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New Optimism in MT Community
2006 June 30:  

http://businessnetwork.smh.com.au/articles/2006/06/30/5104.html

• Within the next few years there will be an 
explosion in translation technologies, says 
Alex Waibel, director of the International 
Centre for Advanced Communication 
Technology…

• How far can machine translators be taken? 
"There is no reason why they should not 
become as good, if not better, than 
humans," Dr Waibel says.



Part 1: Challenges Ahead for
Data-driven Machine Translation

• a: Comparison with human qualifications
• b: Avoidance of compositionality assumption
• c: Using relevant co-text (beyond sentence)
• d: Using relevant "extra-text" (real world info)
• e: Displaying "second-order creativity"
 (creating novel solutions and detecting need)



Challenge 1:
Comparison with Human Qualifications



Challenge 1:
Comparison with Human Qualifications

• Display same qualifications required of 
human translators or explain why some are 
not needed for data-driven machine 
translation systems
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Specifications Phase

• Begin with:
– Source test
– Target language
– Target audience
– Purpose of translation

• Negotiate:
– Specifications for this project



Production Phase

• Specifications Agreement (mode adjustment)
• Translation (actual translation)
• Editing (source- vs. target-text comparison)
• Formatting (e.g. integrate source format)
• Proofing (monolingual target-text check)



Some qualifications needed for 
human translators

• Ability to understand source text
• Ability to write in target language
• Ability to adjust to audience and purpose, 

when translating and evaluating whether 
source and target texts correspond



Audience and Purpose

• Same source text may be translated very 
differently, depending on audience and 
purpose
– A story could be translated for easy reading and 

the storyline (adjusted for target culture)
– Same story could be translated for access to the 

source culture by those who can't read original



Data-driven Comments
on Challenge 1

Airplanes don’t bat their wings, but they still fly.



Chinese Room Experiment

new 
Chinese
document

English
translation

Chinese texts with
English translations

Chinese word or phrase => sentence pairs containing it

DOES THIS
PERSON KNOW
CHINESE?

HIGH ACCURACY



Chinese Room Experiment
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c1     c2      c3       c4      c5      c6      c7      c8      c9     c10     c11

170k sentence pairs of bilingual training data
(3.5m words translated)

test subsequence “c6 c7”
has been observed  56 times 
in training data
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Discussion

• Not even humans need to know the source 
language in order to translate well.

• There is no evidence that state of the art SMT 
systems don’t understand the source language.

• Audience and purpose variations:
– English paraphrasing.



Challenge 2:
 Avoidance of compositionality 

assumption

Compositionality: computation of the 
meaning of a sentence from the 
bottom up by combining context-free 
sub-meanings



Example of Non-compositionality

• From August 2006 Interview with Robert 
Longacre (received PhD same time as Chomsky)
– Melby: What was it like to live through the 

Chomskyan Revolution?
– Longacre: We were hit by a green sea.
– Melby: Why a green sea?
– Longacre: Because the ideas were not colorless
– Note: "green sea" in this case is a severe storm



Data-driven Comments
on Challenge 2



Data driven MT progress
MT Quality

1999 2000 2001 2002 2003 2004



Mary

did

not

slap

the

green

witch

Maria    no      dió     una  bofetada  a         la    bruja   verde

Viterbi alignments → word-to-word 
translation models

t(Maria | Mary), t(no | did), t(no | not), …, t(bruja | witch),  t(verde | green)



Viterbi alignments → phrase-to-phrase 
translation models

t(Maria | Mary), t(no | did), t(no | not), …, t(bruja | witch),  t(verde | green)
t(Maria no | Mary did not), t(no dió una bofetada | did not slap), t(dió una bofetada a la | slap the) 

