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Abstract

We describe an effort to improve standard
reference-based metrics for Machine Transla-
tion (MT) evaluation by enriching them with
Confidence Estimation (CE) features and us-
ing a learning mechanism trained on human
annotations. Reference-based MT evaluation
metrics compare the system output against ref-
erence translations looking for overlaps at dif-
ferent levels (lexical, syntactic, and semantic).
These metrics aim at comparing MT systems
or analyzing the progress of a given system
and are known to have reasonably good cor-
relation with human judgments at the corpus
level, but not at the segment level. CE met-
rics, on the other hand, target the system in
use, providing a quality score to the end-user
for each translated segment. They cannot rely
on reference translations, and use instead in-
formation extracted from the input text, sys-
tem output and possibly external corpora to
train machine learning algorithms. These met-
rics correlate better with human judgments at
the segment level. However, they are usu-
ally highly biased by difficulty level of the in-
put segment, and therefore are less appropriate
for comparing multiple systems translating the
same input segments. We show that these two
classes of metrics are complementary and can
be combined to provide MT evaluation met-
rics that achieve higher correlation with hu-
man judgments at the segment level.

1 Introduction

Machine Translation (MT) evaluation metrics are
essential for system development and system com-
parison. The most commonly used metrics like

BLEU (Papineni et al., 2002) and NIST (Dodding-
ton, 2002) are based on reference translations to
compute some form of overlap between n-grams in
the MT system output and one or more human trans-
lations. More complex reference-based metrics re-
place or complement n-gram matching with alterna-
tive lexical features, such as lemma- or synonym-
based alignment between the machine and human
translations (Lavie and Agarwal, 2007), or some-
times use syntactic and semantic features, such as
the matching of syntactic constituents, dependency
relations or semantic roles (Liu and Gildea, 2005;
Giménez and Màrquez, 2010b).

Although evaluation campaigns have shown that
such metrics correlate reasonably well with human
judgments at the corpus level, their correlation at
the segment level (e.g. sentences) is usually much
lower. While recent metrics like METEOR (Lavie
and Agarwal, 2007) and TER (Snover et al., 2006a)
try to overcome this limitation, segment-level scor-
ing is still a limitation, particularly for the de facto
metrics BLEU and NIST. Moreover, the scores given
by existing metrics usually cannot be interpreted in
absolute terms. For example, it is difficult to rea-
son about a BLEU score of 0.35 in terms of transla-
tion quality, as such a score heavily depends on the
corpus used for the evaluation (size, distribution of
n-grams, etc.), the number of reference translations
available and the type of MT system (rule-based, sta-
tistical, etc.), among other factors.

Confidence Estimation (CE) metrics, on the other
hand, aim at providing a score to end-users of MT
systems for each translated segment. End-users may
include people using web-based systems to get the
gist of text and professional translators using com-
mercial systems to aid them to produce publishable



quality translations. In our experimental setup, CE
metrics estimate a quality indicator within a given
numeric range, as opposed to binary “bad” / “good”
judgments used in most previous work on Confi-
dence Estimation. Therefore, an absolute numeric
estimate is provided to the user, which can be di-
rectly interpreted according to a given task (transla-
tion post-editing, for example).

CE metrics cannot rely on reference translations,
since unseen texts will usually be given to the sys-
tem for translation. These metrics use features ex-
tracted given only the source and translation text,
and optionally monolingual and bilingual corpora or
information about the MT system used to produce
the translations. Such features are given to a ma-
chine learning algorithm in order to learn a model to
predict quality estimates for a certain language pair
from data annotated with automatic scores (Blatz et
al., 2004) or directly from data annotated with hu-
man scores (Quirk, 2004; Specia et al., 2009). CE
metrics have been shown to correlate significantly
better with human evaluation than standard metrics
like BLEU and NIST (Specia et al., 2010b). Since
by definition CE metrics are aimed at estimating the
quality of a particular MT system for the translation
of a given input segment, they are heavily depen-
dent on features regarding the input segment, that
is, features reflecting the difficulty of translating the
source segment. Therefore, they are not very suit-
able for comparing multiple MT systems translating
the same input segments.

