
V~TJ~CY AND MT: RECENT DEVELOPMENTS IN THE METAL SYSTEM

Rudi Gebruers

Siemens-METAL project
Katholieke Universiteit Leuven

Maria Theresiastraat 21
B-3000 LEUVEN

BELGIUM

ABSTRACT

This paper describes a valency model,
developed within the Belgian METAL project,
aimed at enhancing the modularity and
multilinguality of the METAL system. The
introduction provides background, section 1
discusses the existing valency framework, and
section 2 presents the alternative model.
The final section deals with some results and
problems with this model.

0. Introduction

The task of MT is to map between equivalent
linguistic objects. One of the central design
questions in MT is that of the best method to
decompose the translation relation. The ideal
would be to have a system that produces a
(natural) language-independent representation
from a source language (SL) text, which could
then be synthesized in any target language
(TL). However, this ideal not being feasible
for real-world texts, it has become customary
to adopt a model where a transfer module,
specific to one language pair, defines a
mapping between language-dependent structural
representations. In principle it should be
possible to design a 'transfer' model in such
a way that the analysis module for mapping
surface strings onto structural
representations and the synthesis module for
mapping structural representations onto
surface strings remain the same, regardless of
the TL and SL, respectively. The advantage of
this 'multilingual' design is that existing
modules will not be seriously affected by the
addition of a new language to the system. A
still more attractive, but also more
ambitious, design would be one in which the
same grammar can be used for both parsing and
generating, and the same translation rules for
translating between two languages in either
direction (see Jin and Simmons, 1986 for an
example of a 'symmetric' translation system).

Whereas early MT systems blended the rules
of grammar and the analysis procedure for
efficiency reasons, it has also become
customary, given current system optimization
techniques, to make a clear separation between
programming logic and data on the one hand,
and linguistic logic and data on the other.
This separation is convenient for the division
of labour between the linguist and the

programmer, and it enables the former to
revise and complete his rule systems without
the latter having to constantly change his
programs.
The METAL automatic translation system tries
to be multilingual in the above sense. More-
over, it makes an attempt at separating soft-
ware and lingware (= linguistic knowledge
written in a specialised user language). In
the following, I will show how the adoption of
a new kind of valency framework, developed at
the K.U.Leuven in the course of the last two
years, enhances the multilinguality and
modularity even further. For the sake of
clarity, I will first review the relevant
aspects of the valency framework in the
current METAL system.

I. Valency in the METAL system

Since the main claim to be advanced in this
paper bears on the relation between a valency
framework and the general design of an MT
system, I will first say a few words on the
METAL system architecture. I will then review
and comment upon the valency framework in this
system.

i.I. The METAL architecturo

In METAL the translation process proceeds in
three phases. During the analysis phase an
input sentence is mapped onto one or more
interpretations. Each interpretation is
represented as a flattened phrase structure,
consisting of a predicate node followed by one
or more arguments (and zero or more
modifiers). Anaphoric links are resolved
during the integration phase. The resulting
analysis trees are not intended to be
language-independent representations, but are
passed to a bilingual transfer phase. During
transfer, analysis trees are structurally and
lexically modified according to TL
specifications. The output sentence is the
string of terminal nodes of this transformed
tree.

168

The METAL system accommodates two kinds of

transfer/generation approaches. Most transfer

instructions are paired one-to-one with the
grammar rules used to perform the SL analysis.
However, provisions have also been made to

complement this "direct transfer' approach

with an independent transfer grammar (see
Root, 1985). The latter approach is becoming

more and more important in METAL because it

greatly enhances the modularity of the system
(viz. with an eye on using it for several
different language pairs).

1.2o The valency framework

It is well-known that the dependency relations

between a verb and its arguments can influence

greatly the lexical and structural transfer of

both, as well as the structural transfer of

the clause as a whole. Though the dependency
relations themselves may be language-
independent, their encoding varies from one

language to another, and, within one language,

from one verb to another. It is therefore
essential to know for each verb what its

dependents should look like. This topic

being central in Valency Grammar, it is not

surprising that many MT systems (e.g.

