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Abstract

Language models based on word surface

forms only are unable to benefit from avail-

able linguistic knowledge, and tend to suffer

from poor estimates for rare features. We pro-

pose an approach to overcome these two lim-

itations. We use factored features that can

flexibly capture linguistic regularities, and we

adopt confidence-weighted learning, a form of

discriminative online learning that can better

take advantage of a heavy tail of rare features.

Finally, we extend the confidence-weighted

learning to deal with label noise in training

data, a common case with discriminative lan-

guage modeling.

1 Introduction

Language Models (LMs) are key components in

most statistical machine translation systems, where

they play a crucial role in promoting output fluency.

Standard n-gram generative language models

have been extended in several ways. Generative

factored language models (Bilmes and Kirchhoff,

2003) represent each token by multiple factors –

such as part-of-speech, lemma and surface form–

and capture linguistic patterns in the target language

at the appropriate level of abstraction. Instead of

estimating likelihood, discriminative language mod-

els (Roark et al., 2004; Roark et al., 2007; Li and

Khudanpur, 2008) directly model fluency by casting

the task as a binary classification or a ranking prob-

lem. The method we propose combines advantages

of both directions mentioned above. We use factored

features to capture linguistic patterns and discrim-

inative learning for directly modeling fluency. We

define highly overlapping and correlated factored

features, and extend a robust learning algorithm to

handle them and cope with a high rate of label noise.

For discriminatively learning language models,

we use confidence-weighted learning (Dredze et al.,

2008), an extension of the perceptron-based on-

line learning used in previous work on discrimi-

native language models. Furthermore, we extend

confidence-weighted learning with soft margin to

handle the case where training data labels are noisy,

as is typically the case in discriminative language

modeling.

The rest of this paper is organized as follows. In

Section 2, we introduce factored features for dis-

criminative language models. Section 3 presents

confidence-weighted learning. Section 4 describes

its extension for the case where training data are

noisy. We present empirical results in Section 5

and differentiate our approach from previous ones

in Section 6. Finally, Section 7 presents some con-

cluding remarks.

2 Factored features

Factored features are n-gram features where each

component in the n-gram can be characterized by

different linguistic dimensions of words such as sur-

face, lemma, part of speech (POS). Each of these

dimensions is conventionally referred to as a factor.

An example of a factored feature is “pick PRON

up”, where PRON is the part of speech (POS) tag

for pronouns. Appropriately weighted, this feature

can capture the fact that in English that pattern is of-

ten fluent. Compared to traditional surface n-gram

features like “pick her up”, “pick me up” etc., the

feature “pick PRON up” generalizes the pattern bet-

ter. On the other hand, this feature is more precise
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POS Extended POS

Noun SingNoun, PlurNoun

Pronoun Sing3PPronoun, OtherPronoun

Verb InfVerb, ProgrVerb, SimplePastVerb,

PastPartVerb, Sing3PVerb, OtherVerb

Table 1: Extended tagset used for the third factor in the

proposed discriminative language model.

than the corresponding POS n-gram feature “VERB

PRON PREP” since the latter also promotes unde-

sirable patterns such as “pick PRON off” and “go

PRON in”. So, constructing features with compo-

nents from different abstraction levels allows better

capturing linguistic patterns.

In this study, we use tri-gram factored features to

learn a discriminative language model for English,

where each token is characterized by three factors

including surface, POS, and extended POS. In the

last factor, some POS tags are further refined (Table

1). In other words, we will use all possible trigrams

where each element is either a surface from, a POS,

or an extended POS.

3 Confidence-weighted Learning

Online learning algorithms scale well to large

datasets, and are thus well adapted to discrimina-

tive language modeling. On the other hand, the

perceptron and Passive Aggressive (PA) algorithms1

(Crammer et al., 2006) can be ill-suited for learn-

ing tasks where there is a long tail of rare significant

features as in the case of language modeling.

Motivated by this, we adopt a simplified version

of the CW algorithm of (Dredze et al., 2008). We in-

troduce a score , based on the number of times a fea-

ture has been obseerved in training, indicating how

confident the algorithm is in the current estimate wi

for the weight of feature i. Instead of equally chang-

ing all feature weights upon a mistake, the algorithm

now changes more aggressively the weights it is less

confident in.