While the two types of metrics have different ob-
jectives, we believe that the advantages of both can
be exploited by combining them. We aim to en-
rich reference-based MT evaluation metrics by us-
ing the learning framework of CE metrics, as well
as the reference-independent features used by such
metrics, in order to improve the correlation of MT
evaluation metrics with human judgments at the seg-
ment level, where a segment corresponds to a single
sentence.

In general, the goal of automatic evaluation met-
rics is to approximate human judgments. We ex-
ploit a learning framework to directly estimate hu-
man scores, instead of estimating scores that cor-
relate well with them. The type of human scores
used for the annotation and to be predicted by the
system will depend on the aspects of quality which

are relevant for a given task. For example, one can
annotate translations according to their post-editing
needs, fluency or adequacy.

We have used recent developments in both types
of metrics: the CE framework trained on human
annotations, as proposed by Specia et al. (2009)
and the evaluation metric combining a number of
standard metrics like BLEU, NIST, METEOR and
linguistic features, as proposed by Giménez and
Màrquez (2010b). In the remaining of the paper
we first refer to related work on MT evaluation and
CE (Section 2), then give more details about the CE
(Section 3) and evaluation (Section 4) metrics used,
and report the experiments combining both (Section
5).

2 Related Work

While the combination of MT evaluation and CE
metrics has not been attempted before, a number of
previous efforts address related issues: using ma-
chine learning algorithms and human annotated data
for MT evaluation, combining different MT evalu-
ation metrics, using source-dependent features for
MT evaluation and attempting to improve MT eval-
uation at the sentence-level.

The first attempt to tackle sentence-level MT
evaluation as a learning problem was proposed by
Corston-Oliver et al. (2001). A classifier is trained
to distinguish between human translations (presum-
ably good) and MT system translations (presumably
bad) at the sentence level (human-likeness classifi-
cation). Reference translations are used as examples
of good translations, and machine translations as ex-
amples of bad translations. A number of language
model and linguistic features are extracted based on
the translations and/or references, including branch-
ing properties of the parser, function word density,
etc. Similarly, Kulesza and Shieber (2004) and Ga-
mon et al. (2005) use a number of reference-based
features to predict human-likeness. While this ap-
proach has the advantage of not requiring human
annotation, the predictions obtained have very low
correlation with human judgments, which is an in-
dication, as shown in (Albrecht and Hwa, 2007a),
that high human-likeness does not necessarily imply
good MT quality and vice-versa.

Albrecht and Hwa (2007a) use a regression algo-



rithm with string-based and syntax-based features
extracted from MT output, reference translations
and target language corpus to improve sentence-
level MT evaluation. Albrecht and Hwa (2007b;
2008) rely instead on pseudo-references, which are
translations produced by other MT systems. The
training is performed based on 1-5 human judgments
for translation fluency and adequacy. This approach
is the most closely related to ours, but it does not
exploit source dependent and other CE features.

Padó et al. (2009) use a regression algorithm with
features motivated by textual entailment between the
translation and the reference sentences, along with
lexical similarity and other linguistic features to pre-
dict pairwise preference judgments among MT hy-
potheses. Source-dependent or other CE features are
not used.

Liu and Gildea (2007) exploit features that con-
strain the reference-based n-grams matchings ac-
cording to the input segments. For example, they
constrain the matching of words in the reference and
MT output to those cases which are aligned to the
same words in the source sentence. The features
are combined using a learning framework trained
to maximize the Pearson correlation of the combi-
nation of features with human judgments. Source
features which are independent from the reference
translations are not used.

To the best of our knowledge, the approach pre-
sented in this paper is the first to use a learning
framework based on human annotation with an en-
riched feature set derived from the confidence esti-
mation scenario.