TAUM-AVIATION, SUSY, GETA, ARIANA-78, EUROTRA)

incorporate valency notions (see Somers,
1986). One essential notion borrowed from

valency theory is that of 'valency frame',

i.e. a pattern listing all the complements
allowed and/or required by a verb, together
with associated morpho-syntactic and/or
syntactic features.

Since German-English is the furthest

developed language pair of METAL at present, I

will now discuss what the valency frames look

like for German. In the METAL system the

German valency frames mainly include

morpho-syntactic information (syntactic

(sub) category and/or surface case) with
respect to non-subject arguments. For

instance, the pattern (A-X (CP TH)) signals
that a German verb carrying it may take,
besides a nominative subject, an accusative

reflexive pronoun (A-X) plus a complement

phrase introduced by dass (CP TH). The
optionality of arguments is not signalled in

the frame itself, but in a separate feature on
the verbal predicate.

In analysis, predicate-argument structures,
resulting from a flattening and rearrangement
of constituent structures, are passed to a

case frame processor. The latter attempts to

'use up' the available sentence constituents

by matching them against the argument
specifications in the valency frame(s)
specified for the verbal predicate. When it

finds a constituent that matches an argument

specification in the frame, it updates this
constituent with a grammatical role (SUBJECT,

(IN)DIRECT OBJECT, etc.) according to some
general implication relation holding between
grammatical roles and case markings (or some
other sort of coding). For a clause to be
well-formed, at least one of its verb's frames

must have a 'filler" for each of its argument

'slots'. If a frame is found to be applicable
in more than one way, preference is given to

one application on the basis of word order

criteria and/or semantic properties of the
subject argument. Eventually, the case frame

processor returns either an analysis tree that

has been updated with grammatical role
information, or it discards the input
sentence.

During the transfer phase, morpho-syntactic

information of the sort present in valency
frames may be used, both in tests and in
transformations associated with lexical

transfer entries, to attune SL argument

specifications to the TL. In addition,

transfer entries may contain further

semantico-syntactic restrictions on argument

positions, which may help in choosing the

right translation for a verb. The grammatical

roles are used to convert the canonical
ordering of the translations of the verb and

its arguments into the appropriate TL

ordering, as well as to generate the
appropriate forms of the TL constituents.

1.3. Discussion

Before discussing the new, extended valency

framework, we will briefly point out how the
existing system does not yet exploit the

potential of a valency grammar to the full.

The only valency frames referred to by the
case framing package in the course of
translation are SL valency frames. There is no

procedure for mapping SL frames onto TL
frames, and the information provided in TL

frames is not used when TL strings are

generated. The underlying assumption seems to

be that argument structures are more or less
the same across languages. Any discrepancies

with respect to the argument structure are

resolved by means of a small set of

transformations specified in the relevant
lexical transfer entries. Any discrepancies

with respect to the expression of the argument
structure (e.g case-marked vs. unmarked NPs)

are handled in the relevant grammar rules.

The assumption that argument structures are
more or less the same across languages is also

reflected in the status of the canonical
clause representations employed in the

METAL system. The latter are considered to

be some sort of interlingual structures from
which TL surface strings are to be generated
directly (cf. the direct transfer approach).

However, the general philosophy in the
METAL system has been to start off with a

rather 'shallow' level of analysis, rather
than a 'deep representation' of some sort (see

[SLOCUM 83]). Thus, there seems to be a

conflict between the reluctance to work with a
more semantically oriented analysis and the

desire to have an interlingua. This conflict

may have been negligible for the
German-English system, because these languages

are 'cut' along very similar patterns.
Nevertheless, even these two languages display
subtle differences as to the way they 'model'

169

extralinguistic reality. For instance,
'helping' is a real-world relationship

involving two entities, A and B. In English,

this relationship is construed as an action of
A which affects B (A helps B is similar to A

hits B); in German, it is modelled as if A

transferred something to B (A [nom] hilft B
[dat] is similar to A [nom] gibt B [dat] C

[acc]). Similar differences may be expected to
increase as languages more divergent than

English and German are to be handled. If, for

some reason or other, it is not feasible or
desirable to reduce language-specific models

of some real-world relationship to a language-

independent case frame, there is nothing but
to state translation equivalences between

clause structures in terms of equivalences

between language-dependent argument

structures. (For similar views, see Alam,

1986; Kudo and Nomura, 1986; Van der Korst,

1987.)

