
Writing Support for Controlled Natural Languages

Tobias Kuhn
Department of Informatics

University of Zürich
Switzerland

tkuhn@ifi.uzh.ch

Rolf Schwitter
Centre for Language Technology

Macquarie University
Sydney NSW 2109, Australia
rolfs@ics.mq.edu.au

Abstract

In this paper we present interface tech-
niques that support the writing pro-
cess of machine-oriented controlled natu-
ral languages which are well-defined and
tractable fragments of English that can be
translated unambiguously into a formal tar-
get language. Since these languages have
grammatical and lexical restrictions, it is
important to provide a text editor that as-
sists the writing process by using looka-
head information derived from the gram-
mar. We will discuss the requirements to
such a lookahead text editor and introduce
the semantic wiki AceWiki as an applica-
tion where this technology plays an impor-
tant role. We investigate two different ap-
proaches how lookahead information can
be generated dynamically while a text is
written and compare the runtimes and prac-
ticality of these approaches in detail.

1 Introduction

Natural language interfaces have been a popular
area of research in the 70’s and 80’s, in partic-
ular natural language interfaces to databases re-
ceived a lot of attention and some of these inter-
faces found their way into commercial applica-
tions (Copestake and Jones, 1990; Androutsopou-
los et al., 1995). However, most of the early re-
search prototypes focused on the exploration of
specific NLP techniques and formalisms and were
not very robust and therefore not very successful
– and research drifted away from this topic in the
90’s although there is still no agreed consensus
theory on how to build these text-based interfaces.

The need for text-based natural language inter-
faces has recently gained again momentum since
more and more non-specialists are required to ac-
cess databases and maintain knowledge systems
in Semantic Web applications through their web
browsers and portable devices (Cimiano et al.,
2008). One advantage of natural language in-
terfaces is that the user is not required to learn
a formal language to communicate with the sys-
tem. But the use of natural language as an inter-
face style is not without problems since full nat-
ural language is highly ambiguous and context-
dependent. In practice, natural language inter-
faces can only understand a restricted subset of
written (or spoken) input, and they have often
only limited capabilities to make their coverage
transparent to the user (Chintaphally et al., 2007).
If the system is unable to understand a sentence
and does not provide accurate feedback, then
there is the risk that the user makes potentially
incorrect assumptions about other sentences that
the system actually can understand.

An obvious solution to this problem is to use
a set of training sessions that teach the user what
the system can and cannot understand. But this
solution has at least two drawbacks: (a) untrained
users cannot immediately use the system; and (b)
infrequent users might not remember what they
learned about the system’s capabilities (Tennant
et al., 1983a).

A better solution is to build natural language
interfaces that directly support the interaction be-
tween the user and the system and that are able to
enforce the restrictions of the language and guide
the writing process in an unobtrusive way.

Menu-based natural language interfaces have
been suggested to overcome many problems of
conventional text-based natural language inter-
faces. These menu-based interfaces can be gen-
erated automatically from the description of a
database or from a predefined ontology (Tennant
et al., 1983b). These interfaces are very ex-
plicit about their coverage since they provide a
set of (cascaded) menus that contain the admis-
sible natural language expressions and the user
has to select only from a set of choices. There-
fore the failure rate is very low, in addition there
are no spelling errors since no typing is required.
Most menu-based and related WYSIWYM (=
What You See Is What You Mean) approaches
assume an existing underlying formal representa-
tion (Power et al., 1998). WYSIWYM is a natural
language generation approach based on concep-
tual authoring where the system generates feed-
back from a formal representation. Instead of ma-
nipulating the formal representation, the user ed-
its the feedback text via a set of well-defined edit-
ing operations (Hallett et al., 2007).

Although menu-based natural language inter-
faces can be applied to large domains, there ex-
ist applications where menu-searching becomes
cumbersome (Hielkema et al., 2008) and more
importantly there exist many applications where
the formal representation does not exist in ad-
vance and where the construction of this formal
representation is the actual task. This is the set-
ting where controlled natural languages can make
an important contribution. Machine-oriented con-
trolled natural languages can be used as high-level
interface languages for creating these formal rep-
resentations, and we can try to support the writ-
ing process of these controlled natural languages
in an optimal way.