At iteration t, if the algorithm miss-ranks the pair

of positive and negative instances (pt, nt), it updates

the weight vector by solving the optimization in Eq.

(1):

1The popular MIRA algorithm is a particular PA algorithm,

suitable for the linearly-separable case.

wt+1 = arg min
w

1

2
(w −wt)

>Λ2
t (w −wt)(1)

s.t. w
>∆t ≥ 1 (2)

where ∆t = φ(pt) − φ(nt), φ(x) is the vector rep-

resentation of sentence x in factored feature space,

and Λt is a diagonal matrix with confidence scores.

The algorithm thus updates weights aggressively

enough to correctly rank the current pair of instances

(i.e. satisfying the constraint), and preserves as

much knowledge learned so far as possible (i.e. min-

imizing the weighted difference to wt). In the spe-

cial case when Λt = I this is the update of the

Passive-Aggressive algorithm of (Crammer et al.,

2006).

By introducing multiple confidence scores with

the diagonal matrix Λ, we take into account the

fact that feature weights that the algorithm has more

confidence in (because it has learned these weights

from more training instances) contribute more to

the knowledge the algorithm has accumulated so far

than feature weights it has less confidence in. A

change in the former is more risky than a change

with the same magnitude on the latter. So, to avoid

over-fitting to the current instance pair (thus gener-

alize better to the others), the difference between w

and wt is weighted by confidence matrix Λ in the

objective function.

To solve the quadratic optimization problem in

Eq. (1), we form the corresponding Lagrangian:

L(w, τ) =
1

2
(w−wt)

>Λ2
t (w−wt)+τ(1−w

>∆)

(3)

where τ is the Lagrange multiplier corresponding to

the constraint in Eq. (2). Setting the partial deriva-

tives of L with respect to w to zero, and then setting

the derivative of L with respect to τ to zero, we get:

τ =
1−wt

>∆

‖Λ−1∆‖2
(4)

Given this, we obtain Algorithm 1 for confidence-

weighted passive-aggressive learning (Figure 1). In

the algorithm, Pi and Ni are sets of fluent and non-

fluent sentences that can be contrasted, e.g. Pi is a

set of fluent translations and Ni is a set of non-fluent

translations of a same source sentence si.
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Algorithm 1 Confidence-weighted Passive-

Aggressive algorithm for re-ranking.

Input: Tr = {(Pi, Ni), 1 ≤ i ≤ K}
w0 ← 0, t ← 0
for a predefined number of iterations do

for i from 1 to K do

for all (pj , nj) ∈ (Pi ×Ni) do

∆t ← φ(pj)− φ(nj)
if w>

t ∆t < 1 then

τ ←
1−w

>
t

∆t

∆>
t

Λ
−2

t
∆t

wt+1 ← wt + τΛ−2
t ∆t

Update Λ
t ← t + 1

return wt

The confidence matrix Λ is updated following the

intuition that the more often the algorithm has seen

a feature, the more confident the weight estimation

becomes. In our work, we set Λii to the logarithm of

the number of times the algorithm has seen feature

i, but alternative choices are possible.

4 Extension to soft margin

In many practical situations, training data is noisy.

This is particularly true for language modeling,

where even human experts will argue about whether

a given sentence is fluent or not. Moreover, effective

language models must be trained on large datasets,

so the option of requiring extensive human annota-

tion is impractical. Instead, collecting fluency judg-

ments is often done by a less expensive and thus

even less reliable manner. One way is to rank trans-

lations in n-best lists by NIST or BLEU scores, then

take the top ones as fluent instances and bottom ones

as non-fluent instances. Nonetheless, neither NIST

nor BLEU are designed directly for measuring flu-

ency. For example, a translation could have low

NIST and BLEU scores just because it does not con-

vey the same information as the reference, despite

being perfectly fluent. Therefore, in our setting it is

crucial to be robust to noise in the training labels.