Although there is little doubt that the

framing facilities provided in the system work
quite well and yield very good results for

translations from German into English, we have

tried to improve the framing module beyond
this language-pair. One should also bear in

mind that, with a less well-structured MT
system than METAL, we could never have

developed a more language-independent valency

mechanism in such an easy and straightforward

way.

2+ An alternative valency fzamawozk

2.1. The architectuze

The general philosophy behind the development

of the Leuven valency framework has been to
maintain an essentially syntax-driven MT

system, while enhancing the latter's
modularity in view of extensions to other
language pairs. This required reconsidering

not only the relation between lingware and
software, but also the general architecture

behind the system.

With respect to the general translation theory

behind the METAL system, enhancing the

modularity boils down to increasing the

relative independence of the analysis,
transfer, and synthesis modules. More

specifically, we assume that

(a) an analysis module must provide

representations which are useful
starting-points for translation into

multiple TLs;
(b) major parts of a synthesis module must be

independent of the SL under consideration

so that they can also be used for

translation from other SLs;
(c) mappings between SL and TL representations

must be defined in terms of a minimum of,

preferably, lexically governed transfor-

mations.

Though we are still far away from the ideal
transfer-based MT system, we believe that the

alternative valency framework may be an
important step in the right direction.

2.2. The linguistic fundamentals of the

alternative valency framework

The basic assumption is that simple clauses

have a predicational structure and that
(partial) equivalences between SL and TL

clauses can be defined in terms of (partial)

equivalences between SL and TL predications.

The structural centre of a predication is a
lexical predicate with which one or more

valency frames are associated. Each valency
frame is a sequence of typed argument slots to

be filled with appropriate terms, i.e.

sentence constituents of the appropriate

types. Sentence constituents which cannot be
related to any of a predicate's argument slots

should be 'legal satellites', i.e. legal

circumstantial modifiers, of the predication

as a whole.

The structure of valency frames is language-

independent, and can be defined as follows:

<frame> : :- " (" <slot>+ ["OPT" <slot>+] ") =

<slot> ::-- "(" <slot_label> <key>+ ")"

<slot label> ::- one of a set of user-definable atoms,

startinq with a "S'-sign

<key> ::- <codepointer> I <feature-value-pair>

<code_/3ointer> ::- one of a set of user-definable atoms

<feature-value-pair> ::_ .(m <featname> <feat_val>+ ")"

<feat_name> ::- one of a set of user-definable atoms

<feat val> : :- one of a set of user-definable atoms

The number of argument slots for a given

frame is primarily determined on the basis of

formal, language-specific criteria. Thus

tests to distinguish behween arguments (args)
and satellites (sats) include, besides the

elimination test, paraphrase tests (cf. the do
so and und zwar tests, for English and German,
respectively), as well as distributional and

substitutional criteria (e.g. sats are freer
to move than args, whereas elements of

pronominal paradigms substitute more easily

for args than for sats). Whenever those tests
are not decisive with respect to the status of

a sentence constituent, the latter is assumed

to be an arg, since, for transfer, it is
arguable that it is easier to operate on args

than on sats.

Argument slots may be obligatory or
optional. Optional slots, which need not be

present, but are always semantically implied,

are set apart from obligatory ones by means of

the symbol OPT. In fact, OPT is a means to

collapse frames whose obligatory slots are
identical and whose optional slots are not
mutually exclusive. Thus, a frame containing

n optional slots is an abbreviation for 2expn

different frames.