In the following, we will illustrate how con-
trolled natural languages can be applied in a se-
mantic wiki context where a formal representa-
tion needs to be derived from a text that is human-
readable as well as machine-processable, and then
we will show how these techniques can be imple-
mented in a logic programming framework.

2 Controlled Natural Languages (CNL)

Over the last decade or so, a number of machine-
oriented controlled natural languages have been

designed and used for specification purposes,
knowledge acquisition and knowledge represen-
tation, and as interface languages to the Semantic
Web – among them Attempto Controlled English
(Fuchs et al., 1998; Fuchs et al., 2008), PENG
Processable English (Schwitter, 2002; Schwit-
ter et al., 2008), Common Logic Controlled En-
glish (Sowa, 2004), and Boeing’s Computer-
Processable Language (Clark et al., 2005; Clark
et al., 2007). These machine-oriented controlled
natural languages are engineered subsets of a nat-
ural language with explicit constraints on gram-
mar, lexicon, and style. These constraints usually
have the form of construction and interpretation
rules and help to reduce both ambiguity and com-
plexity of full natural language.

The PENG system, for example, provides text-
and menu-based writing support that takes the
burden of learning and remembering the con-
straints of the language from the user and gen-
erates a paraphrase that clarifies the interpretation
for each sentence that the user enters. The text
editor of the PENG system dynamically enforces
the grammatical restrictions of the controlled nat-
ural language via lookahead information while a
text is written. For each word form that the user
enters, the user is given a list of choices of how
to continue the current sentence. These choices
are implemented as hypertext links as well as a
cascade of menus that are incrementally updated.
The syntactic restrictions ensure that the text fol-
lows the rules of the controlled natural language
so that the text is syntactically correct and can be
translated unambiguously into the formal target
language (Schwitter et al., 2003; Schwitter et al.,
2008).

3 Semantic Wikis

Semantic wikis combine the philosophy of wikis
(i.e. quick and easy editing of textual content in
a collaborative way over the Web) with the con-
cepts and techniques of the Semantic Web (i.e.
giving information well-defined meaning in order
to enable computers and people to work in coop-
eration). The goal is to manage formal represen-
tations within a wiki environment.

There exist many different semantic wiki sys-
tems. Semantic MediaWiki (Krötzsch et al.,
2007), IkeWiki (Schaffert, 2006), and OntoWiki

(Auer et al., 2006) belong to the most mature
existing semantic wiki engines. Unfortunately,
none of the existing semantic wikis supports ex-
pressive ontology languages in a general way. For
example, none of them allows the users to define
general concept inclusion axioms, e.g.:

• Every country that borders no sea is a landlocked
country.

Furthermore, most of the existing semantic wikis
fail to hide the technical aspects, are hard to un-
derstand for people who are not familiar with the
technical terms, and do not provide any writing
support.

4 AceWiki – a CNL-based Wiki

AceWiki (Kuhn, 2008a; Kuhn, 2008b) is a se-
mantic wiki that tries to solve those problems by
using the controlled natural language Attempto
Controlled English (ACE) to represent the formal
content.1 The use of the language ACE allows
us to provide a high degree of expressivity and
to represent the formal content in a natural way.
Easy creation and modification of the content is
enabled by a special text editor that supports the
writing process.

AceWiki is implemented in Java. Making use
of the Echo Web Framework2, it provides a rich
AJAX-based web interface. Figure 1 shows a
screenshot of an exemplary AceWiki instance
containing information about a geographical do-
main. The ACE parser is used to translate the
ACE sentences into first-order logic and, if pos-
sible, into the ontology language OWL (Motik et
al., 2008). In the background, the OWL reasoner
Pellet3 is used to ensure that the ontology (con-
sisting of the sentences that are OWL-compliant)
is always consistent. The reasoner is also used
to infer class memberships and hierarchies and to
answer questions.

