wikipedia InterLanguage
Links (WIL) used in the NEWS10.2 All data sets

2We do not evaluate on the English/Chinese data because
the Chinese data requires word segmentation which is beyond
the scope of our work. Another problem is that our extraction
method was developed for alphabetic languages and probably
needs to be adapted before it is applicable to logographic lan-
guages such as Chinese.

433

Our S-Best S-Worst Systems Rank
EA 87.4 91.5 70.2 16 3
ET 90.1 91.4 57.5 14 3
EH 92.2 94.4 71.4 14 3

Table 1: Summary of results on NEWS10 data sets where
“EA” is English/Arabic, “ET” is English/Tamil and “EH”
is English/Hindi. “Our” shows the F-measure of our fil-
tered data against the gold standard using the supplied
evaluation tool, “Systems” is the total number of partic-
ipants in the subtask, and “Rank” is the rank we would
have obtained if our system had participated.

contain training data, seed data and reference data.
We make no use of the seed data since our system is
fully unsupervised. We calculate the F-measure of
our filtered transliteration pairs against the supplied
gold standard using the supplied evaluation tool.

For English/Arabic, English/Hindi and En-
glish/Tamil, our system is better than most of the
semi-supervised systems presented at the NEWS
2010 shared task for transliteration mining. Table 1
summarizes the F-scores on these data sets.

On the English/Russian data set, our system
achieves 76% F-measure which is not good com-
pared with the systems that participated in the shared
task. The English/Russian corpus contains many
cognates which – according to the NEWS10 defi-
nition – are not transliterations of each other. Our
system learns the cognates in the training data and
extracts them as transliterations (see Table 2).

The two best teams on the English/Russian task
presented various extraction methods (Jiampoja-
marn et al., 2010; Darwish, 2010). Their sys-
tems behave differently on English/Russian than on
other language pairs. Their best systems for En-
glish/Russian are only trained on the seed data and
the use of unlabelled data does not help the perfor-
mance. Since our system is fully unsupervised, and
the unlabelled data is not useful, we perform badly.

4.2 Experiments Using Parallel Corpora

The Wikipedia InterLanguage Links shared task
data contains a much larger proportion of translitera-
tions than a parallel corpus. In order to examine how
well our method performs on parallel corpora, we
apply it to parallel corpora of English/Hindi and En-
glish/Arabic, and compare the transliteration mining
results with a gold standard.

Table 2: Cognates from English/Russian corpus extracted
by our system as transliteration pairs. None of them are
correct transliteration pairs according to the gold stan-
dard.

We use the English/Hindi corpus from the shared
task on word alignment, organized as part of the
ACL 2005 Workshop on Building and Using Par-
allel Texts (WA05) (Martin et al., 2005). For En-
glish/Arabic, we use a freely available parallel cor-
pus from the United Nations (UN) (Eisele and Chen,
2010). We randomly take 200,000 parallel sentences
from the UN corpus of the year 2000. We cre-
ate gold standards for both language pairs by ran-
domly selecting a few thousand word pairs from the
lists of word pairs extracted from the two corpora.
We manually tag them as either transliterations or
non-transliterations. The English/Hindi gold stan-
dard contains 180 transliteration pairs and 2084
non-transliteration pairs and the English/Arabic gold
standard contains 288 transliteration pairs and 6639
non-transliteration pairs. We have submitted these
gold standards with the paper. They are available to
the research community.

In the following sections, we describe the me-
dian9 heuristic and the splitting method of Algo-
rithm 2. The splitting method is used to avoid early
peaks in the held-out statistics, and the median9
heuristic smooths the held-out statistics in order to
obtain a single peak.3

4.2.1 Motivation for Median9 Heuristic
Algorithm 2 collects statistics from the held-out data
(step 10) and selects the stopping iteration. Due to
the noise in the held-out data, the transliteration ac-
curacy on the held-out data often jumps from itera-
tion to iteration. The dotted line in figure 1 (right)
shows the held-out prediction accuracy for the En-

3We do not use the seed data in our system. However,
to check the correctness of the stopping point, we tested
the transliteration system on the seed data (available with
NEWS10) for every iteration of Algorithm 2. We verified that
the median9 held-out statistics and accuracy on the seed data
have their peaks at the same iteration.