3 Confidence Estimation Metrics

The CE framework used in this paper is similar to
that proposed by Specia et al. (2009), with an alter-
native learning algorithm (Support Vector Machines
(SVM) as opposed to Partial Least Squares (PLS))
and without explicit feature selection. The choice
of the algorithm was motivated by practical reasons,
since PLS requires more training steps for explicit
feature selection, while SVM is able to weight fea-
tures appropriately according to their relevance as
part of the model learning process. We use the fol-
lowing implementation of SVM for regression in
our experiments: epsilon-SVR algorithm with ra-

dial basis function kernel from the LIBSVM pack-
age (Chang and Lin, 2001), with the parameters γ, ε
and cost optimized.

In order to perform the task of CE across differ-
ent MT systems and language-pairs, Specia et al.
(2009) define a number of shallow, language- and
MT system-independent features, extracted from the
input (source) sentences and their corresponding
translation (target) sentences, and also monolingual
and parallel corpora. The set of 74 features used in
this paper, grouped here for space reasons, is the fol-
lowing:

• source & target sentence lengths and their ra-
tios
• source & target sentence type/token ratio
• average source word length
• average number of occurrences of all target

words within the target sentence
• source & target sentence 3-gram language

model probabilities and perplexities obtained
using large monolingual corpora
• target sentence 3-gram language model proba-

bility trained on a corpus of POS-tags of words
• percentage of 1 to 3-grams in the source sen-

tence belonging to each frequency quartile of a
large monolingual corpus
• alignment score (IBM Model 4) for source and

target sentences and percentage of different
types of word alignments, as given by GIZA++
(Och and Ney, 2003) using a large parallel cor-
pus (∼1.2 million sentences)
• average number of translations per source word

in the sentence (as given by probabilistic dic-
tionaries like IBM Model 1), unweighted or
weighted by the (inverse) frequency of the
words
• percentages of numbers, content- / non-content

words in the source & target sentences
• number of mismatching opening/closing brack-

ets and quotation marks in the target sentence
• percentages and number of mismatches of each

of the following superficial constructions be-
tween the source and target sentences: brack-
ets, punctuation symbols, numbers.

The datasets used to train the CE system and the
process to annotate them are described in Section 5.



4 Reference-based Evaluation Metrics

For reference-based metrics, we rely on the repos-
itory of metrics available as part of the ASIYA

Toolkit (Giménez and Màrquez, 2010a)1. This in-
cludes a rich set of n-gram-based metrics and met-
rics operating at different linguistic levels (lexical,
syntactic and semantic). Linguistic metrics have
been shown to produce more reliable system rank-
ings than standard n-gram based metrics, especially
when the systems under evaluation are of different
natures (Giménez and Màrquez, 2007). They have
also performed well in recent evaluation campaigns
(Callison-Burch et al., 2008; Callison-Burch et al.,
2009; Callison-Burch et al., 2010). Moreover, they
have been shown to present a high degree of comple-
mentarity with lexical metrics. Some of the linguis-
tic metrics suffer a substantial decrease as sentence-
level quality predictors, mainly due to parsing er-
rors. Therefore, better results are usually achieved
by combining n-gram-based and linguistic metrics
(Giménez and Màrquez, 2010b). A drawback of lin-
guistic metrics is that they rely on automatic linguis-
tic processors and are, therefore, language depen-
dent and in general much slower to compute than
n-gram based metrics.

For our experiments we have selected a represen-
tative set of 52 metrics. All these metrics are avail-
able for translations into English (datasets described
in Section 5.2), however, only 28 of them are avail-
able for translations into Spanish (datasets described
in Section 5.1). We denote by ‘†e’ the metrics avail-
able for translations into English only. In the fol-
lowing, we provide a brief description of the metrics
grouped according to the linguistic level at which
they operate.

4.1 Lexical Similarity

BLEUs (Papineni et al., 2002) Smoothed cumula-
tive 4-gram BLEU score as described by Lin
and Och (2004b).

NIST (Doddington, 2002) Default cumulative 5-
gram NIST score.

GTMe (Melamed et al., 2003) Three variants of
GTM taking different values of the e parame-

1http://www.lsi.upc.edu/˜nlp/Asiya

ter (e ∈ {1, 2, 3}) weighting the importance of
the matching length.