Following the wiki philosophy, the users
should be able to change the content of the wiki
quickly and easily. For this reason, it is impor-
tant that the users are supported by an intelligent
text editor that helps to construct valid sentences.
AceWiki provides a predictive text editor that is

1http://attempto.ifi.uzh.ch/acewiki/
2http://echo.nextapp.com/site/
3http://pellet.owldl.org/

Figure 1: A screenshot of the web interface of
AceWiki showing the wiki article for the class con-
tinent.

able to look ahead and to show possible words to
continue the sentence. Figure 2 shows a screen-
shot of this editor. A chart parser is used for the
generation of the lookahead information.

This predictive editor enables the creation of
sentences by clicking consecutively on the de-
sired words. It ensures that only 100% syntac-
tically correct sentences are created. This enables
novice users to create ACE sentences without the
need to read the ACE manuals first. Alterna-
tively, the predictive editor allows more experi-
enced users to type a sentence or a part of it into
a text field. The two modes of sentence construc-
tion (clicking versus typing) can be combined and
the users can switch from one mode to the other
at any time. Content words that are not yet known
can be added on-the-fly when writing a sentence
using the built-in lexical editor.

A usability experiment (Kuhn, 2008a) showed
that people with no background in formal meth-
ods are able to work with AceWiki and its predic-
tive editor. The participants — without receiving
instruction on how to use the interface — were
asked to add general and verifiable knowledge to
AceWiki. About 80% of the resulting sentences
were semantically correct and sensible statements
(in respect of the real world). More than 60% of
those correct sentences were complex in the sense
that they contained an implication or a negation.

Figure 2: A screenshot of the predictive editor of AceWiki. The partial sentence Every area is has already been
entered and now the editor shows all possibilities to continue the sentence. The possible words are arranged by
their type in different menu boxes.

5 AceWiki Grammar

AceWiki uses a subset of ACE. The grammar con-
tains about 80 grammar rules and is implemented
in a declarative way in Prolog. These rules are de-
fined in a special grammar notation using feature
structures, for example:

verbphrase(pl:PL,neg:Neg,that:T) =>
verb(verb:full,pl:PL,neg:Neg),
nounphrase(verb:full,that:T).

This format can be transformed into Java code
(which is used by the AceWiki chart parser) and
can also be exported as a Prolog DCG grammar
(Pereira and Shieber, 1987).

The AceWiki language consists of about 30
function words (e.g. a, every, if, then, and, not,
is, that) and five extensible types of content words
(some of which have several word forms): proper
names (e.g. Europe), nouns (e.g. city), transitive
verbs (e.g. contains), of -constructions (e.g. part
of), and transitive adjectives (e.g. located in).

The grammar covers a considerable part of En-
glish: singular and plural noun phrases, active and
passive voice, negation, relative phrases, conjunc-
tions/disjunctions (of sentences, verb phrases, and
relative phrases), existential and universal quanti-
fiers, questions, and anaphoric references. Below
are a few examples of declarative sentences:

• Switzerland is located in Europe and borders ex-
actly 5 countries.

• Every country that borders no sea is a landlocked
country and every landlocked country is a country
that borders no sea.

• If X borders Y then Y borders X.

The semantic expressivity of the AceWiki lan-
guage is a subset of the expressivity of first-order
logic. The mapping from ACE to OWL that is ap-
plied by the ACE parser covers all of OWL 2 ex-
cept data properties and some very complex class
descriptions (Kaljurand, 2007). Apart from those
exceptions, the AceWiki language is more expres-
sive than OWL. The examples shown above are
OWL-compliant, but we can write sentences that
go beyond the semantic expressivity of OWL, for
example4:

• No country borders every country.

• If Berlin is a capital then Germany is not an un-
stable country.

• If a country contains an area and does not control
the area then the country is an unstable country.

4(Kaljurand, 2007) explains how OWL-compliant ACE
sentences can be distinguished from ACE sentences that
have no OWL representation.

At the moment, AceWiki supports only simple
questions containing exactly one wh-word (i.e.
what, who, or which). Such questions can be
mapped to OWL class descriptions5. The answers
to such questions can be calculated by determin-
ing the individuals of the class description. Here
are three typical questions expressed in AceWiki:

• Which continents contain more than 10 coun-
tries?

• Switzerland borders which country that borders
Spain?