434

glish/Hindi parallel corpus. The curve is very noisy
and has two peaks. It is difficult to see the effect of
the filtering. We take the median of the results from
9 consecutive iterations to smooth the scores. The
solid line in figure 1 (right) shows a smoothed curve
built using the median9 held-out scores. A compari-
son with the gold standard (section 4.2.3) shows that
the stopping point (peak) reached using the median9
heuristic is better than the stopping point obtained
with unsmoothed scores.

4.2.2 Motivation for Splitting Method
Algorithm 2 initially splits the list of word pairs into
training and held-out data. A random split worked
well for the WIL data, but failed on the parallel cor-
pora. The reason is that parallel corpora contain in-
flectional variants of the same word. If these vari-
ants are randomly distributed over training and held-
out data, then a non-transliteration word pair such as
the English-Hindi pair “change – badlao” may end
up in the training data and the related pair “changes
– badlao” in the held-out data. The Moses system
used for transliteration will learn to “transliterate”
(or actually translate) “change” to “badlao”. From
other examples, it will learn that a final “s” can be
dropped. As a consequence, the Moses transliterator
may produce the non-transliteration “badlao” for the
English word “changes” in the held-out data. Such
matching predictions of the transliterator which are
actually translations lead to an overestimate of the
transliteration accuracy and may cause Algorithm 2
to predict a stopping iteration which is too early.

By splitting the list of word pairs in such a way
that inflectional variants of a word are placed either
in the training data, or in the held-out, but not in
both, this problem can be solved.4

The left graph in Figure 1 shows that the median9
held-out statistics obtained after a random data split
of a Hindi/English corpus contains two peaks which
occur too early. These peaks disappear in the right
graph of Figure 1 which shows the results obtained
after a split with the clustering method.

The overall trend of the smoothed curve in fig-
ure 1 (right) is very clear. We start by filtering out
non-transliteration pairs from the data, so the results

4This solution is appropriate for all of the language pairs
used in our experiments, but should be revisited if there is in-
flection realized as prefixes, etc.

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 10 20 30 40 50 60 70 80 90

ac
cu

ra
cy

iterations

held out
median9

0

0.1

0.2

0.3

0.4

0.5

0.6

0 10 20 30 40 50 60 70 80 90

ac
cu

ra
cy

iterations

held out
median 9

Figure 1: Statistics of held-out prediction of En-
glish/Hindi data using modified Algorithm 2 with random
division of the list of word pairs (left) and using Algo-
rithm 2 (right). The dotted line shows unsmoothed held-
out scores and solid line shows median9 held-out scores

of the transliteration system go up. When no more
non-transliteration pairs are left, we start filtering
out transliteration pairs and the results of the system
go down. We use this stopping criterion for all lan-
guage pairs and achieve consistently good results.

4.2.3 Results on Parallel Corpora
According to the gold standard, the English/Hindi
and English/Arabic data sets contain 8% and 4%
transliteration pairs respectively. We repeat the same
mining procedure – run Algorithm 2 up to 100 itera-
tions and return the stopping iteration. Then, we run
Algorithm 1 up to the stopping iteration returned by
Algorithm 2 and obtain the filtered data.

TP FN TN FP
EH Filtered 170 10 2039 45
EA Filtered 197 91 6580 59

Table 3: Transliteration mining results using the parallel
corpus of English/Hindi (EH) and English/Arabic (EA)
against the gold standard

Table 3 shows the mining results on the En-
glish/Hindi and English/Arabic corpora. The gold
standard is a subset of the data sets. The En-
glish/Hindi gold standard contains 180 translitera-
tion pairs and 2084 non-transliteration pairs. The
English/Arabic gold standard contains 288 translit-
eration pairs and 6639 non-transliteration pairs.
From the English/Hindi data, the mining system has
mined 170 transliteration pairs out of 180 transliter-
ation pairs. The English/Arabic mined data contains
197 transliteration pairs out of 288 transliteration
pairs. The mining system has wrongly identified a
few non-transliteration pairs as transliterations (see

435

table 3, last column). Most of these word pairs are
close transliterations and differ by only one or two
characters from perfect transliteration pairs. The
close transliteration pairs provide many valid multi-
grams which may be helpful for the mining system.