METEOR (Denkowski and Lavie, 2010) Four vari-
ants of METEOR 1.2:

• METEORex → only exact matching.
• METEORst → stem matching.
• METEORsy†e → synonym matching.
• METEORpa → paraphrase matching.

ROUGE (Lin and Och, 2004a). Four variants of
ROUGE:

• ROUGEL → longest common subse-
quence (LCS).
• ROUGES? → skip bigrams with no

max-gap-length.
• ROUGESU? → skip bigrams with no

max-gap-length, including unigrams.
• ROUGEW → weighted longest common

subsequence (WLCS) with weighting fac-
tor w = 1.2.

WER (Word Error Rate) (Nießen et al., 2000) We
use−WER to make this into a precision metric.

PER (Position-independent Word Error Rate) (Till-
mann et al., 1997) We use −PER.

TER (Translation Edit Rate) (Snover et al., 2006b)
Four variants of −TER:

• TER→ default (i.e., no paraphrases).
• TERbase → base (i.e., no stemming, no

synonymy, no paraphrases).
• TERp†e → with phrase substitutions.
• TERpA†e → tuned towards adequacy.

Ol (Lexical overlap) (Giménez and Màrquez,
2010b). This metric is a particular instance
of a more general Overlap metric. System
and reference translations are considered as un-
ordered sets of linguistic elements with repeti-
tion. Overlap is then defined as the Jaccard in-
dex between the two sets, i.e., the cardinality of
their intersection divided by the cardinality of
their union. In the case of lexical overlap, lin-
guistic elements are word forms. Several met-
rics based on computing overlap at other lin-
guistic levels are listed in this section.



4.2 Syntactic Similarity
On Shallow Parsing (SP)

SP-Op(?) Average overlap between words
belonging to the same part-of-speech.

SP-Oc(?) Average overlap between words be-
longing to chunks of the same type.

SP-NISTl|p|c|iob NIST score over sequences
of: lemmas (l), parts of speech (p), base
phrase chunks (c), and chunk labels (iob).

On Dependency Parsing (DP)†e

DP-HWCl Head-word chain matching (Liu
and Gildea, 2005). Only chains up to
length 4 are considered. We use three dif-
ferent variants according to the item type:
DP-HWCw word forms.
DP-HWCc grammatical categories.
DP-HWCr grammatical relations.

DP-Ol(?) Average lexical overlap between
items according to their tree level.

DP-Oc(?) Average lexical overlap between
terminal nodes according to their gram-
matical category.

DP-Or(?) Average lexical overlap between
items according to their grammatical
relationship.

On Constituency Parsing (CP)

CP-Op(?) Average overlap between words
belonging to the same part-of-speech.

CP-Oc(?) Average overlap between words
belonging to constituents of the same type.

CP-STMd Syntactic tree matching (Liu and
Gildea, 2005). We use three different vari-
ants d considering subtrees up to depth 4,
5 and 6.

4.3 Semantic Similarity
On Named Entities (NE)†e

NE-Oe(?) Lexical overlap between NEs of
the same type.

NE-Me(?) Lexical matching between NEs of
the same type. Matching differs from
overlap in that it requires the matching of
the full linguistic element, whereas over-
lap considers partial matchings as well.

On Semantic Roles (SR)†e

SR-Or(?) Average lexical overlap between
SRs of the same type.

SR-Mr(?) Average lexical matching between
SRs of the same type.

SR-Or Average role overlap, i.e., overlap be-
tween semantic roles independently from
their lexical realization.

We also use a more restrictive variant of these
metrics which requires SRs to be associated
to the same verb: SR-Orv(?), SR-Mrv(?) and
SR-Orv.

On Discourse Representations (DR)†e

DR-Or(?) Average lexical overlap between
DR structures of the same type.

DR-Orp(?) Average overlap between part-of-
speech tags associated to lexical items in
DR structures of the same type.

DR-STMd This metric is analogous to the CP-
STM metric, but applied to DR trees. We
use three variants d considering subtrees
up to depth 4, 5 and 6.