Argument slots are not in themselves

labelled semantically, though they do tie up

with semantic relations (deep cases) as all
valency relations are ultimately semantically

motivated. (See Helbig and Schenkel (1973) for

a discussion of the relation between logical,

semantic, and syntactic valency.) Instead, a
slot label is taken to signal that certain

rules or regularities apply to all the args
carrying that label. Our basic principles for

labelling slots are the following:

170

(a) Args labelled $0 are 'deep subjects';

typical surface reflexes in Dutch and

French are "nominative case', position to

the left of the finite verb in unmarked
declaratives, ability to become the

aqentive phrase in passives (under certain
conditions);

(b) Args labelled $I are 'deep objects';

typical surface reflexes in Dutch and

French are "accusative case', position
strongly tied to the main verb, ability to

become the 'surface subject' in passives
(under certain conditions);

(c) Args labelled $2 are 'indirect objects';

typical surface reflexes in Dutch and
French are indirect object prepositions

(aan vs° a), alternation between PP[aan
vs. a] and NP[non-clitical and lexical vs.
clitical and pronominal];

(d) Args labelled $3 are 'oblique objects'; a

typical surface reflex in Dutch and French
is that these args can be replaced by

adverbial constructions;

(e) Args labelled $4 are "prepositional
objects'; in both Dutch and French these

args are PPs, with strongly governed,
idiosyncratic prepositions;

(f) Arqs labelled $5 are "subjective

complements'; these arqs are attributes of
the subject with bivalent verbs (e.g°
zijn/etre 'be');

(g) Args labelled $6 are "objective
complements'; these args are attributes of

the direct object with trivalent verbs

(e.g. noemen/appeler 'call').

It is important to note that those principles

are rules of thumb, rather than clear-cut
definitions in terms of necessary and
sufficient conditions. However, far from being

arbitrary, the inventory of arg labels should

be justified both language-internally and

cross-linguistically. Language-internally,
this means that one has to come up with a

number of indications that a given arg label

allows for significant language-specific

generalizations. Cross-linguistically, this

means that, in assigning the same label to

slots in different languages, it must be

possible to reveal a reasonable degree of
overlap in the behaviour of fillers for the

slots in the respective languages. Of course,

we do not pretend that our list of arg labels
is in any way exhaustive and we grant that it

may have to be adjusted in the light of
further research.

Apart from a slot label, an argument slot

contains a number of 'keys' which refer to
procedures, frame tests and frame

constructors, to be called during analysis and
synthesis, respectively.

Frame tests consist of morpho-syntactic and,

possibly, semantic conditions which

constituents must satisfy in order to become
potential slot fillers. The actual contents of
the morpho-syntactic constraints is

co-determined by such parameters as the slot
label and the clause's Mood and Voice values.
Regarding the use of semantic selection

restrictions, a fairly pragmatic course has
been pursued. That is, we started off with
a rather limited inventory of semantic

features ([~ person(alized)], [~ abstract],

etc.) which we think to be consistently
applicable and flexible enough to be extended

and/or changed when the need arises. Apart

from semantic selection restrictions on filler
constituents, it is possible to include

(canonical) lexical forms in a slot
specification list. These may refer to the

form required in either the 'relator' (e.g.

the preposition in a PP or the conjunction in

a subordinate clause) or the 'head' of filler

constituents. The latter functionality has

been provided in order to handle more or less

idiomatic NPs (e.g. een keuze in een keuze
doen, "make a choice') which are still

sensitive to regular syntactic operations
(e.g. passivization).

Frame constructors consist of instructions

according to which the system should generate

the appropriate surface form required for

fillers of the slots from which those
constructors are called. Again, the actual

content of the instructions is co-determined
by such parameters as the slot label and the
clause's Mood and Voice values, as well as by

lexical information provided in the slot.

It is important to note two things. First,

it is actually the same codes that are used
for both tests (Analysis) and constructors

(Synthesis). The system knows from the

translation phase whether it has to interpret

the code as a test or as a constructor.
Second, both frame tests and frame

constructors are stored in separate files, in

order to enhance the modularity of the

lingware. However, they are written in the
same format as ordinary grammar rules, and a
special interface for loading, inspecting and

editing these procedures has been developed,

so that they can be easily accessed and
updated by the linguist.