4.3 Integration into Word Alignment Model

In the previous section, we presented a method for
the extraction of transliteration pairs from a parallel
corpus. In this section, we will explain how to build
a transliteration module on the extracted transliter-
ation pairs and how to integrate it into MGIZA++
(Gao and Vogel, 2008) by interpolating it with the t-
table probabilities of the IBM models and the HMM
model. MGIZA++ is an extension of GIZA++. It
has the ability to resume training from any model
rather than starting with Model1.

4.3.1 Modified EM Training of the Word
Alignment Models

GIZA++ applies the IBM models (Brown et al.,
1993) and the HMM model (Vogel et al., 1996)
in both directions, i.e., source to target and target
to source. The alignments are refined using the
grow-diag-final-and heuristic (Koehn et al., 2003).
GIZA++ generates a list of translation pairs with
alignment probabilities, which is called the t-table.
In this section, we propose a method to modify the
translation probabilities of the t-table by interpolat-
ing the translation counts with transliteration counts.
The interpolation is done in both directions. In the
following, we will only consider the e-to-f direction.
The transliteration module which is used to calcu-
late the conditional transliteration probability is de-
scribed in Algorithm 3.

We build a transliteration system by training
Moses on the filtered transliteration corpus (using
Algorithm 1) and apply it to the e side of the list
of word pairs. For every source word, we gener-
ate the list of 10-best transliterations nbestTI(e).
Then, we extract every f that cooccurs with e in a
parallel sentence and add it to nbestTI(e) which
gives us the list of candidate transliteration pairs
candidateTI(e). We use the sum of transliteration
probabilities

∑
f ′∈CandidateTI(e) pmoses(f ′, e) as an

approximation for the prior probability pmoses(e) =∑
f ′ pmoses(f ′, e) which is needed to convert the

joint transliteration probability into a conditional

Algorithm 3 Estimation of transliteration probabili-
ties, e-to-f direction

1: unfiltered data←list of word pairs
2: filtered data ←transliteration pairs extracted using

Algorithm 1
3: Train a transliteration system on the filtered data
4: for all e do
5: nbestTI(e) ← 10 best transliterations for e ac-

cording to the transliteration system
6: cooc(e) ← set of all f that cooccur with e in a

parallel sentence
7: candidateTI(e)← cooc(e) ∪ nbestTI(e)
8: end for
9: for all f do

10: pmoses(f, e)← joint transliteration probability of
e and f according to the transliterator

11: pti(f |e)← pmoses(f,e)P
f′∈CandidateT I(e) pmoses(f ′,e)

12: end for

probability. We use the constraint decoding option
of Moses to compute the joint probability of e and f.
It computes the probability by dividing the transla-
tion score of the best target sentence given a source
sentence by the normalization factor.

We combine the transliteration probabilities with
the translation probabilities of the IBM models and
the HMM model. The normal translation probability
pta(f |e) of the word alignment models is computed
with relative frequency estimates.

We smooth the alignment frequencies by adding
the transliteration probabilities weighted by the fac-
tor λ and get the following modified translation
probabilities

p̂(f |e) =
fta(f, e) + λpti(f |e)

fta(e) + λ
(2)

where fta(f, e) = pta(f |e)f(e). pta(f |e) is ob-
tained from the original t-table of the alignment
model. f(e) is the total corpus frequency of e. λ
is the transliteration weight which is optimized for
every language pair (see section 4.3.2). Apart from
the definition of the weight λ, our smoothing method
is equivalent to Witten-Bell smoothing.