• Which rivers flow through a country that borders
Spain?

In summary, the AceWiki grammar describes a
relatively large subset of English which exceeds
the expressivity of OWL.

6 Implementing Writing Support

As we have seen, the AceWiki grammar is writ-
ten in a format that can be read as a DCG and that
is used by the AceWiki chart parser in order to
generate lookahead information and logical for-
mulas. In this section, we will focus on a specific
aspect of the writing support and illustrate how
syntactic lookahead information can be harvested
from the DCG in a direct way and in an indirect
way through a chart parser (as AceWiki does). In
order to make a direct comparison of the two ap-
proaches, we use Prolog in both cases.

6.1 Harvesting the DCG
In order to harvest lookahead information directly
from the DCG (for which Prolog supplies by de-
fault a top-down, left-to-right, backtrack parsing
algorithm), we add a dummy token after each new
word that the user enters and then parse the entire
input string from the beginning. This looks like a
very costly approach but the advantage of this ap-
proach is that it can be implemented very easily
(and our empirical results show that this approach
is still fast enough for practical applications). Fur-
thermore, this approach prevents the parser from
getting into infinite loops when processing recur-
sive grammar rules. Let us assume that the user
is planning to add the following sentence to the
wiki:

• Switzerland is an alpine country.

5These queries are sometimes called “DL Queries”.

and that she has just appended the indefinite ar-
ticle an to the string Switzerland is. Before this
entire input string is parsed by the DCG parser,
the dummy token ‘$dummy$’ is added to the end
of the string:

[‘Switzerland’,is,an,‘$dummy$’]

This dummy token will be used – as we will see
below – to trigger a Prolog rule (word form/4)
that processes the lookahead information. Be-
fore we describe this, we need to understand
how preterminal grammar rules look like in the
AceWiki grammar; here is a (simplified) exam-
ple:

‘NOUN’ -->
{ lexicon(cat:‘NOUN’,wf:WF) },
word_form(‘NOUN’,WF).

The term in curly brackets is a Prolog expres-
sion. The default Prolog DCG preprocessor takes
this DCG rule and translates it into a pure Pro-
log clause, adding two additional arguments for
the input and output string. Note that the vari-
able WF stands for an entire word form that can
either be atomic or compound. This word form is
represented as a list of tokens in the lexicon, for
example (again simplified here):

lexicon(cat:‘NOUN’,
wf:[alpine,country]).

This lexicon lookup (lexicon/2) returns the
entire list of tokens and sends it to the rule
word form/4 that processes these tokens de-
pending on the input string:

word_form(Cat,[T1|Ts],[‘$dummy$’],_) :-
update_lah_info(lookahead(Cat,T1)),
fail.

word_form(Cat,[T1|Ts],[T1|S1],S2) :-
word_form(Cat,Ts,S1,S2).

At this point, the remaining input string con-
tains only the dummy token since all other words
of this string have already been processed. This
dummy token is processed by the first of the two
grammar rules (word form/4) that takes the first
token (T1) of the compound word and adds it to-
gether with the category (Cat) to the lookahead
information. Once the lookahead information is
updated, the rule fails and additional lookahead
information is collected via backtracking. The
text editor will display the first token (alpine)
of the compound word (alpine country) to-
gether with other lookahead information. If the

user selects alpine as the subsequent input, the
dummy token is added again to the new input
string but this time the second of the grammar
rules (word form/4) is triggered. This rule re-
moves alpine from the input string before the
dummy token is detected by the first rule that adds
the next token of the compound (country) to
the lookahead information. In order to avoid du-
plicates, the predicate update lah info/1 first
checks if the lookahead information already exists
and only asserts this information if it is new:

update_lah_info(LAHInfo) :-
(

call(LAHInfo), !
;

assert(LAHInfo)
).

Instead of atomic and compound word forms,
we can also display syntactic categories for entire
groups of words using the same technique.