Mary

did

not

slap

the

green

witch

Maria    no      dió     una  bofetada  a         la    bruja   verde



Viterbi alignments → phrase-to-phrase 
translation models

t(Maria | Mary), t(no | did), t(no | not), …, t(bruja | witch),  t(verde | green)
t(Maria no | Mary did not), t(no dió una bofetada | did not slap), t(dió una bofetada a la | slap the) 
t(Mary did not slap | Maria no dió una botefada), t(the green witch | a la bruja verde), …

Mary

did

not

slap

the

green

witch

Maria    no      dió     una  bofetada  a         la    bruja   verde



Discussion

• Automatically learned phrase-to-phrase dictionary 
entries solve the compositionality problem – 
locally.
– “real”
– “estate”
– “real estate”

• There is no evidence that MT suffers from a global 
compositionality problem.



Challenge 3:
Using relevant co-text

Often, translation decisions need to 
be sensitive to local context; 
sometimes they depend on co-text 
beyond the boundaries of the current 
sentence



Pronouns

• Pronoun reference outside current sentence 
can influence grammatical gender
– The shoe was found on the stairs… 
– (intervening sentences)
– It was brown with white laces.



Out of Africa

• From Ulisse July 2006 (Alitalia's inflight 
magazine): E'però nel 1985 che Pollack 
riceve l'Oscar alla regia per "La mia 
Africa", …

• English in magazine: In 1985 Pollack 
received an Oscar for directing "My 
Africa", … [error by human translator]

• Poster on same page: "Out of Africa"



Out of Africa Posters



Data-driven Comments
on Challenge 3



THESE

These 7 people include astronauts coming from France and Russia .

7PEOPLE INCLUDE COMINGFROM FRANCE AND RUSSIA ASTRO- -NAUTS .p-DE

Accounting for local context

THESE 7PEOPLE → these 7 people

COMINGFROM → coming from

INCLUDE → include

RUSSIA p-DE  → russia

Phrase-based 
rule extraction



THESE

These

DT

NP NP            NP

NP

PP

VP

NP

NP

VP

S

CD NN VBP NNS VBG IN NNP CC NNP

.

7 people include astronauts coming from France and Russia .

7PEOPLE INCLUDE COMINGFROM FRANCE AND RUSSIA ASTRO- -NAUTS .p-DE

Syntax-based
rule extraction

VP(VBG(coming) PP(IN(from) NP:x0) 
          → COMINGFROM x0

NP(NP:x0 VP:x1) → x1 p-DE x0



THESE

these

DT VBP NNSNNP CC NNP

include astronauts .

7PEOPLE INCLUDE COMINGFROM ASTRO- -NAUTSp-DE

France and Russia

FRANCE AND RUSSIA .

DT(these) → THESE
VPB(include) → INCLUDE
NNP(france) → FRANCE
CC(and) → AND
NNP(russia) → RUSSIA
NNS(astronauts) → ASTRO-  -NAUTS
.(.) → . 

.

Decoding with 
locally sensitive
syntax rules



THESE

These

DT VBP NNSNNP CC NNP

include astronauts .

7PEOPLE INCLUDE COMINGFROM ASTRO- -NAUTSp-DE

France and Russia

FRANCE AND RUSSIA .

NP NP NP

NP(NNP:x0) → x0
NP(NNP:x0) → x0
NP(NP:x0 CC:x1 NP:x2) → x0 x1 x2 

NP .
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VP(VBG(coming) PP(IN(from) NP:x0)  → COMINGFROM x0 

.
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NP(NP:x0 p-DE VP:x1) → x1 x0 

astronauts coming from France and Russia

.
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PP
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astronauts coming from France and Russia

NP

CD NN

7 people

VP

S
These 7 people include astronauts coming from France and Russia .

NP(DT:x0 CD(7) NNS(people)) → x0 7PEOPLE
VP(VBP:x0 NP:x1) → x0 x1
S(NP:x0 VP:x1 .:x2) → x0 x1 x2

.