4.4 Optimal Metric Combinations
We combine linguistic metrics using the ULC ap-
proach, i.e., taking their normalized arithmetic
mean. Optimal metric combinations are determined
by maximizing Pearson correlation with human as-
sessments as described by Giménez and Màrquez
(2010b). The optimal combinations found are
shown in Table 1, where metrics for each dataset
are sorted according to their individual correlation.
For all datasets with translations into English, it was
possible to find metric combinations that outperform
any individual metric. These include lexical, syntac-
tic and semantic metrics.

Dataset Optimal Metric Set
de-en ROUGEW , CP-STM6, DP-Or(?), DR-STM6

es-en GTM3, DR-STM4, DP-HWCr

fr-en GTM3, DP-Or(?), CP-STM6

en-es GTM2

Table 1: Optimal metric combinations using the ULC ap-
proach.



5 Combining Confidence Estimation and
Reference-based Evaluation Metrics

We experiment with the following strategies to com-
bine the Confidence Estimation (CE) and Reference-
based Evaluation (RE) metrics:

CE+RE (SVM) Join all CE features and RE metrics
together as features and train an SVM regressor
based on human annotations.

CE+ULC (SVM) Join all CE features and the opti-
mal metric set suggested by ULC as features
and train an SVM regressor based on human
annotations.

We compare these strategies against the following
baselines:

CE (SVM) The CE framework on its own, trained on
all CE features using an SVM regressor based
on human annotations.

RE (SVM) All RE metrics as features to train an
SVM regressor based on human annotations.

ULC (SVM) All ULC metrics as features to train an
SVM regressor based on human annotations.

RE (linear) The linear combination of all RE metrics
(their normalized arithmetic).

ULC (linear) The linear combination of the best RE
metrics (their normalized arithmetic).

BLEU, NIST, METEOR and TER Standard MT
evaluation metrics.

We experiment with these metrics on two types
of datasets for different language pairs and text do-
mains:

• Large sets of English→Spanish translations for
Europarl data annotated by professional trans-
lators (Section 5.1), and
• Small sets of {German, Spanish,

French}→English translations for news
data annotated by volunteers as part of an
evaluation campaign (Section 5.2).

We measure the performance of each met-
ric/combination by its Pearson correlation with the
scores given by human annotators. In what follows
we give details about the two types of datasets and
present the results of our experiments.

5.1 LSP English→Spanish Translations
Four datasets were produced in a controlled environ-
ment as part of a project with a Language Service
Provider (LSP). Each dataset consist of 4,000 Span-
ish translations for English sentences taken from
the Europarl development and test sets provided by
WMT08 (Callison-Burch et al., 2008). The transla-
tions were produced by training four Statistical MT
(SMT) systems on 1.2 million English-Spanish sen-
tence pairs from the Europarl training corpus as also
provided by WMT08: Matrax (Simard et al., 2005),
Portage (Johnson et al., 2006), Sinuhe (Kääriäinen,
2009) and MMR (Maximum Margin Regression)
(Saunders, 2008). In the following we anonymize
these systems by arbitrarily naming them S1-S4.

The translations produced by each system were
manually annotated by professional translators with
1-4 scores, which is a range commonly used by them
to indicate the quality of translations with respect to
the need for post-editing2:

• 1 = requires complete retranslation
• 2 = post editing quicker than retranslation
• 3 = little post editing needed
• 4 = fit for purpose

The resulting datasets consist of four sets
of 4, 000 distinct {source, translation, reference,
human-score} quadruples. The distribution of
the human scores assigned varies from dataset to
dataset. The average scores are: S1 = 2.835, S2 =
2.558, S3 = 2.508 and S4 = 1.338. More details
about these datasets, along with the actual datasets
for download, can be found in (Specia et al., 2010a).

Each dataset was randomly split into training
(3,000) and test (900) using a uniform distribution.
Identical samples were created for all datasets. The
optimization of the SVM parameters was performed
by cross-validation using five random subsamples of
the training set (75% for validation training and 25%
for validation test).

5.1.1 Results
Table 2 shows the results of our combination

strategies compared against other metrics. The two
combination strategies, particularly CE+RE (SVM),
consistently outperform all other metrics, especially

2A Kappa agreement (Cohen, 1960) of 0.65 was obtained.



those metrics which do not use machine learning and
human annotations.