6.2 Harvesting the Chart

As we have seen in the last section, the DCG is
used to parse each sentence from scratch to pro-
cess the lookahead information for a new word.
Apart from that the DCG creates many partial
structures and destroys them while backtracking.
In order to avoid unnecessary repetition of work,
the DCG can be processed with a (top-down)
chart parser. A chart parser stores well-formed
constituents and partial constituents in a table (=
chart) consisting of a series of numbered vertices
that are linked by edges (see Kay (1980) or Gaz-
dar and Mellish (1989) for an introduction). Our
chart parser is an extension of (Gazdar and Mel-
lish, 1989) and represents edges in a similar way
as a predicate with five arguments:

edge(V1,V2,LHS,RHSFound,RHSToFind)

The first two arguments state that there exists
an edge between vertex V1 and vertex V2. The
next three arguments represent a grammar rule
and indicate to what extent the parser was able to
apply this grammar rule to the constituent found
between the two vertices. Here LHS stands for a
category on the left-hand side of a grammar rule,
RHSFound for a sequence of categories that has
been found on the right-hand side of the grammar
rule, and RHSToFind for a sequence of remaining
categories on the right-hand side. The edges in the

chart are either inactive or active edges. An inac-
tive edge is an edge where the list RHSToFind is
empty ([]) and represents a confirmed hypothe-
sis. All other edges are active and represent un-
confirmed hypotheses.

The fundamental rule of chart parsing says that
if an inactive edge meets an active edge of the
corresponding category, then a new edge can be
added to the chart that spans both the inactive and
the active edges. In order to apply the fundamen-
tal rule, the chart needs to contain at least one ac-
tive and one inactive edge. That means we have
to initialise the chart first for each new sentence.
This initialisation process will allow us to add a
number of active edges to the chart and to extract
the initial lookahead information from the chart.
This information will show the user how to start
a sentence. Once the user selects or types the first
word, new inactive edges are triggered that are re-
quired by the fundamental rule to start the chart
parsing process.

Before we can process the DCG with the chart
parser, we transform it into a slightly different for-
mat using the infix operator ==> instead of -->.

In the next step, we can initialise the chart top-
down (text/1) and make sure that a number of
active edges is generated. We do this with the help
of a failure-driven loop (foreach/2):

chart_parser([],[_,0,_]) :-
LHS = text([A,B,C,D,E,F,G,H,I]),
init_chart(0,LHS).

init_chart(V0,LHS) :-
foreach(rule(LHS,RHS),
init_edge(V0,V0,LHS,[],RHS)).

init_edge(V0,V0,LHS,Fnd,RHS) :-
edge(V0,V0,LHS,Fnd,RHS), !.

init_edge(V0,V0,LHS,Fnd,[RHS|RHSs]) :-
assert_edge(V0,V0,LHS,Fnd,[RHS|RHSs]),
foreach(rule(RHS,RHS2),
init_edge(V0,V0,RHS,[],RHS2)),

update_lah_info(RHS).

foreach(X,Y) :- call(X), once(Y), fail.
foreach(X,Y) :- true.

This failure-driven loop calls the transformed
DCG rules via the following rules:

rule(LHS,RHS) :- (LHS ==> RHS).
rule(LHS,[]) :- (LHS ==> []).

and creates a set of active edges for the top-level
grammar rules that start and end at vertex 0. Ad-
ditionally, this initialisation process asserts the

initial lookahead information RHS that is available
as the first element in the lists of remaining cate-
gories [RHS|RHSs]. This is done with the help of
the predicate update lah info/1 that works in
a similar way as the one introduced for the DCG
in the last section.

Once the chart is initialised and the initial
lookahead information is displayed, the user can
select or enter the first word that falls under these
classifications. This word is processed by the
predicate chart parser/2, starts at vertex 0

and generates in the case of an atomic word an
inactive edge for each instance in the lexicon:

chart_parser(Word,[_,V1,V2]) :-
start_chart(V1,V2,Word).

start_chart(V1,V2,Word) :-
foreach(word(V1,Word,Cat),

add_edge(V1,V2,Cat,[],[])).

word(_,Word,Cat) :-
(Cat ==> [lexicon(cat:Cat,wf:Word),

word(Word)]),
call(lexicon(cat:Cat,wf:Word)).