Accounting for context

• Local context
– Phrase-based translation models
– Syntax-based ISI translation model

• Global context
– Topic-based language models

• Foundation work established
• Need empirical validation

– Discourse-based translation models
• Foundation work not established



Challenge 4:
Using relevant "extra-text"

Sometimes translation decisions cannot be 
made solely on the basis of the co-text; 
they depend partly on information about 
the real-world not in the source text



Chair

• Corpus: One hundred files from English-
French European Parliament
– English term: chair
– 109 instances
– Mostly chair of meeting or to chair a meeting
– One instance of university chair (position)
– Three involve object for sitting: French chaise 

vs. fauteuil (need to know whether chair has 
arms to select appropriate translation)



Manager's Elbow

• Imagine translating the following actual blog entry 
into another language:
– Tuesday, July 12, 2005: I should definitely have 

brought my leotard to work today for my manager. He 
had a horrid display of manager's elbow right away this 
morning. I won't go into the long drawn out details, but 
I got yelled at again for something ridiculous. It seems 
he only has 2 volumes: 1)nice salesguy tone 2)mean 
manager loudness.

– http://cristinacherry.blogspot.com/2005_07_01_cristina
cherry_archive.html



Probable Reference



Data-driven Comments
on Challenge 4



Chinese-English MT Improvements 
(NIST Evaluation)
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Like 2004 system + 
N-gram LM trained on 220B words

The real-world
information is out
there for us to mine…



Challenge 5:
Displaying "second-order 

creativity"

First-order creativity involves 
algorithmically generating an infinite 
number of items from a finite system; 
second-order creativity involves creating 
elements outside that infinite result



Second-order creativity
applied to data-driven MT

• Ability to create or retrieve translations 
when not in corpus (no corpus is complete)

• Ability to detect that none of the translation 
options in the corpus are appropriate (and 
thus creative translation is needed instead of 
using what is there)



Example of a term not in the corpus

• From a real menu for an August 2006 banquet at 
the George Brown Cooking School, Toronto, 
Canada
– Soup Course

• Roasted Butternut Squash Soup with a Duxelles of 
Mushrooms

– Not found in corpus but see 
(http://www.foodreference.com/html/fduxelles.html)

– Same word is used in German cooking
– But you can't always just use the source-language word



Another Term not in Corpus

• Zoopharmacognosy
– Animals treating themselves for disease using 

natural drugs, such as toxic plants or clay
– http://en.wikipedia.org/wiki/Zoopharmacognosy

• What if there is an accepted translation in the 
target language that is not in the corpus?

• There will always be the need for research



Creative Term in German

• Brösmelitöf
– Brösmeli  is productive element (crumbs)
– Töf is a scooter/motorcycle
– compound is not found in German Google
– regional term (in Switzerland) for:

• vacuum cleaner

• Requires creative translation e.g.
– crumb chaser



Example of Detecting Something 
that Should not be Translated "as is"
• Cliché: Lights are on but there's nobody 

home (A derogatory expression used to 
describe someone who is not very smart or 
who is dumb.)
– http://www.clichesite.com/content.asp?which=ti

• What about attested variant "The lights are 
dim and not even the neighbors are home"?



Another "not as is"

• Vertical House on the Prairie (heading)
– Indirect reference to Little House on the Prairie
– Actually referring to "The Price Tower" 

(designed by Frank Lloyd Wright, built in 
Bartlesville, Oklahoma)

– Creative French translation: Tour d'y voir
• Air Canada, En Route, August 2006, p. 40



One more

• "I pass the lobster trucks coming back from 
the sea, loaded down with a Jenga stack of 
traps.
– Jenga is a game involving a tower made from 

blocks (http://en.wikipedia.org/wiki/Jenga)
– It is sold in France, but the Air Canada 

translator chose to translate it as "loaded with  
traps stacked like sardines" (specification: 
naturalness overrides descriptive details)



Data-driven Comments
on Challenge 5



"Creative" machine translations
• Trans:  Kimfu is located West to Seoul.
• Ref:     Kimpo is located West of Seoul.