The update rule derived in the previous section al-

ways forces the new weights to satisfy the constraint

(Corrective updates): mislabeled training instances

could make feature weights change erratically. To

increase robustness to noise, we propose a soft mar-

gin variant of confidence-weighted learning. The

optimization problem becomes:

arg min
w

1

2
(w −wt)

>Λ2
t (w −wt) + Cξ2 (5)

s.t. w
>∆t ≥ 1− ξ (6)

where C is a regularization parameter, controlling

the relative importance between the two terms in the

objective function. Solving the optimization prob-

lem, we obtain, for the Lagrange multiplier:

τ =
1−wt

>∆t

∆>
t Λ−2

t ∆t + 1
2C

(7)

Thus, the training algorithm with soft-margins is the

same as Algorithm 1, but using Eq. 7 to update τ

instead.

5 Experiments

We empirically validated our approach in two ways.

We first measured the effectiveness of the algorithms

in deciding, given a pair of candidate translations

for a same source sentence, whether the first candi-

date is more fluent than the second. In a second ex-

periment we used the score provided by the trained

DLM as an additional feature in an n-best list re-

ranking task and compared algorithms in terms of

impact on NIST and BLEU.

5.1 Dataset

The dataset we use in our study is the Spanish-

English one from the shared task of the WMT-2007

workshop2.

Matrax, a phrase-based statistical machine trans-

lation system (Simard et al., 2005), including a tri-

gram generative language model with Kneser-Ney

smoothing. We then obtain training data for the dis-

criminative language model as follows. We take a

random subset of the parallel training set containing

50,000 sentence pairs. We use Matrax to generate

an n-best list for each source sentence. We define

(Pi, Ni), i = 1 . . . 50, 000 as:

Pi = {s ∈ nbesti|NIST(s) ≥ NIST∗i − 1} (8)

Ni = {s ∈ nbesti|NIST(s) ≤ NIST∗i − 3} (9)

2http://www.statmt.org/wmt07/
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Error rate

Baseline model 0.4720

Baseline + DLM0 0.4290

Baseline + DLM1 0.4183

Baseline + DLM2 0.4005

Baseline + DLM3 0.3803

Table 2: Error rates for fluency ranking. See article body

for an explanation of the experiments.

where NIST∗i is the highest sentence-level NIST

score achieved in nbesti. The size of n-best lists

was set to 10. Using this dataset, we trained dis-

criminative language models by standard percep-

tron, confidence-weighted learning and confidence-

weighted learning with soft margin.

We then trained the weights of a re-ranker using

eight features (seven from the baseline Matrax plus

one from the DLM) using a simple structured per-

ceptron algorithm on the development set.

For testing, we used the same trained Matrax

model to generate n-best lists of size 1,000 each for

each source sentence. Then, we used the trained dis-

criminative language model to compute a score for

each translation in the n-best list. The score is used

with seven standard Matrax features for re-ranking.

Finally, we measure the quality of the translations

re-ranked to the top.

In order to obtain the required factors for the

target-side tokens, we ran the morphological ana-

lyzer and POS-tagger integrated in the Xerox Incre-

mental Parser (XIP, Ait-Mokhtar et al. (2001)) on

the target side of the training corpus used for creat-

ing the phrase-table, and extended the phrase-table

format so as to record, for each token, all its factors.

5.2 Results

In the first experiment, we measure the quality of

the re-ranked n-best lists by classification error rate.

The error rate is computed as the fraction of pairs

from a test-set which is ranked correctly according

to its fluency score (approximated here by the NIST

score). Results are in Table 2.

For the baseline, we use the seven default Ma-

trax features, including a generative language model

score. DLM* are discriminative language mod-

els trained using, respectively, POS features only

NIST BLEU

Baseline model 6.9683 0.2704

Baseline + DLM0 6.9804 0.2705

Baseline + DLM1 6.9857 0.2709

Baseline + DLM2 7.0288 0.2745

Baseline + DLM3 7.0815 0.2770

Table 3: NIST and BLEU scores upon n-best list re-

ranking with the proposed discriminative language mod-

els.