The chart parser adds these inactive edges to
the chart using in a first step the second of the fol-
lowing rules (add edge/5) and then applies the
fundamental rule (fund rule/4) recursively to
inactive and active edges. Note that the first of
the following rules checks for duplicates and the
third rule applies first the fundamental rule, then
predicts new active edges, and finally updates the
lookahead information in the subsequent steps:

add_edge(V1,V2,LHS,Fnd,RHS) :-
edge(V1,V2,LHS,Fnd,RHS), !.

add_edge(V1,V2,LHS,Fnd,[]) :-
assert_edge(V1,V2,LHS,Fnd,[]),
fund_rule(V1,V2,LHS,[]).

add_edge(V1,V2,LHS,Fnd,[RHS|RHSs]) :-
assert_edge(V1,V2,LHS,Fnd,[RHS|RHSs]),
fund_rule(V1,V2,LHS,[RHS|RHSs]),
predict_active_edges(V2,RHS),
update_lah_info(RHS).

If an inactive edge is asserted by the second
rule, then the fundamental rule is applied to ev-
ery active edge that can make use of this inactive
edge:

fund_rule(V1,V2,RHS,[]) :-
foreach(edge(V0,V1,LHS,Fnd,[RHS|RHSs]),

add_edge(V0,V2,LHS,[RHS|Fnd],RHSs)).

If an active edge is asserted in the third rule,
then the fundamental rule is first applied to ev-
ery inactive edge that can make use of this active
edge:

fund_rule(V1,V2,LHS,[RHS|RHSs]) :-
foreach(edge(V2,V3,RHS,Fnd,[]),
add_edge(V1,V3,LHS,[RHS|Fnd],RHSs)).

and then the predicate predict active

edges/2 is applied that looks for each grammar
rule (rule/2) that has the category RHS on the
left hand side (LHS) and creates new active edges
for these rules starting at vertex V2:

predict_active_edges(V2,LHS) :-
foreach(rule(LHS,NewRHS),
add_edge(V2,V2,LHS,[],NewRHS)).

Finally, in a last step, the actual lookahead in-
formation (RHS) is updated with the help of the
predicate update lah info/1.

Note that the rule word/3 can only be used to
process atomic words. We use additional rules
to deal with compound words. The basic idea is
to take a compound word out of the lexicon once
the user enters the first token of a compound and
write all remaining tokens onto a stack. The first
token of these remaining tokens is then displayed
as lookahead information and the stack is pro-
cessed recursively as the user enters more tokens
that belong to the compound word. This approach
has the advantage that a compound word is looked
up only once in the lexicon and the remaining to-
kens are processed directly from the stack.

7 Evaluation

We have compared the runtimes of the direct
DCG approach with the indirect chart parsing ap-
proach for generating lookahead information. For
the chart parser, we evaluated two settings: (a)
the time that it takes to add a new token incre-
mentally if the chart has already been constructed,
and (b) the time that it takes to parse a partial
sentence from the beginning. In the case of the
DCG parser, those two settings coincide since in-
cremental parsing is not possible.

For this comparison, we used the AceWiki
grammar together with a test suite of 100 sen-
tences. The longest sentence in this test suite
consists of 51 tokens, the shortest sentence of 4
tokens, and the average sentence length is 14 to-
kens. Many of these sentences contain quite com-
plex syntactic structures, among them embedded
relative clauses, negation, coordination, and num-
ber restriction, for example:

• Sydney is a part of a country that is not a land-
locked country and that borders at least two seas.

1 10 20 30 40 50
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

DCG

Chart

Chart Sum

Figure 3: These two graphics show the average runtimes of the three parsing approaches in seconds (y-axis) for
the different sentence positions (x-axis) up to position 18 (on the left) and 52 (on the right), respectively.

It turned out that the average processing times
for generating lookahead information are: 1.3 ms
for the chart parsing approach if only the last to-
ken has to be processed; 13.1 ms for the chart
parsing approach if all of the partial sentence is
parsed; and 31.3 ms for the DCG approach. These
values where retrieved on a standard 2 GHz Intel
Core Duo machine using SWI Prolog6. Not sur-
prisingly, the latter two values highly depend on
the number of tokens in a partial sentence. Fig-
ure 3 shows the average time values by sentence
position (i.e. number of tokens) for the three ap-
proaches. We get very nice curves up to about 18
tokens, and then the DCG curve gets shaky. This
is due to the fact that only 25% of the sentences
have more than 18 tokens, and thus the sample
gets more and more unreliable.