As an illustration of the above, let us
consider the following (incomplete) list of

valency frames which occur as elements in a

value list to the feature ARGS for the verb
faire:

(

(($0 N1 PI) ($I N1 P0)

OPT ($2 N1 P1 (PREP pour))) :'make"

(($0 NI)($5 A)) :'look"

(($0 NI)($3 MEA)) :'do"

)

What is said here is that faire can show up in

(at least) three different frames. The first

one contains two necessary and one optional

slot. The first slot requires a nominal filler

with selection restriction [+personal(ized)],

the second one a nominal filler with selection
restriction [-personal], and the optional one

a prepositional complement introduced by pour
and having selection restriction

[+personal(ized)]. The second frame contains

two obligatory slots, the first of which
requiring a nominal filler and the second one
an adjectival complement. Finally, the third
frame requires a nominal filler and a measure
constituent. The respective frames are
illustrated in the following sentences:

171

(1) Je ($0) fais ce Jouet ($I) pour mon ami ($2)

"I make this toy for my friend"

(2) Ella ($0) fair vieille ($5)

"She looks old"

(3) Carte volture ($0} fair 100 km/h ($3)

• This oar does i00 km/h,

An example of a (French) frame test is given

in fig. i. It is invoked by the key PI, when

called for the slot labelled $2 (as in the

first frame of faire). Comments explaining the

test instructions are given in italics. Note

how different contextual restrictions have

been assembled in one test procedure.

In fig. 2, we give an example of one

(French) frame constructor which is called by

the key N1 from a slot labelled $2.

PI-$2

(SONS ($2SON - (INT ? $2 N1))

single O U t nodes which pa~sed the $2-NI test

DO

for each of these nodes,

(COND ((INT $2SON TY HUM HI)

if it has semantic type [+human]

or [+human intervention],

then succeed

(PUT ($2 PI)))

((INT $2SON RP REL)

if it contains a relative pronoun,

then succeed

(PUT ($2 PI) (TR HUM HI)))

((RET $2SON KP)

if it confains a pronoun,

then succeed

(PUT ($2 PI)))

(T

else, unmmrk the node as a candidate

for the $2 slot

(RMV $2SON $2))))

fig.l: frame test

NI-$2

(AND (RET 0 PREP)

if there is a PREP feature on the father node

(this feature has been retrieved fr~ a

verbal entry)

(OR (XFM (&:l (--:2 (NP:3 NIL (INT 3 ROL $2)) ---:4))

and if thera is a NP son marked $2,

then create a TL-PREP node in front of

it and make both dependent on a

new PP node marked $2

(&:l (--:2

(PP:5 ((PREP:6 NIL (TRF 1 PREP))

(NP:3 NIL (RMV ROL)))

(PUT (ROL $2)))

--:4)))

(XFM (&:l (--:2

(PP:3 (pREP:4 &:5) (INT 3 ROL $2))

--:6))

or if there is a PP node marked $2,

then translate its PREP node

(&:l (--:2

(PP:3 ((PREP:7 NIL (TRF i PREP)) &:5))

--:6)))))

fig. 2 : frame constructor

2.3. The valency procedure

The valency procedure is composed of three

subprocedures (see fig. 3). Two of them use

purely language-specific material, while the

third one has to establish a link between

material from two different languages. What

is important to know, however, is that we hold

the overall organization of all three

subprocedures to be completely language-

independent° As a consequence, it should be

easy to plug language and language-pair

specific information into these procedures,

without the latter having to be adapted for

each new language pair. We think this

modularity is a substantial improvement as

compared with the valency procedure

incorporated in the LRC-METAL system.

canonical clause structure

CORE SOFTWARE

frame matching

frame selection

tree updating

P

m IAm

LINGWARE

SL lexical entries

frame tests

canonical clause structure

with SL role distribution and identification

of the matching SL frame
....