• Trans:   Taiyimarmu is in Adleyde to attend an international alumna 
       gathering.

• Ref:       Taib Mahmud is now attending an international alumni meeting 
in      Adelaide.

• Trans:  Try to remedy, or just declare the fatal defect of this protocol? 
   We shall discuss again. 

• Ref:      Shall we attempt to salvage the agreement, or shall we announce 
    that the agreement has fatal flaws and should be discussed anew?

           



Improvement drivers

• Traditional linguistics, AI, 
NLP
– Example-driven theories, 

algorithms, etc.
– Focus on very difficult, but 

extremely rare events.

• Best data-driven MT

– Error class-driven theories, 
algorithms, etc.

• Verb errors: 16.5%
• …
• Punctuation errors: 6%
• …

Arabic VSO → English SVO is a 
solved problem in the ISI syntax 
system.

S(NP:x0 VP(VBD:x1 NP:x2) .:x3) 
→ x1 x0 x2 x3        p=0.54



Part Two
Sources of help in meeting 

challenges
1 – Functionalism (from translation studies)

2 – Stratification (from linguistics)

3 – Domains (from terminology)

4 – Interaction (from language acquisition and Peirce)

5 – Embodiment (from philosophy)



Help 1: Functionalism

The ASTM standard partially formalizes the 
notion of specifications, which is an expression of 
how to adapt to the audience and purpose of a 
translation. The translation process is not a 
function, but becomes more like a function with 
two arguments (sourceText, specifications) rather 
than one (sourceText).



Bottom Line for Data-driven MT

• The input to the system should be (a) the 
source text and (b) the specifications to use 
when translating it



Data-driven Comments
on Functionalism



Chinese-English MT Progress 
(NIST evaluations)
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What linguists don’t like to do

• Where do punctuation symbols attach in 
phrase-structured parse trees?

• What kinds of syntactic annotations are 
most useful for machine translation?

• …



Help 2: Stratification



Some Basic Strata

• Phonological/morphological structure
• Syntactic structure
• Meaning structure
• Note: they all co-exist and interrelate



Bottom-line for Data-driven MT

• The target text needs to be well-formed on 
multiple strata

• This does not mean there is an order to the 
strata or that one derives from another

• All strata are context-dependent



Data-driven Comments
on Stratification



All data-driven MT systems attempt 
to accomplish this

• Language models
– Ngram language models
– Factored language models

• Morphology
– Syntax-based language models
– Semantic-based language models???
– Discourse-based language models???

• Translation models
– Phrase-based translation models
– Syntax-based translation models
– Semantic-based translation models???



Help 3: Domains

• Identifying the domain that applies to an 
item of source text helps select an 
appropriate translation when the immediate 
context does not suffice



Data-driven Comments
on Domains



Domain adaptation

• Little Research
– Out-of-domain data used as prior 

knowledge/distribution [Bacchiani and Roark; 
Chelba and Acero]

– All data is a combination of generic, out-of-
domain, and in-domain data [Daumé III and 
Marcu]

• MT Products
– LW Customizer



The Customizer

Parallel 
Documents

LW Translation 
Memory Toolkit

In-Domain
TMX Data

LW Customizer

Domain parameters

In-Domain Text

In-Domain 
Translation

Generic parameters

LW
Translator



Help 4: Interaction

Language learning for humans requires 
incremental meaningful interaction with 
others, not just textual input, so it might be the 
same for machines; translation also requires 
incremental re-evaluation (see language 
acquisition studies and Peircean semiotics).