The chart parsing approach requires approxi-
mately constant time for each new token, and thus
approximately linear time is required if the sen-
tence has to be parsed from the beginning. In
both settings, the chart parser performs better than
the DCG parser. Surprisingly, not even the pro-
cessing of the first token in a sentence is faster
when we use the DCG instead of the chart parser
(1.4 ms versus 0.8 ms). The theoretical worst-
case time complexity of the DCG approach is cu-
bic but on average a sentence of 15 tokens can
be processed with the AceWiki grammar within
43.3 ms. That means that the DCG approach is
still practically useful although theoretically not
exhilarating.

6http://www.swi-prolog.org/

8 Conclusions

In this paper we argued for controlled natural lan-
guage (CNL) interfaces using predictive text ed-
itors to combine human-readability and usability
with machine processability. As an example, we
presented AceWiki, a semantic wiki, that uses
a relatively complex grammar that is based on
a subset of Attempto Controlled English (ACE)
which is a machine-oriented CNL. A predictive
text editor is used to enforce the restrictions of the
CNL and to guide the user step-by-step via looka-
head information that is generated on the fly while
a sentence is written. We have explored two dif-
ferent approaches to generate this lookahead in-
formation: the first approach uses the DCG di-
rectly and is computationally costly but very easy
to implement; the second approach relies on a
chart parser and is computationally cheap but re-
quires a bit more work to implement. We showed
how the two approaches can be implemented in
Prolog, and we compared those implementations.
The chart parser performs particularly well if in-
cremental parsing is applied. In any case, the
chart parser performs considerably better than the
DCG parser. However, the parsing times of the
DCG approach are still within a reasonable range
to be used in practical applications.

Providing adequate writing support is impor-
tant for the acceptance of controlled natural lan-
guages. In the future, we will refine the presented
techniques and study more sophisticated editing
operations that can be applied to an existing text
and require only minimal reprocessing.

References
I. Androutsopoulos, G. Ritchie, and P. Thanisch.

1995. Natural Language Interfaces to Databases –
An Introduction. In: Journal of Language Engi-
neering, 1(1), pp. 29–81.

S. Auer, S. Dietzold, and T. Riechert. 2006. OntoWiki
– A Tool for Social, Semantic Collaboration. In:
Proceedings of the 5th International Semantic Web
Conference, pp. 736–749, Springer.

V. R. Chintaphally, K. Neumeier, J. McFarlane, J.
Cothren, and C. W. Thompson. 2007. Extend-
ing a Natural Language Interface with Geospatial
Queries. In: IEEE Internet Computing, pp. 82–85.

P. Cimiano, P. Haase, J. Heizmann, and M. Mantel.
2008. ORAKEL: A Portable Natural Language In-
terface to Knowledge Bases. In: Data & Knowl-
edge Engineering (DKE) 65(2), pp. 325–354.

P. Clark, P. Harrison, T. Jenkins, T. Thompson, and R.
Wojcik. 2005. Acquiring and Using World Knowl-
edge Using a Restricted Subset of English. In: Pro-
ceedings of FLAIRS’05, pp. 506–511.

P. Clark, P. Harrison, J. Thompson, R. Wojcik, T. Jenk-
ins, and D. Israel. 2007. Reading to Learn: An In-
vestigation into Language Understanding. In: Pro-
ceedings of AAAI 2007 Spring Symposium on Ma-
chine Reading, pp. 29–35.

A. Copestake, K. Sparck Jones. 1990. Natural Lan-
guage Interfaces to Databases. In: Knowledge En-
gineering Review, 5(4), pp. 225–249.

N. E. Fuchs, U. Schwertel, and R. Schwitter. 1998.
Attempto Controlled English – Not Just Another
Logic Specification Language. In: Proceedings of
LOPSTR’98, pp. 1–20.