CORE SOFTWARE ~ LINGWARE

frame mapping

F transfer entries

slot mapping

canonical clause structure

with TL role distribution and indication of which

TL frame corresponds to the SL frame

TL lexical entries

filler adaptation FI

frame constructors

canonical clause structure

with TL role distributic,~ and

updated valency-bound sentence constituents

fig. 3 : valency procedure

(FRA, FRX, FRG are the drive functions called from

within grammar rules during analysis, transfer, and

synthesis, respectively)

2.3.1. During analysis, the valency

procedure is invoked from within grammar rules

for building clausal structures of the

following format:

<clausal category>

ARGI PRED ARG2 .'.. ARGn

<ARGS>

Given a verb with a set of valency frames and

a set of sentence constituents, this procedure

has to make sure that one of these frames is

realized in the sentence at issue, and, if so,

171

it has to make clear how that frame is

realized. It will take a frame to be realized

in a tree, if and only if each of the frame's
non-optional slots, and possibly, one or more

of its optional slots, is matched by at least

one sentence constituent. If the system

finds a matching frame, it will ultimately
return a tree structure in which each of the

valency-bound constituents is marked for a
slot and whose root node contains a reference
to the matching frame.

Now, the general idea is to have the

procedure look for the most ambitious frame

matching the tree structure, as well as for

the best realization of this frame in the
structure, while avoiding superfluous

processing as much as possible. This implies

that two kinds of preference mechanisms had to

be introduced in the valency procedure: one

to choose the best candidate from a set of

potential fillers for a given slot (instead of

always choosing the first constituent matching

the specifications of that slot), and one to
choose the most ambitious frame from a set of

successful frames (instead of always choosing

the first frame that matches a given analysis

tree).

The first preference mechanism is
implemented in the following way. When

checking whether a frame matches the tree, the

valency procedure collects for each slot ($i

keyl...keyN) all sentence constituents which

pass all the frame tests associated with the
keys in that slot. Furthermore, in the action
part of frame tests, each potential filler

gets a number indicating the probability that
this constituent will be taken as the ultimate
filler for a slot. As the linguist can easily

alter this number, he has significant control
over the assignment of constituents to slots.

The actual assignment procedure is fairly
economical and runs as follows. Whenever

there is only one potential filler for a slot

(which may be either an obligatory or an
optional one), this constituent loses its

marking as a candidate filler for other slots,
if it was one. Furthermore, it is marked as
the only remaining filler for the slot that is

being matched. A side-effect of this
marking may be that one of the other slots

will now have only one candidate filler. In

that case, the latter constituent will be
marked as the actual filler for that slot and
lose its marking as a potential filler for

still other slots, if it was one. This may

again cause the number of potential fillers
for yet another slot to be reduced to one, in

which case the above marking (and unmarking)
procedure starts over again. If, eventually,

there is more than one potential filler for a

slot, the procedure takes the leftmost
candidate which received the highest prefer-

ence value for the slot in the frame tests.

The second preference mechanism is fairly

economical as well. The general assumption is

that, in order to find the most 'ambitious'
frame, one should look for the frame which has
the largest number of slots realized. In
order to avoid superfluous processing, we let
the more complex frames (i.e. the ones with

the larger number of slots, whether obligatory

or optional) precede the less complex ones in

the ARGS value of a verb. Consequently, the

system comes across the former before it sees

the latter. Whenever two or more alternative
frames happen to have the same number of

slots, the lexicographer has to determine

(e.g., on the basis of frequency of
occurrence) which frame to try first. Given

that the system has found a matching frame, it
will only explore an alternative frame if the

number of (optional and non-optional) slots

contained in the alternative frame outnumbers
the number of slots found to be realized

during the matching of the first frame. An

alternative frame will be preferred only when

it has more slots realized than the previous
matching frame.

2 . 3 . 2 . During transfer, since we take

argument structures to be language-specific

entities, the valency procedure has to
accomplish two tasks. First, it has to

determine which TL frame corresponds with the

SL frame that has been found to be applicable

to the analysis tree. Secondly, it has to

specify which slots in the TL frame correspond

with which slots in the SL frame. It performs
those tasks in the following way.