One View of Language Learning

• Suppose you were locked in a room and were 
continually exposed to the sound of Chinese from 
a loudspeaker; however long the experiment 
continued, you would not end up speaking 
Chinese. … What makes learning possible is the 
information received in parallel to the linguistic 
input in the narrow sense (the sound waves). 
Klein 1986 (Second Lang. Ac. Cambridge U Press)



Dyadic vs. Semiogenic Perspectives



The Interpretant and Translation



Data-driven Comments
on Interaction



Or maybe not

• Texts contain all the knowledge that we 
need.
– Explicit
– Implicit

• We need only better learning models and 
algorithms
– Hidden variables can take us a long way

• E.g.: word-level alignments



Centauri/Arcturan [Knight 97]

1a. ok-voon ororok sprok .

1b. at-voon bichat dat .

7a. lalok farok ororok lalok sprok izok enemok .

7b. wat jjat bichat wat dat vat eneat .

2a. ok-drubel ok-voon anok plok sprok .

2b. at-drubel at-voon pippat rrat dat .

8a. lalok brok anok plok nok .

8b. iat lat pippat rrat nnat .

3a. erok sprok izok hihok ghirok .

3b. totat dat arrat vat hilat .

9a. wiwok nok izok kantok ok-yurp .

9b. totat nnat quat oloat at-yurp .
4a. ok-voon anok drok brok jok .

4b. at-voon krat pippat sat lat .

10a. lalok mok nok yorok ghirok clok .

10b. wat nnat gat mat bat hilat .
5a. wiwok farok izok stok .

5b. totat jjat quat cat .

11a. lalok nok crrrok hihok yorok zanzanok .

11b. wat nnat arrat mat zanzanat .
6a. lalok sprok izok jok stok .

6b. wat dat krat quat cat .

12a. lalok rarok nok izok hihok mok .

12b. wat nnat forat arrat vat gat .

Your assignment, translate this to Arcturan:    farok crrrok hihok yorok clok kantok ok-yurp



Your assignment, put these words in order:    { jjat, arrat, mat, bat, oloat, at-yurp }

Centauri/Arcturan

1a. ok-voon ororok sprok .

1b. at-voon bichat dat .

7a. lalok farok ororok lalok sprok izok enemok .

7b. wat jjat bichat wat dat vat eneat .

2a. ok-drubel ok-voon anok plok sprok .

2b. at-drubel at-voon pippat rrat dat .

8a. lalok brok anok plok nok .

8b. iat lat pippat rrat nnat .

3a. erok sprok izok hihok ghirok .

3b. totat dat arrat vat hilat .

9a. wiwok nok izok kantok ok-yurp .

9b. totat nnat quat oloat at-yurp .
4a. ok-voon anok drok brok jok .

4b. at-voon krat pippat sat lat .

10a. lalok mok nok yorok ghirok clok .

10b. wat nnat gat mat bat hilat .
5a. wiwok farok izok stok .

5b. totat jjat quat cat .

11a. lalok nok crrrok hihok yorok zanzanok .

11b. wat nnat arrat mat zanzanat .
6a. lalok sprok izok jok stok .

6b. wat dat krat quat cat .

12a. lalok rarok nok izok hihok mok .

12b. wat nnat forat arrat vat gat .

zero
fertility



Help 5: Embodiment

Some source texts, audiences, and 
purposes may require a system that 
believes it has a body, otherness, and 
agency



I am looking forward to having this 
problem



Closing
Some Advice From Old-timers

• Victor Yngve (early MT researcher):
– Remember we are studying people in real-life 

interactions, not language
• Robert Longacre (Chomsky-age linguist):

– It is wonderful to see new paradigms arise, 
but… (drink responsibly; eat a balanced diet)

• Alan Melby:
– Congratulations for your escape from rules!



General Discussion
• a: Comparison with human qualifications
• b: Avoidance of compositionality assumption
• c: Using relevant co-text (beyond sentence)
• d: Using relevant "extra-text" (real world info)
• e: Displaying "second-order creativity"

• 1 - Functionalism
• 2 - Stratification
• 3 - Domains
• 4 - Interaction
• 5 - Embodiment