(DLM 0) or factored features by standard percep-

tron (DLM 1), confidence-weighted learning (DLM

2) and confidence-weighted learning with soft mar-

gin (DLM 3). All discriminative language models

strongly reduce the error rate compared to the base-

line (9.1%, 11.4%, 15.1%, 19.4% relative reduc-

tion, respectively). Recall that the training set for

these discriminative language models is a relatively

small subset of the one used to train Matrax’s inte-

grated generative language model. Amongst the four

discriminative learning algorithms, we see that fac-

tored features are slightly better then POS features,

confidence-weighted learning is slightly better than

perceptron, and confidence-weighted learning with

soft margin is the best (9.08% and 5.04% better than

perceptron and confidence-weighted learning with

hard margin).

In the second experiment, we use standard NIST

and BLEU scores for evaluation. Results are in Ta-

ble 3. The relative quality of different methods in

terms of NIST and BLEU correlates well with er-

ror rate. Again, all three discriminative language

models could improve performances over the base-

line. Amongst the three, confidence-weighted learn-

ing with soft margin performs best.

6 Related Work

This work is related to several existing directions:

generative factored language model, discriminative

language models, online passive-aggressive learning

and confidence-weighted learning.

Generative factored language models are pro-

posed by (Bilmes and Kirchhoff, 2003). In this

work, factors are used to define alternative back-

off paths in case surface-form n-grams are not ob-

served a sufficient number of times in the train-
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ing corpus. Unlike ours, this model cannot con-

sider simultaneously multiple factored features com-

ing from the same token n-gram, thus integrating all

possible available information sources.

Discriminative language models have also been

studied in speech recognition and statistical machine

translation (Roark et al., 2007; Li and Khudanpur,

2008). An attempt to combine factored features and

discriminative language modeling is presented in

(Mahé and Cancedda, 2009). Unlike us, they com-

bine together instances from multiple n-best lists,

generally not comparable, in forming positive and

negative instances. Also, they use an SVM to train

the DLM, as opposed to the proposed online algo-

rithms.

Our approach stems from Passive-Aggressive al-

gorithms proposed by (Crammer et al., 2006) and

the CW online algorithm proposed by (Dredze et

al., 2008). In the former, Crammer et al. propose

an online learning algorithm with soft margins to

handle noise in training data. However, the work

does not consider the confidence associated with es-

timated feature weights. On the other hand, the CW

online algorithm in the later does not consider the

case where the training data is noisy.

While developed independently, our soft-margin

extension is closely related to the AROW(project)

algorithm of (Crammer et al., 2009; Crammer and

Lee, 2010). The cited work models classifiers as

non-correlated Gaussian distributions over weights,

while our approach uses point estimates for weights

coupled with confidence scores. Despite the differ-

ent conceptual modeling, though, in practice the al-

gorithms are similar, with point estimates playing

the same role as the mean vector, and our (squared)

confidence score matrix the same role as the preci-

sion (inverse covariance) matrix. Unlike in the cited

work, however, in our proposal, confidence scores

are updated also upon correct classification of train-

ing examples, and not only on mistakes. The ra-

tionale of this is that correctly classifying an exam-

ple could also increase the confidence on the current

model. Thus, the update formulas are also different

compared to the work cited above.

7 Conclusions

We proposed a novel approach to discriminative lan-

guage models. First, we introduced the idea of us-

ing factored features in the discriminative language

modeling framework. Factored features allow the

language model to capture linguistic patterns at mul-

tiple levels of abstraction. Moreover, the discrimi-

native framework is appropriate for handling highly

overlapping features, which is the case of factored

features. While we did not experiment with this, a

natural extension consists in using all n-grams up

to a certain order, thus providing back-off features

and enabling the use of higher-order n-grams. Sec-

ond, for learning factored language models discrim-

inatively, we adopt a simple confidence-weighted

algorithm, limiting the problem of poor estimation

of weights for rare features. Finally, we extended

confidence-weighted learning with soft margins to

handle the case where labels of training data are

noisy. This is typically the case in discriminative

language modeling, where labels are obtained only

indirectly.

Our experiments show that combining all these el-

ements is important and achieves significant transla-

tion quality improvements already with a weak form

of integration: n-best list re-ranking.
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