We smooth after every iteration of the IBM mod-
els and the HMM model except the last iteration of
each model. Algorithm 4 shows the smoothing for
IBM Model4. IBM Model1 and the HMM model
are smoothed in the same way. We also apply Algo-
rithm 3 and Algorithm 4 in the alignment direction

436

Algorithm 4 Interpolation with the IBM Model4, e-
to-f direction

1: {We want to run four iterations of Model4}
2: f(e)← total frequency of e in the corpus
3: Run MGIZA++ for one iteration of Model4
4: I ← 1
5: while I < 4 do
6: Look up pta(f |e) in the t-table of Model4
7: fta(f, e)← pta(f |e)f(e) for all (f, e)
8: p̂(f |e)← fta(f,e)+λpti(f |e)

fta(e)+λ for all (f, e)
9: Resume MGIZA++ training for 1 iteration using

the modified t-table probabilities p̂(f |e)
10: I ← I + 1
11: end while

f to e. The final alignments are generated using the
grow-diag-final-and heuristic (Koehn et al., 2003).

4.3.2 Evaluation
The English/Hindi corpus available from WA05
consists of training, development and test data. As
development and test data for English/Arabic, we
use manually created gold standard word alignments
for 155 sentences extracted from the Hansards cor-
pus released by LDC. We use 50 sentences for de-
velopment and 105 sentences for test.

Baseline: We align the data sets using GIZA++
(Och and Ney, 2003) and refine the alignments us-
ing the grow-diag-final-and heuristic (Koehn et al.,
2003). We obtain the baseline F-measure by com-
paring the alignments of the test corpus with the gold
standard alignments.
Experiments We use GIZA++ with 5 iterations of
Model1, 4 iterations of HMM and 4 iterations of
Model4. We interpolate translation and translitera-
tion probabilities at different iterations (and different
combinations of iterations) of the three models and
always observe an improvement in alignment qual-
ity. For the final experiments, we interpolate at every
iteration of the IBM models and the HMM model
except the last iteration of every model where we
could not interpolate for technical reasons.5 Algo-

5We had problems in resuming MGIZA++ training when
training was supposed to continue from a different model, such
as if we stopped after the 5th iteration of Model1 and then
tried to resume MGIZA++ from the first iteration of the HMM
model. In this case, we ran the 5th iteration of Model1, then the
first iteration of the HMM and only then stopped for interpola-

rithm 4 shows the interpolation of the transliteration
probabilities with IBM Model4. We used the same
procedure with IBM Model1 and the HMM model.

The parameter λ is optimized on development
data for every language pair. The word alignment
system is not very sensitive to λ. Any λ in the
range between 50 and 100 works fine for all lan-
guage pairs. The optimization helps to maximize the
improvement in word alignment quality. For our ex-
periments, we use λ = 80.

On test data, we achieve an improvement of
approximately 10% and 13.5% in precision and
3.5% and 13.5% in recall on English/Hindi and En-
glish/Arabic word alignment, respectively. Table 4
shows the scores of the baseline and our word align-
ment model.

Lang Pb Rb Fb Pti Rti Fti
EH 49.1 48.5 51.2 59.1 52.1 55.4
EA 50.8 49.9 50.4 64.4 63.6 64

Table 4: Word alignment results on the test data of En-
glish/Hindi (EH) and English/Arabic (EA) where Pb is
the precision of baseline GIZA++ and Pti is the precision
of our word alignment system

We compared our word alignment results with the
systems presented at WA05. Three systems, one
limited and two un-limited, participated in the En-
glish/Hindi task. We outperform the limited system
and one un-limited system.

5 Previous Research

Previous work on transliteration mining uses a man-
ually labelled set of training data to extract translit-
eration pairs from a parallel corpus or comparable
corpora. The training data may contain a few hun-
dred randomly selected transliteration pairs from a
transliteration dictionary (Yoon et al., 2007; Sproat
et al., 2006; Lee and Chang, 2003) or just a few
carefully selected transliteration pairs (Sherif and
Kondrak, 2007; Klementiev and Roth, 2006). Our
work is more challenging as we extract translitera-
tion pairs without using transliteration dictionaries
or gold standard transliteration pairs.

Klementiev and Roth (2006) initialize their
transliteration model with a list of 20 transliteration
tion; so we did not interpolate in just those iterations of training
where we were transitioning from one model to the next.