S1 S2 S3 S4
CE+RE (SVM) 0.608 0.591 0.582 0.540
CE+ULC (SVM) 0.597 0.572 0.568 0.540
CE (SVM) 0.577 0.557 0.536 0.536
RE (SVM) 0.510 0.492 0.503 0.459
ULC (SVM) 0.417 0.399 0.442 0.414
RE (linear) 0.274 0.261 0.340 0.206
ULC (linear) 0.417 0.399 0.442 0.412
METEORpa 0.270 0.302 0.350 0.256
BLEUs 0.295 0.277 0.339 0.223
NIST 0.197 0.189 0.253 0.124
TER 0.193 0.171 0.267 0.144
Avg. Human 2.868 2.583 2.526 1.344

Table 2: Results of the experiments with the LSP datasets
in terms of Pearson correlation with human scores at the
sentence level. Figures in bold face represent the best
results for a given dataset, where difference to the sec-
ond best approach is statistically significant (paired t-test,
p < 0.05). The average human scores on the test set is
given to provide an intuition on the overall quality of the
translations within [1-4].

The gain in performance obtained by the combi-
nations of CE and RE as compared to these met-
rics individually shows that they are indeed comple-
mentary. An interesting outcome is the difference
in the performance of the linear combination of RE
metrics (RE (linear)) against their combination using
SVM trained on human annotation (RE (SVM)). The
performance of the linear combination of RE met-
rics is considerably lower, close to that of standard
evaluation metrics. This may be partially due to the
low quality of the resources used to produce the lin-
guistic features for Spanish, but it shows that using
learning framework is a more robust approach. The
linear combination of a good subset of RE metrics
(ULC (linear)) performs better than the linear com-
bination of all RE metrics (RE (linear)). This was
expected since the subset of metrics was chosen in
terms of their correlation with human judgments in
the training data. There is no gain in using the learn-
ing framework ULC (SVM), since in this case ULC
is composed by a single metric.

It is worth emphasizing that the experiments with
these four datasets constitute the ideal scenario for

confidence estimation, since the machine learning
algorithm is trained on translations from a single MT
system at a time or, more specifically, given that fea-
tures the input segments are not repeated within each
dataset. This explains the considerably superior per-
formance of the approaches using CE features. Nev-
ertheless, the gain in performance from using RE
metrics is significant. In what follows we present
a scenario which is closer to that of MT evaluation
for system comparison, where different MT systems
are used to translate the same input segments.

5.2 WMT {Spanish, French,
German}→English Translations

As an alternative type of dataset, we collected
WMT09 (Callison-Burch et al., 2009) English trans-
lations of news texts from German (de-en), Spanish
(es-en) and French (fr-en) produced by a number of
MT systems, which had been annotated by humans
according to post-editing needs:

• 1 (BAD) = the sentence is too bad to edit
• 2 (EDIT) = the sentence can be edited
• 3 (OK) = the sentence does not require editing

The systems producing the translations vary ac-
cording to the language pair, and they include SMT
as well as rule-based and hybrid systems: 21 de-en
MT systems, 13 es-en MT systems, and 21 fr-en MT
systems. In total, 100 different source sentences for
each language pair were translated by one or more
MT system and annotated by humans. Some transla-
tions were annotated more than once to check (inter-
and intra-) annotator agreement. In those cases, the
multiple human scores were averaged.

The number of distinct translations annotated for
each system varies from 37 to 56, with most sys-
tems ranging between 40 and 50 annotated transla-
tions. Since these numbers are too small for training
our learning framework, we put together translations
produced by all MT systems for a given language
pair. The resulting datasets consist of three sets
of distinct {source, translation, reference, human-
score} quadruples:

• 1, 012 quadruples for de-en
• 645 quadruples for es-en and
• 974 quadruples for fr-en



The distribution of human scores also varies ac-
cording to the dataset, but the average scores in the
three datasets is very similar: de-en = 1.87, es-en =
1.82 and fr-en = 1.94.