First, the mechanism looks up all the

transfers for the SL verbal predicate. Each

of the verbal transfer entries describes a
transition between the SL verb with one of its

frames, and an equivalent TL verb with one of

its frames. It does so in terms of (a) condi-

tions on the transition and (b) (possibly

partial) mappings between SL slots and TL

slots. The condition part of a verbal transfer

entry may be empty or take any of the follow-
ing forms, for disambiguation w.r.t, the TL:

(a) a test on the presence (absence) of some

slot filler in (from) the SL tree;
(b) a test on the presence (absence) of

certain lexical or grammatical information

on some slot filler in (from) the SL tree;

(c) a test on the presence (absence) of some
feature on (from) the root node of the SL

tree.

As for the mappings between SL slots and TL

slots, three possibilities have been catered
for so far:

(a) SL slot maps onto TL slot. In this case,

we only state contrastive information
which is strictly necessary to effect an

appropriate mapping between SL slots and
TL slots. That is, in General,
equivalences between distinct slot labels

will suffice, though additional
information may be provided for

disambiguation.

(b) SL slot without TL counterpart. Again,
only minimal information needs to be

specified in order to identify the SL slot
whose filler must be removed from the tree

structure.

(c) TL slot without SL counterpart. Here, the

coder should be able to describe the

internal structure of a TL constituent to
be created at clause level in the tree
structure. At the moment, the
functionality provided is limited to the

creation of new TL nodes without internal
structure.

173

Having retrieved all the transfers for the

SL verb, the system reduces the potential

transfer ambiguity of a SL verb in two steps.

It first discards any transfers for which not

all conditions are fulfilled. Afterwards, it

checks which of the remaining transfer entries
(there should be at least one) provides a

frame equivalence whose 'left-hand side" can

be linked to the frame realized in the SL

tree. Once this equivalence has been found,
the TL frame matched by the 'right-hand side'

of the frame equivalence will be substituted
for the SL frame referenced by a feature on

the root node of the tree. At this stage,

nodes can be pruned from or added to the tree

structure, if lexical instructions tell the

system to do so.

Finally, after translation of the verbal

predicate, the system exploits the

equivalences between SL slots and TL slots in

order to determine how the translations of the

sentence-level constituents fit into the slots

of the TL frame.

The above matching procedure complicates the
lexicographer's task considerably (see section

3. for how we try to remedy this situation).

This is because it requires that verbal

transfer entries be written in such a way that

each of them provides

(a) a link with a SL verb and exactly one of

its frames;

(b) a link with a TL verb and exactly one of

its frames;
(c) sufficient information concerning the slot

equivalences holding between these two

frames.

On the other hand, it has the advantage of

giving the dictionary writer significant

control over verbal and clausal transfer.

2.3.3. The task of the valency procedure

during synthesis, as we conceived of it,

consists in guiding the generation of the
appropriate surface form of valency-bound

sentence constituents. Furthermore, the

synthesis component contains constituent
ordering procedures which may refer to slot

labels in order to rearrange the canonical

clause structure into the appropriate TL

ordering.

First, the valency procedure retrieves the

TL-frame from the root of the tree. For each

slot contained in this frame, it then checks
whether it contains any lexical information

specific to the TL verb and the frame that are
at issue (e.g., the third (optional) slot in

the first frame of faire has to be filled by a

prepositional phrase introduced by pour) and

makes this information available for further

processing. Next, it calls all of the frame

constructors associated with the keys in the
slot. During those calls the relevant

sentence constituents will be modified and

updated according to the instructions that the
linguist specified in the constructors.

Eventually, the valency procedure should

return a tree all of whose valency-bound
constituents contain sufficient information so

that morphological rules and linearization

rules can generate the appropriate TL forms

and constituent ordering (the latter rules may

occasionally alter the constituents' forms).

Again, the linguist has significant control

over the generation process as he can easily
specify and update the contents of both frame

constructors and linearization rules.