437

pairs. Their model makes use of temporal scoring
to rank the candidate transliterations. A lot of work
has been done on discovering and learning translit-
erations from comparable corpora by using temporal
and phonetic information (Tao et al., 2006; Klemen-
tiev and Roth, 2006; Sproat et al., 2006). We do not
have access to this information.

Sherif and Kondrak (2007) train a probabilistic
transducer on 14 manually constructed translitera-
tion pairs of English/Arabic. They iteratively extract
transliteration pairs from the test data and add them
to the training data. Our method is different from the
method of Sherif and Kondrak (2007) as our method
is fully unsupervised, and because in each iteration,
they add the most probable transliteration pairs to
the training data, while we filter out the least proba-
ble transliteration pairs from the training data.

The transliteration mining systems of the four
NEWS10 participants are either based on discrim-
inative or on generative methods. All systems use
manually labelled (seed) data for the initial training.
The system based on the edit distance method sub-
mitted by Jiampojamarn et al. (2010) performs best
for the English/Russian task. Jiampojamarn et al.
(2010) submitted another system based on a stan-
dard n-gram kernel which ranked first for the En-
glish/Hindi and English/Tamil tasks.6 For the En-
glish/Arabic task, the transliteration mining system
of Noeman and Madkour (2010) was best. They
normalize the English and Arabic characters in the
training data which increases the recall.7

Our transliteration extraction method differs in
that we extract transliteration pairs from a paral-
lel corpus without supervision. The results of the
NEWS10 experiments (Kumaran et al., 2010) show
that no single system performs well on all language
pairs. Our unsupervised method seems robust as its
performance is similar to or better than many of the
semi-supervised systems on three language pairs.

We are only aware of one previous work which
uses transliteration information for word alignment.

6They use the seed data as positive examples. In order to
obtain also negative examples, they generate all possible word
pairs from the source and target words in the seed data and ex-
tract the ones which are not transliterations but have a common
substring of some minimal length.

7They use the phrase table of Moses to build a mapping table
between source and target characters. The mapping table is then
used to construct a finite state transducer.

Hermjakob (2009) proposed a linguistically focused
word alignment system which uses many features
including hand-crafted transliteration rules for Ara-
bic/English alignment. His evaluation did not ex-
plicitly examine the effect of transliteration (alone)
on word alignment. We show that the integration
of a transliteration system based on unsupervised
transliteration mining increases the word alignment
quality for the two language pairs we tested.

6 Conclusion

We proposed a method to automatically extract
transliteration pairs from parallel corpora without
supervision or linguistic knowledge. We evaluated
it against the semi-supervised systems of NEWS10
and achieved high F-measure and performed bet-
ter than most of the semi-supervised systems. We
also evaluated our method on parallel corpora and
achieved high F-measure. We integrated the translit-
eration extraction module into the GIZA++ word
aligner and showed gains in alignment quality. We
will release our transliteration mining system and
word alignment system in the near future.

Acknowledgments

The authors wish to thank the anonymous re-
viewers for their comments. We would like to
thank Christina Lioma for her valuable feedback
on an earlier draft of this paper. Hassan Sajjad
was funded by the Higher Education Commission
(HEC) of Pakistan. Alexander Fraser was funded
by Deutsche Forschungsgemeinschaft grant Models
of Morphosyntax for Statistical Machine Transla-
tion. Helmut Schmid was supported by Deutsche
Forschungsgemeinschaft grant SFB 732.

References
Maximilian Bisani and Hermann Ney. 2008. Joint-

sequence models for grapheme-to-phoneme conver-
sion. Speech Communication, 50(5).

Peter F. Brown, Stephen A. Della Pietra, Vincent J. Della
Pietra, and R. L. Mercer. 1993. The mathematics of
statistical machine translation: parameter estimation.
Computational Linguistics, 19(2):263–311.

Kareem Darwish. 2010. Transliteration mining with
phonetic conflation and iterative training. In Proceed-
ings of the 2010 Named Entities Workshop, Uppsala,
Sweden. Association for Computational Linguistics.

438

Andreas Eisele and Yu Chen. 2010. MultiUN: A multi-
lingual corpus from United Nation documents. In Pro-
ceedings of the Seventh conference on International
Language Resources and Evaluation (LREC’10), Val-
letta, Malta.