N. E. Fuchs, K. Kaljurand, T. Kuhn. 2008. Attempto
Controlled English for Knowledge Representation.
In: Reasoning Web, Fourth International Summer
School 2008, LNCS 5224, pp. 104–124.

G. Gazdar, C. Mellish. 1998. Natural Language Pro-
cessing in Prolog. An Introduction to Computa-
tional Linguistics, Addison-Wesley, 1989.

C. Hallett, R. Power, and D. Scott. 2007. Compos-
ing Questions through Conceptual Authoring. In:
Computational Linguistics, 33(1), pp. 105–133.

F. Hielkema, C. Mellish, P. Edwards. 2008. Evaluat-
ing an Ontology-Driven WYSIWYM Interface. In:
Proceedings of INLG 2008, pp. 138–146.

K. Kaljurand. 2007. Attempto Controlled English as
a Semantic Web Language. PhD thesis, Faculty of
Math. and Computer Science, University of Tartu.

M. Kay. 1980. Algorithm Schemata and Data Struc-
tures in Syntactic Processing. In: CSL-80-12, Xe-
rox Parc, Palo Alto, California, 1980.

M. Krötzsch, D. Vrandecic, M. Völkel, H. Haller, and
R. Studer. 2007. Semantic Wikipedia. In: Journal
of Web Semantics, 5/2007, pp. 251–261, Elsevier.

T. Kuhn. 2008. AceWiki: A Natural and Expres-
sive Semantic Wiki. In: Proceedings of Semantic
Web User Interaction at CHI 2008: Exploring HCI
Challenges. CEUR Workshop Proceedings.

T. Kuhn. 2008. AceWiki: Collaborative Ontology
Management in Controlled Natural Language. In:
Proceedings of the 3rd Semantic Wiki Workshop.
CEUR Workshop Proceedings.

B. Motik, P. F. Patel-Schneider, I. Horrocks. 2008.
OWL 2 Web Ontology Language: Structural Spec-
ification and Functional-Style Syntax. W3C Work-
ing Draft, 11 April 2008. http://www.w3.
org/TR/owl2-syntax/

F. C. N. Pereira, S. M. Shieber. 1987. Prolog and
Natural-Language Analysis. CSLI, Lecture Notes,
Number 10.

R. Power, D. Scott, and R. Evans. 1998. What You
See Is What You Meant: direct knowledge editing
with natural language feedback. In: Proceedings of
ECAI 98, Brighton, UK.

S. Schaffert. 2006. IkeWiki: A Semantic Wiki for
Collaborative Knowledge Management. In: Pro-
ceedings of the First International Workshop on Se-
mantic Technologies in Collaborative Applications
(STICA06).

R. Schwitter. 2002. English as a Formal Specifica-
tion Language. In: Proceedings of DEXA 2002,
September 2-6, Aix-en-Provence, France, pp. 228–
232.

R. Schwitter, A. Ljungberg, and D. Hood. 2003.
ECOLE – A Look-ahead Editor for a Controlled
Language, In: Proceedings of EAMT-CLAW03,
May 15-17, Dublin City University, Ireland, pp.
141–150.

R. Schwitter, M. Tilbrook. 2008. Meaningful Web
Annotations for Humans and Machines using Con-
trolled Natural Language. In: Expert Systems,
25(3), pp. 253–267.

J. F. Sowa. 2004. Common Logic Controlled En-
glish. Draft, 24 February 2004. http://www.
jfsowa.com/clce/specs.htm

H. R. Tennant, K. M. Ross, R. M. Saenz, C. W.
Thompson, and J. R. Miller. 1983. Menu-Based
Natural Language Understanding. In: Proceedings
of the 21st Meeting of the Association for Compu-
tational Linguistics (ACL), MIT Press, pp. 51–58.

R. H. Tennant, K. M. Ross, and C. W. Thompson.
1983. Usable Natural Language Interfaces Through
Menu-Based Natural Language Understanding. In:
CHI’83: Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, pp. 154–
160, New York, NY.

C. Thompson, P. Pazandak, and H. Tennant. 2005.
Talk to Your Semantic Web. In: IEEE Internet
Computing, 9(6), pp. 75–78.