Each dataset was randomly split into training
(80%) and test (20%) using a uniform distribu-
tion. The SVM parameters were optimized by
cross-validation using five random subsamples of
the training set (75% for validation training and 25%
for validation test).

It is worth emphasizing that these WMT datasets
differ from the LSP datasets (Section 5.1) in many
aspects. Mainly, they contain fewer {source, trans-
lation, reference, human-score} quadruples, even
though translations from several MT systems were
put together. Moreover, each dataset contains multi-
ple translations produced by different MT systems
for the same source sentence, and therefore the
source sentence features are repeated many times.
This is not an ideal scenario for CE, given that many
features are extracted from the source sentence only,
while others depend somehow on the source sen-
tence (about 60% of the features). Finally, these
datasets were annotated by volunteers who were not
trained for the annotation task and were not neces-
sarily fluent speakers of both languages. This is re-
flected in the low agreement between the annotators
mentioned in the WMT09 report (Callison-Burch et
al., 2009).

5.2.1 Results
The results for the WMT datasets (Table 3) also

show the benefits of combining CE and RE metrics,
although the combination does not always outper-
form the RE metrics. We believe that the contribu-
tion of the CE features is less evident here due to
the aforementioned reasons: the fact that the transla-
tion quality annotation was not performed by trained
translators and is therefore likely to be less consis-
tent, and the repetition of many source-dependent
CE features when putting translations from several
MT systems together. In particular, for the de-en
dataset, the combination of all RE features com-
bined using SVM, i.e., RE (SVM), performs as well
as CE+RE (SVM). Nevertheless, RE metrics only
perform well when using the CE learning framework
based on human annotation, as opposed to the stan-
dard linear combinations.

de-en es-en fr-en
CE+RE (SVM) 0.480 0.334 0.315
CE+ULC (SVM) 0.437 0.379 0.238
CE (SVM) 0.356 0.319 0.210
RE (SVM) 0.479 0.292 0.306
ULC (SVM) 0.428 0.119 0.202
RE (linear) 0.348 0.142 0.227
ULC (linear) 0.418 0.213 0.216
METEORpa 0.298 0.090 0.197
BLEUs 0.220 0.167 0.138
NIST 0.227 0.038 0.180
TER 0.239 0.129 0.213
Avg. Human 1.854 1.878 1.950

Table 3: Results of the experiments with the WMT-
09 datasets in terms of Pearson correlation with human
scores at the sentence level. Figures in bold face represent
the best results for a given dataset, where difference to the
second best approach is statistically significant (paired t-
test, p < 0.05). The average human scores on the test set
is given to provide an intuition on the overall quality of
the translations within [1-3].

While the scenario of the experiments with the
WMT datasets is closer to that of MT evaluation,
ideally, a model for each MT system should be
learned individually, such as in the experiments pre-
sented in Section 5.1. For system comparison, the
scores estimated for multiple translations for a given
input segment (produced by different MT systems)
could then be compared against each other. An ex-
ample of this task is presented in (Specia et al.,
2010b).

6 Conclusions

We have presented an approach for MT evaluation
in which recent metrics are enriched with features
from confidence estimation and a learning mecha-
nism based on human annotations. The proposed
metric showed significant improved correlation with
human judgments at the segment level with several
datasets.

While the proposed approach requires human an-
notation to learn models to predict a quality score,
we have shown that it is possible to achieve good
performance with a reasonably small number of
training examples.

Some of the RE metrics proposed are dependent



on linguistic resources, which may pose a limita-
tion on their applicability to other language pairs,
as well as their use in other tasks such as system
optimization, since computing such metrics requires
more time than n-gram matching metrics. In particu-
lar, for system optimization using standard methods,
the use of CE features is also problematic, since the
variations in the n-best list may not be large enough
to be captured by the features we use.

An important remark is that our approach can be
much more flexible than standard evaluation metrics
with respect to the aspect of translation quality un-
der assessment. BLEU and NIST for example are
known to better reflect fluency aspects. The pro-
posed approach allows estimating different aspects
of quality, depending on features extracted and the
way the human annotation is performed.
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