Qin Gao and Stephan Vogel. 2008. Parallel implemen-
tations of word alignment tool. In Software Engineer-
ing, Testing, and Quality Assurance for Natural Lan-
guage Processing, Columbus, Ohio, June. Association
for Computational Linguistics.

Ulf Hermjakob. 2009. Improved word alignment with
statistics and linguistic heuristics. In Proceedings of
the 2009 Conference on Empirical Methods in Natural
Language Processing: Volume 1 - Volume 1, EMNLP
’09, Morristown, NJ, USA. Association for Computa-
tional Linguistics.

Sittichai Jiampojamarn, Kenneth Dwyer, Shane Bergsma,
Aditya Bhargava, Qing Dou, Mi-Young Kim, and
Grzegorz Kondrak. 2010. Transliteration generation
and mining with limited training resources. In Pro-
ceedings of the 2010 Named Entities Workshop, Upp-
sala, Sweden. Association for Computational Linguis-
tics.

Alexandre Klementiev and Dan Roth. 2006. Weakly
supervised named entity transliteration and discovery
from multilingual comparable corpora. In Proceed-
ings of the 21st International Conference on Compu-
tational Linguistics and the 44th annual meeting of the
ACL, Morristown, NJ, USA.

Philipp Koehn, Franz J. Och, and Daniel Marcu. 2003.
Statistical phrase-based translation. In Proceedings of
the Human Language Technology and North Ameri-
can Association for Computational Linguistics Con-
ference, pages 127–133, Edmonton, Canada.

A Kumaran, Mitesh M. Khapra, and Haizhou Li. 2010.
Whitepaper of news 2010 shared task on translitera-
tion mining. In Proceedings of the 2010 Named En-
tities Workshop the 48th Annual Meeting of the ACL,
Uppsala, Sweden.

Chun-Jen Lee and Jason S. Chang. 2003. Acqui-
sition of English-Chinese transliterated word pairs
from parallel-aligned texts using a statistical machine
transliteration model. In Proceedings of the HLT-
NAACL 2003 Workshop on Building and using parallel
texts, Morristown, NJ, USA. ACL.

Joel Martin, Rada Mihalcea, and Ted Pedersen. 2005.
Word alignment for languages with scarce resources.
In ParaText ’05: Proceedings of the ACL Workshop
on Building and Using Parallel Texts, Morristown, NJ,
USA. Association for Computational Linguistics.

Sara Noeman and Amgad Madkour. 2010. Language
independent transliteration mining system using finite
state automata framework. In Proceedings of the 2010

Named Entities Workshop, Uppsala, Sweden. Associ-
ation for Computational Linguistics.

Franz J. Och and Hermann Ney. 2003. A systematic
comparison of various statistical alignment models.
Computational Linguistics, 29(1):19–51.

Tarek Sherif and Grzegorz Kondrak. 2007. Boot-
strapping a stochastic transducer for Arabic-English
transliteration extraction. In ACL, Prague, Czech Re-
public.

Richard Sproat, Tao Tao, and ChengXiang Zhai. 2006.
Named entity transliteration with comparable corpora.
In ACL.

Andreas Stolcke. 2002. SRILM - an extensible language
modeling toolkit. In Intl. Conf. Spoken Language Pro-
cessing, Denver, Colorado.

Tao Tao, Su-Yoon Yoon, Andrew Fister, Richard Sproat,
and ChengXiang Zhai. 2006. Unsupervised named
entity transliteration using temporal and phonetic
correlation. In Proceedings of the Conference on
Empirical Methods in Natural Language Processing
(EMNLP), Sydney.

Stephan Vogel, Hermann Ney, and Christoph Tillmann.
1996. HMM-based word alignment in statistical trans-
lation. In 16th International Conference on Computa-
tional Linguistics, pages 836–841, Copenhagen, Den-
mark.

Su-Youn Yoon, Kyoung-Young Kim, and Richard Sproat.
2007. Multilingual transliteration using feature based
phonetic method. In Proceedings of the 45th Annual
Meeting of the ACL, Prague, Czech Republic.

439