3. R e m . z l t e ~"*d Probl~

In the last year, the alternative valency
framework presented in this paper has been

applied to the translation of Dutch into

French, and vice versa. Though the application
has been limited to "kernel" sentences, i.e.

simple active and passive declarative

sentences (possibly containing relative
clauses of the same type), the results seem

fairly promising. At the moment, provisions
are being made to handle non-finite

valency-bound subclauses.

In the meantime, small conversion

experiments have been conducted for the

language pairs German-English (at K.U.Leuven)
and German-Spanish (at CDS Barcelona). These

experiments have shown that, at least for the
admittedly very limited domain of application,

the Leuven valency framework works very well.

Its main advantages seem to be the follow-

ing:

(a) it provides the skeleton for a really
transfer-based MT system, since it clearly

separates three subprocedures to be

invoked during Analysis, Transfer, and

Synthesis, respectively;
(b) it allows for a neat separation of kernel

software and application-specific lingware
and provides user-friendly facilities to

access and update the latter;
(c) its methodological underpinning to a

certain extent allows languages to be

treated independently of one another.

Because of these advantages, the Leuven

valency framework has recently been adopted by

all sites of the METAL project.

However, serious problems remain to be

tackled, with respect to both lexicon coding
and grammatical parsing. The first kind of

problems can be traced to the rigidity of the
frame mapping schema itself. As has been

pointed out in section 2.3.2., the main

requirement for frame mapping to be possible
is that verb lexicons be coded consistently

across languages. This may indeed be
profitable in an experimental environment.

However, it is doubtful whether we can expect

the average end user to have both source,

target, and transfer codings in mind at the

same time and to make sure that no aspect of

the mapping between frames is overlooked.

Therefore, we have developed provisional
relaxations on the rigid schema to the extent

that at least the mandatory slots of the TL
frame must have a counterpart in the SL frame.

Eventually, however, it may turn out to be

more effective not to have these relaxations
at run time, but to sort out inconsistencies

between verbal lexicons at coding time.

174

The second kind of problems (among which the

notorious difficult problem of PP-attachment)

has to do with a need for still greater
functionality in the system. In order to
provide for this functionality, we envisage

two paths of further research. One path
concerns how we can make our valency mechanism

interact with a mechanism to identify

peripheral constituents, which orbit around
the verb and its arguments. The other path
concerns the extensibility of the valency

framework to nouns and adjectives.
Preliminary research along both lines has
revealed that

there are no objections of principle against
the valency framework presented in this paper.

ACKNOWLEDGMENTS

Thanks are due to all the members of the

Leuven METAL-project who helped develop the

valency framework presented in this paper.
The author would also like to thank Geert

Adriaens en Herman Caeyers for their helpful

comments on earlier drafts of this paper.

REFERENCES

Alam, Y.S. 1986. 'A lexical-functional
approach to Japanese for the purpose of

machine translation.' Computers and
Translation 1(4): 199-214.

Bennett, W.S. & J. Slocum 1985. 'The LRC

machine translation system.' Computational
Linguistics ii (2-3): 112-121.

Helbig, G. & W. Schenkel 1973. Woerterbuch
zur Valenz und Distribution deutscher Verben.
Leipzig: VEB Verlag Enzyklopaedie.

Jin, W. & R.F. Simmons 1986. 'Symmetric
rules for translation of English and Chinese.'
Com~uters and Translation 1(3): 153-167.

Kudo, I. & H. Nomura 1986. 'Lexical-func-
tional transfer: a transfer framework in a

machine translation system based on LFG.'
Proceedings COLING 86, 112-114.

Root, R. 1985. 'A two-way approach to

structural transfer in MT.' Proceedings of
the 2nd ACL 1985, 70-72.

Slocum, J. 1983. 'A status report on the
LRC machine translation system.' Proceedings
of the ACL-NRL Conference on Applied Natural
Language Processing, 166-173.

Somers, H.L. 1986. Valency
Computational Linguistics.
Edinburgh University Press.

and Case in
Edinburgh:

Van der Korst, B. 1987. 'Twelve sentences:

a translation procedure in terms of Functional
Grammar." Working papers in Functional
Grammar 19, University of Amsterdam.

175

